Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions"

Transcription

1 Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico September 8, 2015

2 Review of Last Time Looking at 1-D (x or y) and 2-D (x and y) motion diagrams, position, velocity, & acceleration graphs Equations of motion in 1-D and 2-D, Projectile Motion Vectors, Free Fall, Coordinate System, & Motion on a ramp Relative Velocity, Circular Motion

3 QuickCheck Question 3.15 A factory conveyor belt rolls at 3 m/s. A mouse sees a piece of cheese directly across the belt and heads straight for the cheese at 4 m/ s. What is the mouse s speed relative to the factory floor? A. 1 m/s B. 2 m/s C. 3 m/s D. 4 m/s E. 5 m/s

4 QuickCheck Question 3.15 A factory conveyor belt rolls at 3 m/s. A mouse sees a piece of cheese directly across the belt and heads straight for the cheese at 4 m/ s. What is the mouse s speed relative to the factory floor? Break the problem up into the relative parts! A. 1 m/s B. 2 m/s C. 3 m/s D. 4 m/s E. 5 m/s

5 QuickCheck Question 3.16 A heavy red ball is released from rest 2.0 m above a flat, horizontal surface. At exactly the same instant, a yellow ball with the same mass is fired horizontally at 3.0 m/s. Which ball hits the ground first? 2.0 m v = 3.0 m/s A. The red ball hits first. B. The yellow ball hits first. C. They hit at the same time.

6 QuickCheck Question 3.16 A heavy red ball is released from rest 2.0 m above a flat, horizontal surface. At exactly the same instant, a yellow ball with the same mass is fired horizontally at 3.0 m/s. Which ball hits the ground first? 2.0 m v = 3.0 m/s A. The red ball hits first. B. The yellow ball hits first. C. They hit at the same time.

7 Projectile Acceleration Ignoring air resistance, vertical acceleration, ay, is the same at all points Why? - Free Fall ay = afree fall = -g = -9.8 m/s 2 Horizontal (x-) component, ax = 0 m/s 2

8 QuickCheck Question 3.17 A 100-g ball rolls off a table and lands 2.0 m from the base of the table. A 200-g ball rolls off the same table with the same speed. It lands at distance A. 1.0 m B. Between 1 m and 2 m C. 2.0 m D. Between 2 m and 4 m E. 4.0 m

9 QuickCheck Question 3.17 A 100-g ball rolls off a table and lands 2.0 m from the base of the table. A 200-g ball rolls off the same table with the same speed. It lands at distance A. 1.0 m B. Between 1 m and 2 m C. 2.0 m D. Between 2 m and 4 m E. 4.0 m Remember no acceleration in the x direction only in the y.

10 Analyzing Projectile Motion The ball finishes its motion moving downward at the same speed as it started moving upward Two independent motions: uniform motion at constant velocity in the x- direction and free-fall motion in the y-direction

11 QuickCheck Question 3.18 Projectiles 1 and 2 are launched over level ground with the same speed but at different angles. Which hits the ground first? Ignore air resistance. A. Projectile 1 hits first. B. Projectile 2 hits first. C. They hit at the same time. D. There s not enough information to tell.

12 QuickCheck Question 3.18 Projectiles 1 and 2 are launched over level ground with the same speed but at different angles. Which hits the ground first? Ignore air resistance. Remember: The time in the air is determined by the vertical component of the velocity A. Projectile 1 hits first. B. Projectile 2 hits first. C. They hit at the same time. D. There s not enough information to tell.

13 What have we learned? Acceleration is a vector that points in the direction of change in velocity; if there is a change in velocity, there is an acceleration

14 What is the Cause of Motion? Acceleration is a vector that points in the direction of change in velocity; if there is a change in velocity, there is an acceleration What causes this change in velocity or acceleration?

15 What Causes Motion?

16 What Causes Motion? When you (agent) push on an object to cause it to move from rest (accelerate) what are you doing?

17 What Causes Motion? When you (agent) push on an object to cause it to move from rest (accelerate) what are you doing? You are applying a FORCE!

