# The Milky Way Galaxy (ch. 23)

Save this PDF as:

Size: px
Start display at page:

Download "The Milky Way Galaxy (ch. 23)"

## Transcription

1 Notes on Ch. 23 and 24. The Milky Way Galaxy (ch. 23) [Exceptions: We won t discuss sec (Galactic Center) in class, but look it over in order to just get the most basic point I might put a question or two on the exam to make sure you have looked at this interesting material. There will be several sections that we will have to treat this way.] In following lecture outline, numbers refer to the Figure numbers in your textbook. In this draft they have not been revised to reflect the new edition. A basic theme in this chapter is how it was gradually discovered that our Galaxy is not the whole universe, but that instead, if we could view it from the outside, our Galaxy would look something like:

2 Think about the problem of getting a characterization of the nature of the surface of the earth while standing within a forest. In the Galaxy case the trees are dust grains, preventing us from seeing outside our local neighborhood (at visible wavelengths or smaller). But even using light of longer wavelengths, there is a big problem: how do we get accurate distances to the objects too distant to use trigonometric, or even spectroscopic, parallaxes? [Make sure you can explain spectroscopic parallax so that you don t forget the general approach to getting distances, which we will begin to encounter at a rapid rate.] One thing we can tell by just looking at the pattern of stars and gas in the sky: our Galaxy must be flat. Look at the images of the sky at different wavelengths (similar to an image in your book): But how do we know that this disk doesn t extend for a thousand, or a billion, parsecs?

3 What about applying spectroscopic parallax to all the O and B stars we can see (think: why use these stars? I will ask you this on the exam). Here is a schematic of the result: In hindsight, we interpret this as seeing parts of the spiral arms of our galaxy, but until around the calibration wasn t good enough to see this, and even when we could, there are still these important questions: How far does this disk extend? Is it round, elongated,? Is our Galaxy made of bands in a disk, or is there more? What is the shape of the distribution of the young and old stars? Our there other galaxies like ours? Answers to these questions require distances using the next standard candle : variable (pulsating) stars.

4 Finding our position in the Milky Way (MW) Counting stars in different directions is very misleading (23.4). Instead, the breakthrough came from using RR Lyrae stars to get the distances to globular clusters (23.9). There are two kinds of variable stars (their apparent brightness varies periodically because they are pulsating) that are used as standard candles for distance estimates: a. RR Lyrae stars all have similar light curves, periods 0.5 to 1 day (23.5), and all have approximately the same luminosity! (Think about how handy this is see 23.6.). Only low-mass metal-poor stars become RR Lyrae stars, so these gave distances to globular clusters (think: old, metal-poor), showing that we weren t located at the center of our Galaxy, and that the Galaxy has a roughly spherical halo. (23.9) So we already have an answer to part of question 2 above: The oldest stars in our galaxy are distributed in space in a roughly spherical halo, consisting mostly of the globular clusters. This tells us that, since these stars are all old and metal-poor, our Galaxy probably began its life as a roughly spherical cloud, and later flattened into a disk. [Later we will see that there is a much more massive dark matter halo that is actually most of the mass of our Galaxy yet we can t see it and we don t know what it is made of!]

5 b. Cepheid variables periods days; they show a very tight period-luminosity relation (23.7), which can be used to get their distances. Important because they are much brighter than RR Lyrae stars, so can get distances to the nearest galaxies using Cepheids. These two methods form the next rung of the ladder of standard candles of distance indicators that we will eventually extend to map the structure of the whole universe. Make sure you understand the relation between needing distances to things in order to make a map! The above illustration shows a light curve for a Cepheid variable (left); this is all we need to measure in order to find that we are looking at a Cepheid. The H-R diagram on the right shows the instability strip where all the Cepheids are found it turns out that the envelopes of stars in this band are unstable to radial pulsations. Consider how lucky we are that there are pulsating stars that can be used to get distances. If not for these stars, we might not have discovered that there are other galaxies (e.g. our nearest neighbors, Large and Small Magellanic Clouds [LMC, SMC], and Andromeda) until much later in this decade.

6

7 Our galaxy s stellar populations : Disk, halo, and bulge. Properties to discuss and understand (see also table 23.1): Spatial distribution (23.10) Color Age Metal abundances Orbits (23.13) The illustration below shows how the disk and halo stellar populations of our Galaxy are distinct in their spectra, with the halo stars having weaker spectral lines than disk stars of the same temperature (spectral type).