18 What Causes Motion? When you (agent) push on an object to cause it to move from rest (accelerate) what are you doing? You are applying a FORCE! A push or pull, an action on an object, is a FORCE

19 Newton s First Law A push or pull, an action on an object, is a FORCE

20 Newton s First Law A push or pull, an action on an object, is a FORCE A force acts on an object

21 Newton s First Law A push or pull, an action on an object, is a FORCE A force acts on an object An agent imparts that force on the object

22 What is FORCE? Forces cause acceleration

23 What is FORCE? Forces cause acceleration A force is a vector, denoted by the symbol F, whose magnitude (size) is F.

24 What is FORCE? Forces cause acceleration A force is a vector, denoted by the symbol F, whose magnitude (size) is F. Contact forces are forces that act on an object by touching it at a point of contact

25 What is FORCE? Forces cause acceleration A force is a vector, denoted by the symbol F, whose magnitude (size) is F. Contact forces are forces that act on an object by touching it at a point of contact Long-range forces are forces that act on an object without physical contact

26 Contact Forces

27 Contact Forces

28 Contact Forces

29 Contact Forces

30 Long Range Forces

31 Long Range Forces

32 Force Vectors

33 More than One Force? Many objects in motion experience more than one force acting on them

34 More than One Force? Many objects in motion experience more than one force acting on them The sum of all the forces acting on an object is the resultant or net force

35 More than One Force? Many objects in motion experience more than one force acting on them The sum of all the forces acting on an object is the resultant or net force F NET = F = F 1 + F 2 + F 3 +

36 QuickCheck Question 4.1 The net force on an object points to the left. Two of three forces are shown. Which is the missing third force?

37 QuickCheck Question 4.1 The net force on an object points to the left. Two of three forces are shown. Which is the missing third force? We know that F NET points to the left

38 QuickCheck Question 4.1 The net force on an object points to the left. Two of three forces are shown. Which is the missing third force? We also know that the sum of F 1 and F 2 points to the top right F r F NET

39 QuickCheck Question 4.1 The net force on an object points to the left. Two of three forces are shown. Which is the missing third force? Subtracting Fr from F NET will give us the third force F r F NET

40 QuickCheck Question 4.1 The net force on an object points to the left. Two of three forces are shown. Which is the missing third force? Adding -Fr and F NET together we see that F 3 has to be F r F NET -F r

41 QuickCheck Question 4.1 The net force on an object points to the left. Two of three forces are shown. Which is the missing third force? Adding -Fr and F NET together we see that F 3 has to be F r F NET -F r

42 Where Are Forces Found? There is a plethora of forces out there

43 Where Are Forces Found? There is a plethora of forces out there You just have to know where to look!

44 Where Are Forces Found? There is a plethora of forces out there You just have to know where to look! Think of your weight or falling down

45 Where Are Forces Found? There is a plethora of forces out there You just have to know where to look! Think of your weight or falling down Rolling or skiing down a hill

46 Where Are Forces Found? There is a plethora of forces out there You just have to know where to look! Think of your weight or falling down Rolling or skiing down a hill Jumping on a trampoline or your car s shocks

47 Types of Forces

48 Types of Forces - Weight The gravitational pull of the earth on an object on or near the surface of the earth

49 Types of Forces - Weight The gravitational pull of the earth on an object on or near the surface of the earth What is the agent?

50 Types of Forces - Weight The gravitational pull of the earth on an object on or near the surface of the earth What is the agent? - Earth (pulling down)

51 Types of Forces - Weight The gravitational pull of the earth on an object on or near the surface of the earth What is the agent? - Earth (pulling down) An object s weight vector always points vertically downward

52 Types of Forces - Spring

53 Types of Forces - Spring These come in many forms (springs, trampoline, etc.)

54 Types of Forces - Spring These come in many forms (springs, trampoline, etc.) They push or pull when pushed or pulled

55 Types of Forces - Tension

56 Types of Forces - Tension Contact force exerted when pulling a string, rope, or wire

57 Types of Forces - Tension Contact force exerted when pulling a string, rope, or wire The direction of this force is in the direction the string, rope, or wire is pulled

58 Types of Forces - Normal Force

59 Types of Forces - Normal Force The force exerted by a surface (the agent) against an object that is pressing against it

60 Types of Forces - Normal Force The force exerted by a surface (the agent) against an object that is pressing against it This forces is always perpendicular to the surface

61 Types of Forces - Normal Force The force exerted by a surface (the agent) against an object that is pressing against it This forces is always perpendicular to the surface Even on inclined plane

62 Types of Forces - Normal Force Responsible for solidness of solids

63 Types of Forces - Normal Force Responsible for solidness of solids Denoted by the symbol n n

64 Types of Forces - Friction

65 Types of Forces - Friction Like Normal Force, exerted by a surface

66 Types of Forces - Friction Like Normal Force, exerted by a surface Unlike Normal Force, parallel to the surface

67 Types of Forces - Friction Static Friction, f s, keeps an object from moving

68 Types of Forces - Friction Static Friction, f s, keeps an object from moving Kinetic Friction, f k, acts as an object moves along the surface

69 Types of Forces - Drag The force of a fluid (like air or water) on a moving object

70 Types of Forces - Drag The force of a fluid (like air or water) on a moving object Points opposite the direction of motion

71 Types of Forces - Drag The force of a fluid (like air or water) on a moving object Points opposite the direction of motion Neglect air resistance in all problems except when told to include it

72 Types of Forces - Thrust

73 Types of Forces - Thrust Occurs when a jet or rocket engine expels gas molecules at high speed

74 Types of Forces - Thrust Occurs when a jet or rocket engine expels gas molecules at high speed Directed opposite the direction of the exhaust gas

75 QuickCheck Question 4.2 A ball rolls down an incline and off a horizontal ramp. Ignoring air resistance, what force or forces act on the ball as it moves through the air just after leaving the horizontal ramp? A. The weight of the ball acting vertically down. B. A horizontal force that maintains the motion. C. A force whose direction changes as the direction of motion changes. D. The weight of the ball and a horizontal force. E. The weight of the ball and a force in the direction of motion.

76 QuickCheck Question 4.2 A ball rolls down an incline and off a horizontal ramp. Ignoring air resistance, what force or forces act on the ball as it moves through the air just after leaving the horizontal ramp? A. The weight of the ball acting vertically down. B. A horizontal force that maintains the motion. C. A force whose direction changes as the direction of motion changes. D. The weight of the ball and a horizontal force. E. The weight of the ball and a force in the direction of motion.

77 QuickCheck Question 4.3 A steel beam hangs from a cable as a crane lifts the beam. What forces act on the beam? A. Gravity B. Gravity and tension in the cable C. Gravity and a force of motion D. Gravity and tension and a force of motion

78 QuickCheck Question 4.3 A steel beam hangs from a cable as a crane lifts the beam. What forces act on the beam? A. Gravity B. Gravity and tension in the cable C. Gravity and a force of motion D. Gravity and tension and a force of motion

79 QuickCheck Question 4.4 A bobsledder pushes her sled across horizontal snow to get it going, then jumps in. After she jumps in, the sled gradually slows to a halt. What forces act on the sled just after she s jumped in? A. Gravity and kinetic friction B. Gravity and a normal force C. Gravity and the force of the push D. Gravity, a normal force, and kinetic friction E. Gravity, a normal force, kinetic friction, and the force of the push

80 QuickCheck Question 4.4 A bobsledder pushes her sled across horizontal snow to get it going, then jumps in. After she jumps in, the sled gradually slows to a halt. What forces act on the sled just after she s jumped in? A. Gravity and kinetic friction B. Gravity and a normal force C. Gravity and the force of the push D. Gravity, a normal force, and kinetic friction E. Gravity, a normal force, kinetic friction, and the force of the push

81 Identifying Forces

82 What Forces Are There?

83 Identifying Forces

84 Forces and Motion What do forces do?

85 Forces and Motion What do forces do? - They cause an object to move, accelerate

86 Forces and Motion What do forces do? - They cause an object to move, accelerate An object pulled with a constant force experiences a constant acceleration (both pointing in the same direction)

87 Forces and Motion What do forces do? - They cause an object to move, accelerate An object pulled with a constant force experiences a constant acceleration (both pointing in the same direction) Acceleration is directly proportional to the force (F a)

88 Forces and Motion What do forces do? - They cause an object to move, accelerate An object pulled with a constant force experiences a constant acceleration (both pointing in the same direction) Acceleration is directly proportional to the force (F a) Acceleration is inversely proportional to an object s mass (a 1/m)

89 Forces and Motion

90 Forces and Motion As the block starts to move, in order to keep the pulling force constant you must move your hand in just the right way to keep the length of the rubber band and thus the force constant.