8 The following illustration shows the different orbital characteristics of disk and halo stars.

9 These population characteristics suggest a consistent picture for the formation and evolution of our galaxy (Fig.23.14) halo forms first in nearly spherical shape, rest of gas collapsed to disk which has formed stars continuously since that time. (Think about how above properties suggest this.) More recently it was discovered that our Galaxy has a weak but detectable bar structure in the bulge. This rotating bar is important, because it keeps things stirred up through its gravity, and might even drive density waves (see below; but material on density waves will not be on the exam). Mapping the disk can t use stars except nearby (why?); must use radio HI and CO spectral lines for more distant regions. Result from radial velocities and distances: differential galactic rotation (23.12). Inner parts rotating faster than outer parts (at least at our distance from the center see below). Note that this is just for the disk the halo stars are moving differently (see 23.13). Here is an illustrative HI map of our Galaxy.

10 Spiral structure These maps show evidence for spiral arms (although these can be seen more clearly in other galaxies, e.g. 23.3). How can spiral structure persist? If they were material structures, differential rotation would wind them up very tightly (23.17). Two theories, probably both contribute: a. Spiral density waves spirals are only wave patterns moving through the disk. (Think of sound waves the gas itself doesn t move from one place to another.) Gas passing through wave is slowed down and compressed, get enhanced star formation (23.18 and Discovery 23-2). b. Self-propagating star formation---star formation at one location causes explosions that compress the gas some distance away, causing more star formation, and the process repeats, spreading through the galaxy. Makes spiral pattern in differentially rotating disk. (23.19) The origin and maintainance of the spiral is only a problem for a), not b). But a plausible answer for (a) is: waves are excited by gravitational interactions with galactic neighbors, or by a bar within the bulge of our Galaxy and others. The topics on this page, theories of spiral structure, will not be on the next exam.

11 Another possibility, not mentioned in the book, is that the arms could be generated by the bar that is located in the central regions of the galaxy. Here is a simulated IR map of our galaxy showing the bar and the ring it definitely produces.

12 Mass of our Galaxy: Use rotational speeds of stars around galactic center to infer how much mass is inside of that orbit (23.20): Total mass = (orbit size ) 3 /(period) 2 this is just Kepler s 3 rd law remember?) This use of orbital speeds is called the rotation curve of a galaxy (23.21). We expected speeds to decrease as you get further from center of galaxy (like planets in the solar system, so called Keplerian rotation curve ). Instead the rotation curve outside a certain distance from the center becomes flat stars moving faster than can be accounted for by the observed mass dark matter, probably in the form of a halo. Nobody knows what dark matter is, but a few possibilities have been ruled out, and one or two are still possibilities. Candidates for dark matter: Faint red stars or brown dwarfs can now rule this out. (p. 623). Faint white dwarfs can almost rule this out; gives less than about 10% of what is required (not half, as stated in the text). Can test for these types of objects using gravitational lensing (Fig ). Must observe millions of stars every few days over a period of years, bcause the flickering should be very rare. Exotic particles some theories of particle physics predict there should exist a zoo of these massive particles, but we have no idea which ones could be the dark matter. But most astronomers think these WIMPS (weakly interacting massive particles, p. 624) are the most likely candidate.

13 Our galaxy: A disk and halo of light-emitting matter (disk, bulge, halo) within a dark matter halo, which is much larger than the disk or halo of stars.

14 Normal Galaxies (Ch. 24) Here we will cover topics in Ch. 24 up to 24.4, but then skip 24.4, The sections we are skipping are all about processes that occur in the centers of galaxies, so I d like to keep that separate from the logical progression that leads us from the local galaxies to the large-scale structure of the universe. Please look it over yourself if interested, but it won t be on the exam. In the outline below, figures are referred to by number alone: e.g is Figure in your book. Hubble sequence galaxy classification scheme, originally based on appearance, but correlates with other properties as well. Symbolically: E0.E7.. S0..Sa..Sb..Sc..Sd..Irr Properties (see diagram discussed in class; also table 24.1) Ellipticals: featureless no disk or arms; no gas or dust (a few exceptions); huge range in sizes, from dwarfs to giants; yellow-reddish in color. S0s: Disks, but no gas or spiral arms. So intermediate between Es and spirals. Spirals: Flat disk with spiral arms, central bulge. Sequence Sa, Sd corresponds to increasing size of bulge, increasing tightness of arms, and more gas mass relative to stars. Also parallel sequence of barred spirals. Irregulars: Tend to be smaller than spirals. Many are dwarf irregulars (dirr). Often found as satellites (e.g. Magellanic Clouds). Blue color, lots of gas. Masses of galaxies: From 10 6 to 10 7 Mo (de and dirr) to Mo (giant Es). The smallest are the most numerous galaxies in the universe. (How do you think we get masses of galaxies?)