91 QuickCheck Question 4.5 A cart is pulled to the right with a constant, steady force. How will its acceleration graph look?

92 QuickCheck Question 4.5 A cart is pulled to the right with a constant, steady force. How will its acceleration graph look? Remember: A constant force means a constant acceleration!

93 QuickCheck Question 4.5 A cart is pulled to the right with a constant, steady force. How will its acceleration graph look? Remember: A constant force means a constant acceleration!

94 Example Finding the mass of an unknown block When a rubber band is stretched to pull on a 1.0 kg block with a constant force, the acceleration of the block is measured to be 3.0 m/s 2. When a block with an unknown mass is pulled with the same rubber band, using the same force, its acceleration is 5.0 m/s 2. What is the mass of the unknown block?

95 Example Finding the mass of an unknown block When a rubber band is stretched to pull on a 1.0 kg block with a constant force, the acceleration of the block is measured to be 3.0 m/s 2. When a block with an unknown mass is pulled with the same rubber band, using the same force, its acceleration is 5.0 m/s 2. What is the mass of the unknown block? PREPARE Each block s acceleration is inversely proportional to its mass. Meaning a 1/m

96 Example Finding the mass of an unknown block SOLVE We can use the result of the Inversely Proportional Relationships box to write

97 Example Finding the mass of an unknown block SOLVE We can use the result of the Inversely Proportional Relationships box to write

98 Example Finding the mass of an unknown block SOLVE We can use the result of the Inversely Proportional Relationships box to write ASSESS With the same force applied, the unknown block had a larger acceleration than the 1.0 kg block. It makes sense, then, that its mass its resistance to acceleration is less than 1.0 kg.

99 Newton s Second Law This is the same as writing Fnet = m a

100 QuickCheck Question 4.6 A constant force causes an object to accelerate at 4 m/s 2. What is the acceleration of an object with twice the mass that experiences the same force? A. 1 m/s 2 B. 2 m/s 2 C. 4 m/s 2 D. 8 m/s 2 E. 16 m/s 2

101 QuickCheck Question 4.6 A constant force causes an object to accelerate at 4 m/s 2. What is the acceleration of an object with twice the mass that experiences the same force? A. 1 m/s 2 B. 2 m/s 2 C. 4 m/s 2 D. 8 m/s 2 E. 16 m/s 2 Remember: Acceleration is inversely proportional to mass a 1/m

102 QuickCheck Question 4.6 A constant force causes an object to accelerate at 4 m/s 2. What is the acceleration of an object with twice the mass that experiences the same force? A. 1 m/s 2 B. 2 m/s 2 C. 4 m/s 2 D. 8 m/s 2 E. 16 m/s 2 Remember: Acceleration is inversely proportional to mass a 1/m If the new mass is twice as big as the old one, m new = 2 m old

103 QuickCheck Question 4.6 A constant force causes an object to accelerate at 4 m/s 2. What is the acceleration of an object with twice the mass that experiences the same force? A. 1 m/s 2 B. 2 m/s 2 C. 4 m/s 2 D. 8 m/s 2 E. 16 m/s 2 Remember: Acceleration is inversely proportional to mass a 1/m If the new mass is twice as big as the old one, m new = 2 m old a new = (m old /m new ) a old = 1/2 a old

104 QuickCheck Question 4.6 A constant force causes an object to accelerate at 4 m/s 2. What is the acceleration of an object with twice the mass that experiences the same force? A. 1 m/s 2 B. 2 m/s 2 C. 4 m/s 2 D. 8 m/s 2 E. 16 m/s 2 Remember: Acceleration is inversely proportional to mass a 1/m If the new mass is twice as big as the old one, m new = 2 m old a new = (m old /m new ) a old = 1/2 a old

105 QuickCheck Question 4.7 An object, when pushed with a net force F, has an acceleration of 2 m/s 2. Now twice the force is applied to an object that has four times the mass. Its acceleration will be A. ½ m/s 2 B. 1 m/s 2 C. 2 m/s 2 D. 4 m/s 2

106 QuickCheck Question 4.7 An object, when pushed with a net force F, has an acceleration of 2 m/s 2. Now twice the force is applied to an object that has four times the mass. Its acceleration will be A. ½ m/s 2 B. 1 m/s 2 C. 2 m/s 2 D. 4 m/s 2 Remember: Acceleration is directly proportional to force and inversely proportional to mass a = F/m

107 QuickCheck Question 4.7 An object, when pushed with a net force F, has an acceleration of 2 m/s 2. Now twice the force is applied to an object that has four times the mass. Its acceleration will be A. ½ m/s 2 B. 1 m/s 2 C. 2 m/s 2 D. 4 m/s 2 Remember: Acceleration is directly proportional to force and inversely proportional to mass a = F/m If the new force is twice as big as the old one, F new = 2 F old and the new mass is 4 times as big as the old one, m new = 4 m old, then

108 QuickCheck Question 4.7 An object, when pushed with a net force F, has an acceleration of 2 m/s 2. Now twice the force is applied to an object that has four times the mass. Its acceleration will be A. ½ m/s 2 B. 1 m/s 2 C. 2 m/s 2 D. 4 m/s 2 Remember: Acceleration is directly proportional to force and inversely proportional to mass a = F/m If the new force is twice as big as the old one, F new = 2 F old and the new mass is 4 times as big as the old one, m new = 4 m old, then a new = F new /m new = (2 F old )/(4 m old ) = 2/4 F old /m old = 2/4 a old = (1/2)(2 m/s 2 ) = 1 m/s 2

109 QuickCheck Question 4.7 An object, when pushed with a net force F, has an acceleration of 2 m/s 2. Now twice the force is applied to an object that has four times the mass. Its acceleration will be A. ½ m/s 2 B. 1 m/s 2 C. 2 m/s 2 D. 4 m/s 2 Remember: Acceleration is directly proportional to force and inversely proportional to mass a = F/m If the new force is twice as big as the old one, F new = 2 F old and the new mass is 4 times as big as the old one, m new = 4 m old, then a new = F new /m new = (2 F old )/(4 m old ) = 2/4 F old /m old = 2/4 a old = (1/2)(2 m/s 2 ) = 1 m/s 2

110 QuickCheck Question 4.8 A 40-car train travels along a straight track at 40 mph. A skier speeds up as she skis downhill. On which is the net force greater? A. The train B. The skier C. The net force is the same on both. D. There s not enough information to tell.

111 QuickCheck Question 4.8 A 40-car train travels along a straight track at 40 mph. A skier speeds up as she skis downhill. On which is the net force greater? A. The train B. The skier C. The net force is the same on both. D. There s not enough information to tell.

112 QuickCheck Question 4.9 An object on a rope is lowered at constant speed. Which is true? A. The rope tension is greater than the object s weight. B. The rope tension equals the object s weight. C. The rope tension is less than the object s weight. D. The rope tension can t be compared to the object s weight.

113 QuickCheck Question 4.9 An object on a rope is lowered at constant speed. Which is true? Remember: Constant velocity means zero acceleration A. The rope tension is greater than the object s weight. B. The rope tension equals the object s weight. C. The rope tension is less than the object s weight. D. The rope tension can t be compared to the object s weight.

114 QuickCheck Question 4.9 An object on a rope is lowered at constant speed. Which is true? Remember: Constant velocity means zero acceleration A. The rope tension is greater than the object s weight. B. The rope tension equals the object s weight. C. The rope tension is less than the object s weight. D. The rope tension can t be compared to the object s weight.

115 QuickCheck Question 4.9 An object on a rope is lowered at constant speed. Which is true? Remember: Constant velocity means zero acceleration A. The rope tension is greater than the object s weight. B. The rope tension equals the object s weight. C. The rope tension is less than the object s weight. D. The rope tension can t be compared to the object s weight.

116 QuickCheck Question 4.10 An object on a rope is lowered at a steadily decreasing speed. Which is true? A. The rope tension is greater than the object s weight. B. The rope tension equals the object s weight. C. The rope tension is less than the object s weight. D. The rope tension can t be compared to the object s weight.

117 QuickCheck Question 4.10 An object on a rope is lowered at a steadily decreasing speed. Which is true? Remember: Decreasing downward velocity means acceleration vector points up A. The rope tension is greater than the object s weight. B. The rope tension equals the object s weight. C. The rope tension is less than the object s weight. D. The rope tension can t be compared to the object s weight.

118 QuickCheck Question 4.10 An object on a rope is lowered at a steadily decreasing speed. Which is true? Remember: Decreasing downward velocity means acceleration vector points up A. The rope tension is greater than the object s weight. B. The rope tension equals the object s weight. C. The rope tension is less than the object s weight. D. The rope tension can t be compared to the object s weight.

119 QuickCheck Question 4.10 An object on a rope is lowered at a steadily decreasing speed. Which is true? Remember: Decreasing downward velocity means acceleration vector points up so the net force is also pointing up A. The rope tension is greater than the object s weight. B. The rope tension equals the object s weight. C. The rope tension is less than the object s weight. D. The rope tension can t be compared to the object s weight.

120 QuickCheck Question 4.10 An object on a rope is lowered at a steadily decreasing speed. Which is true? Remember: Decreasing downward velocity means acceleration vector points up so the net force is also pointing up A. The rope tension is greater than the object s weight. B. The rope tension equals the object s weight. C. The rope tension is less than the object s weight. D. The rope tension can t be compared to the object s weight.

121 Units of Force The basic unit of force, in SI, is called a Newton (N) 1 N = 1 kg m/s 2 One newton causes 1 kg mass to accelerate at 1 m/ s 2 The unit for force in the English system is a pound (lb) 1 pound = 1 lb = 4.45 N

122 Summary

123 Summary

124 Summary

125 Summary

126 Things that are due Homework #3 Due September 14, 2015 by 11:59 pm Reading Quiz #4 Due September 15, 2015 by 4:59 pm

127 EXAM #1 Covers Chapters 1-3 & Lectures 2-6 Thursday, September 10, 2015 Bring a calculator and cheat sheet (turn in with exam, one side of 8.5 x11 piece of paper) Practice exam is available on website along with solutions

128 QUESTIONS?

Lecture Presentation Chapter 4 Forces and Newton s Laws of Motion

Lecture Presentation Chapter 4 Forces and Newton s Laws of Motion Lecture Presentation Chapter 4 Forces and Newton s Laws of Motion Suggested Videos for Chapter 4 Prelecture Videos Newton s Laws Forces Video Tutor Solutions Force and Newton s Laws of Motion Class Videos

More information

Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc. Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

Describe the relationship between gravitational force and distance as shown in the diagram.

Describe the relationship between gravitational force and distance as shown in the diagram. Name Period Chapter 2 The Laws of Motion Review Describe the relationship between gravitational force and distance as shown in the diagram. Assess the information about gravity, mass, and weight. Read

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

More information

Chapter 4 Newton s Laws: Explaining Motion

Chapter 4 Newton s Laws: Explaining Motion Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003 Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

More information

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics 11 Assignment KEY Dynamics Chapters 4 & 5 Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

More information

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time

More information

At the skate park on the ramp

At the skate park on the ramp At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Physics I Honors: Chapter 4 Practice Exam

Physics I Honors: Chapter 4 Practice Exam Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe

More information

AP Physics Newton's Laws Practice Test

AP Physics Newton's Laws Practice Test AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a

More information

Steps to Solving Newtons Laws Problems.

Steps to Solving Newtons Laws Problems. Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F

More information

Friction and Newton s 3rd law

Friction and Newton s 3rd law Lecture 4 Friction and Newton s 3rd law Pre-reading: KJF 4.8 Frictional Forces Friction is a force exerted by a surface. The frictional force is always parallel to the surface Due to roughness of both

More information

Newton s Laws of Motion

Newton s Laws of Motion Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

Mass, energy, power and time are scalar quantities which do not have direction.

Mass, energy, power and time are scalar quantities which do not have direction. Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and

More information

Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION 1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is

More information

Friction and Gravity. Friction. Section 2. The Causes of Friction

Friction and Gravity. Friction. Section 2. The Causes of Friction Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity. 5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

More information

Section 3 Newton s Laws of Motion

Section 3 Newton s Laws of Motion Section 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.

1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled. Base your answers to questions 1 through 5 on the diagram below which represents a 3.0-kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the

More information

STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws

STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79

Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life? - car brakes - driving around a turn - walking - rubbing your hands together

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

Physics. Lesson Plan #6 Forces David V. Fansler Beddingfield High School

Physics. Lesson Plan #6 Forces David V. Fansler Beddingfield High School Physics Lesson Plan #6 Forces David V. Fansler Beddingfield High School Force and Motion Objective Define a force and differentiate between contact forces and long-range forces; Recognize the significance

More information

1. Newton s Laws of Motion and their Applications Tutorial 1

1. Newton s Laws of Motion and their Applications Tutorial 1 1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0

More information

Newton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1

Newton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1 Newton s Third Law! If two objects interact, the force exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1!! Note on notation: is

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

ACTIVITY 1: Gravitational Force and Acceleration

ACTIVITY 1: Gravitational Force and Acceleration CHAPTER 3 ACTIVITY 1: Gravitational Force and Acceleration LEARNING TARGET: You will determine the relationship between mass, acceleration, and gravitational force. PURPOSE: So far in the course, you ve

More information

Serway_ISM_V1 1 Chapter 4

Serway_ISM_V1 1 Chapter 4 Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As

More information

Work, Energy and Power Practice Test 1

Work, Energy and Power Practice Test 1 Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

More information

Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to well-defined rules. The book Philosophiae

More information

Two-Body System: Two Hanging Masses

Two-Body System: Two Hanging Masses Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.

More information

Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

More information

UNIT 2D. Laws of Motion

UNIT 2D. Laws of Motion Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics- the study of forces that act on bodies in motion. First Law of Motion

More information

Force. Force as a Vector Real Forces versus Convenience The System Mass Newton s Second Law. Outline

Force. Force as a Vector Real Forces versus Convenience The System Mass Newton s Second Law. Outline Force Force as a Vector Real Forces versus Convenience The System Mass Newton s Second Law Outline Force as a Vector Forces are vectors (magnitude and direction) Drawn so the vector s tail originates at

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM 1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7 Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

More information

WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS

WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as Potential energy. 2. The formula for calculating potential energy is mgh. 3. The three factors that

More information

Name Period WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS. 1. Stored energy or energy due to position is known as energy.

Name Period WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS. 1. Stored energy or energy due to position is known as energy. Name Period Date WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as energy. 2. The formula for calculating potential energy is. 3. The three factors

More information

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa. Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:

More information

This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap.

This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap. This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension PHYS 2: Chap. 19, Pg 2 1 New Topic Phys 1021 Ch 7, p 3 A 2.0 kg wood box slides down a vertical

More information

Physics 100 Friction Lab

Physics 100 Friction Lab Åsa Bradley SFCC Physics Name: AsaB@spokanefalls.edu 509 533 3837 Lab Partners: Physics 100 Friction Lab Two major types of friction are static friction and kinetic (also called sliding) friction. Static

More information

More of Newton s Laws

More of Newton s Laws More of Newton s Laws Announcements: Tutorial Assignments due tomorrow. Pages 19-21, 23, 24 (not 22,25) Note Long Answer HW due this week. CAPA due on Friday. Have added together the clicker scores so

More information

Units DEMO spring scales masses

Units DEMO spring scales masses Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring

More information

Newton s Laws of Motion

Newton s Laws of Motion Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems

More information

Q1. (a) State the difference between vector and scalar quantities (1)

Q1. (a) State the difference between vector and scalar quantities (1) Q1. (a) State the difference between vector and scalar quantities....... (1) (b) State one example of a vector quantity (other than force) and one example of a scalar quantity. vector quantity... scalar

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe. Motion, Force, and Gravity Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

More information

F13--HPhys--Q5 Practice

F13--HPhys--Q5 Practice Name: Class: Date: ID: A F13--HPhys--Q5 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A vector is a quantity that has a. time and direction.

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points) Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each

More information

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces. Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

More information

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

More information

356 CHAPTER 12 Bob Daemmrich

356 CHAPTER 12 Bob Daemmrich Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.

More information

Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Forces. When an object is pushed or pulled, we say that a force is exerted on it. Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change

More information

AP Physics C Fall Final Web Review

AP Physics C Fall Final Web Review Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

More information

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

More information

FORCES AND NEWTON S LAWS OF MOTION 4

FORCES AND NEWTON S LAWS OF MOTION 4 FORCES AND NEWTON S LAWS OF MOTION 4 Q4.1. Reason: If friction and air resistance are negligible (as stated) then the net force on the puck is zero (the normal force and gravitational force are equal in

More information

7. Kinetic Energy and Work

7. Kinetic Energy and Work Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic

More information

charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the

charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring

More information

Conservative vs. Non-conservative forces Gravitational Potential Energy. Work done by non-conservative forces and changes in mechanical energy

Conservative vs. Non-conservative forces Gravitational Potential Energy. Work done by non-conservative forces and changes in mechanical energy Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

More information

Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

More information

Name Period Chapter 10 Study Guide

Name Period Chapter 10 Study Guide Name _ Period Chapter 10 Study Guide Modified True/False Indicate whether the statement is true or false. 1. Unbalanced forces do not change an object s motion. 2. Friction depends on the types of surfaces

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION This lecture will help you understand: Forces and Interactions Newton s Third Law of Motion Summary of Newton s Laws Vectors Forces

More information

IMPORTANT NOTE ABOUT WEBASSIGN:

IMPORTANT NOTE ABOUT WEBASSIGN: Week 8 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Physics 160 Biomechanics. Newton s Laws

Physics 160 Biomechanics. Newton s Laws Physics 160 Biomechanics Newton s Laws Questions to Think About Why does it take more force to cause an object to start sliding than it does to keep it sliding? Why is a ligament more likely to tear during

More information

Force & Motion. Force & Mass. Friction

Force & Motion. Force & Mass. Friction 1 2 3 4 Next Force & Motion The motion of an object can be changed by an unbalanced force. The way that the movement changes depends on the strength of the force pushing or pulling and the mass of the

More information

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work. PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

More information

Resistance in the Mechanical System. Overview

Resistance in the Mechanical System. Overview Overview 1. What is resistance? A force that opposes motion 2. In the mechanical system, what are two common forms of resistance? friction and drag 3. What is friction? resistance that is produced when

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 4: NEWTON S LAWS OF MOTION Newton s Laws of Motion I was only a scalar until you came along and gave me direction. Barbara Wolfe This lecture will help you understand:

More information

Chapter 6. Work and Energy

Chapter 6. Work and Energy Chapter 6 Work and Energy ENERGY IS THE ABILITY TO DO WORK = TO APPLY A FORCE OVER A DISTANCE= Example: push over a distance, pull over a distance. Mechanical energy comes into 2 forms: Kinetic energy

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

More information

Notes: Mechanics. The Nature of Force, Motion & Energy

Notes: Mechanics. The Nature of Force, Motion & Energy Notes: Mechanics The Nature of Force, Motion & Energy I. Force A push or pull. a) A force is needed to change an object s state of motion. b) Net force- The sum (addition) of all the forces acting on an

More information

SOLUTIONS TO PROBLEM SET 4

SOLUTIONS TO PROBLEM SET 4 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01X Fall Term 2002 SOLUTIONS TO PROBLEM SET 4 1 Young & Friedman 5 26 A box of bananas weighing 40.0 N rests on a horizontal surface.

More information

4 Gravity: A Force of Attraction

4 Gravity: A Force of Attraction CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

More information

Homework 4. problems: 5.61, 5.67, 6.63, 13.21

Homework 4. problems: 5.61, 5.67, 6.63, 13.21 Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information