15 How are these different kinds of galaxies distributed in space? Groups of galaxies We can use Cepheid variables to make a map of our local galactic neighborhood (can get distances out to about 15 Mpc). Our Local Group About 50 galaxies within about 1 Mpc (=1000 kpc = (roughly) 10 x size of our Galaxy) of each other. Most of the mass is in the large spirals Milky Way and Andromeda. Most of the galaxies are de and dirr galaxies. Many are satellites of larger galaxies (e.g. 3 satellites of Milky Way are LMC, SMC, and Sgr dwarfs, a few others that are more distant; Andromeda has several small satellites) Look at Fig To get to larger distances, must use brighter standard candles. The next one in the ladder of standard candles is the Tully-Fisher relation very tight relation (for disk galaxies) between rotational velocity (from broadening of galaxy s spectral lines see Fig ) and luminosity. (Think why this makes sense: the galaxy s rotation is balancing its gravity, which is due to its mass, related to its luminosity ) So for a galaxy too far away to use any other method, just obtain a spectrum (21 cm neutral hydrogen line is best) and measure width of line; the Tully-Fisher relation then gives you the luminosity, so (knowing the apparent brightness) you get the distance. This method can be used out to about 200 Mpc allows us to make a map of the relatively nearby universe.

16 Before looking at the results, there is one more rung in the ladder of distance indicators or standard candles, called the Hubble relation or Hubble s law, to consider. Hubble s Law this is the basis for our ideas about how the universe formed (the big bang theory), so important to understand it. Using galaxies of known distance (e.g. using Cepheids, Tully- Fisher), find that velocity of recession (redshift) increases linearly with distance (24.16, 24.17). Indicates that universe is expanding. Recession velocity = constant (H 0 ) x distance The constant of proportionality is called the Hubble constant, which is a fundamental measure of age of the universe (next section of course for now we just want to use it to get distances and map the universe). See Fig on the cosmic distance ladder. You should understand what these different distance indicators are, and why each can only be used out to a certain distance. [Textbook discusses active galactic nuclei, including our own, at this point, sec and 24.5; we are not going to cover that material, either in class or on the exam.]

### 165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

### 12-3. Spherical groups of millions of stars found in the Milky Way are called: a) novas b) globular clusters X c) open clusters d) galactic clusters

Chapter 12 Quiz, Nov. 28, 2012, Astro 162, Section 4 12-1. Where in our Galaxy has a supermassive (or galactic) black hole been observed? a) at the outer edge of the nuclear bulge b) in the nucleus X c)

### Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

### A Universe of Galaxies

A Universe of Galaxies Today s Lecture: Other Galaxies (Chapter 16, pages 366-397) Types of Galaxies Habitats of Galaxies Dark Matter Other Galaxies Originally called spiral nebulae because of their shape.

### In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. A panoramic painting of the Milky Way as seen from Earth, done by Knut Lundmark in the 1940 s. The

### Modeling Galaxy Formation

Galaxy Evolution is the study of how galaxies form and how they change over time. As was the case with we can not observe an individual galaxy evolve but we can observe different galaxies at various stages

### UNIT V. Earth and Space. Earth and the Solar System

UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system

### Astro 102 Test 5 Review Spring 2016. See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14

Astro 102 Test 5 Review Spring 2016 See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14 Sec 14.5 Expanding Universe Know: Doppler shift, redshift, Hubble s Law, cosmic distance ladder, standard candles,

### The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 light-minutes Size of Solar System = 5.5 light-hours What is

### The Milky Way Galaxy is Heading for a Major Cosmic Collision

The Milky Way Galaxy is Heading for a Major Cosmic Collision Roeland van der Marel (STScI) [based on work with a team of collaborators reported in the Astrophysical Journal July 2012] Hubble Science Briefing

### 1 A Solar System Is Born

CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

### Chapter 19 Star Formation

Chapter 19 Star Formation 19.1 Star-Forming Regions Units of Chapter 19 Competition in Star Formation 19.2 The Formation of Stars Like the Sun 19.3 Stars of Other Masses 19.4 Observations of Cloud Fragments

### Observing the Universe

Observing the Universe Stars & Galaxies Telescopes Any questions for next Monday? Light Doppler effect Doppler shift Doppler shift Spectra Doppler effect Spectra Stars Star and planet formation Sun Low-mass

### MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW

OVERVIEW More than ever before, Physics in the Twenty First Century has become an example of international cooperation, particularly in the areas of astronomy and cosmology. Astronomers work in a number

### Class 2 Solar System Characteristics Formation Exosolar Planets

Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

### The Expanding Universe

Stars, Galaxies, Guided Reading and Study This section explains how astronomers think the universe and the solar system formed. Use Target Reading Skills As you read about the evidence that supports the

### Chapter 15.3 Galaxy Evolution

Chapter 15.3 Galaxy Evolution Elliptical Galaxies Spiral Galaxies Irregular Galaxies Are there any connections between the three types of galaxies? How do galaxies form? How do galaxies evolve? P.S. You

### Milky Way & Hubble Law

Milky Way & Hubble Law Astronomy 1 Elementary Astronomy LA Mission College Spring F2015 Quotes & Cartoon of the Day Happy Thanksgiving! Announcements 3rd midterm 12/3 I will drop the lowest midterm grade

### Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

### First Discoveries. Asteroids

First Discoveries The Sloan Digital Sky Survey began operating on June 8, 1998. Since that time, SDSS scientists have been hard at work analyzing data and drawing conclusions. This page describes seven

### The Origin of the Solar System and Other Planetary Systems

The Origin of the Solar System and Other Planetary Systems Modeling Planet Formation Boundary Conditions Nebular Hypothesis Fixing Problems Role of Catastrophes Planets of Other Stars Modeling Planet Formation

### 1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

### Defining Characteristics (write a short description, provide enough detail so that anyone could use your scheme)

GEMS COLLABORATON engage The diagram above shows a mosaic of 40 galaxies. These images were taken with Hubble Space Telescope and show the variety of shapes that galaxies can assume. When astronomer Edwin

### Galaxy Classification and Evolution

name Galaxy Classification and Evolution Galaxy Morphologies In order to study galaxies and their evolution in the universe, it is necessary to categorize them by some method. A classification scheme generally

### National Aeronautics and Space Administration. Teacher s. Science Background. GalaxY Q&As

National Aeronautics and Space Administration Science Background Teacher s GalaxY Q&As 1. What is a galaxy? A galaxy is an enormous collection of a few million to several trillion stars, gas, and dust

### Big bang, red shift and doppler effect

Big bang, red shift and doppler effect 73 minutes 73 marks Page of 26 Q. (a) Scientists have observed that the wavelengths of the light from galaxies moving away from the Earth are longer than expected.

### Lecture 6: distribution of stars in. elliptical galaxies

Lecture 6: distribution of stars in topics: elliptical galaxies examples of elliptical galaxies different classes of ellipticals equation for distribution of light actual distributions and more complex

### Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date:

Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date: 1. If stellar parallax can be measured to a precision of about 0.01 arcsec using telescopes on Earth to observe stars, to what distance

### 15.6 Planets Beyond the Solar System

15.6 Planets Beyond the Solar System Planets orbiting other stars are called extrasolar planets. Until 1995, whether or not extrasolar planets existed was unknown. Since then more than 300 have been discovered.

### astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

### Astronomy 100 Exam 2

1 Prof. Mo Exam Version A Astronomy 100 Exam 2 INSTRUCTIONS: Write your name and ID number on BOTH this sheet and the computer grading form. Use a #2 Pencil on the computer grading form. Be careful to

### The Expanding Universe. Prof Jim Dunlop University of Edinburgh

The Expanding Universe Prof Jim Dunlop University of Edinburgh Cosmology: The Study of Structure & Evolution of the Universe Small & Hot Big & Cold Observational Evidence for the Expansion of the Universe

### Study Guide: Solar System

Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

### Newton s laws of motion and gravity

Newton s laws of motion and gravity 1. Every body continues in a state of rest or uniform motion (constant velocity) in a straight line unless acted on by a force. (A deeper statement of this law is that

### Pretest Ch 20: Origins of the Universe

Name: _Answer key Pretest: _2_/ 58 Posttest: _58_/ 58 Pretest Ch 20: Origins of the Universe Vocab/Matching: Match the definition on the left with the term on the right by placing the letter of the term

### Astronomy & Physics Resources for Middle & High School Teachers

Astronomy & Physics Resources for Middle & High School Teachers Gillian Wilson http://www.faculty.ucr.edu/~gillianw/k12 A cosmologist is.... an astronomer who studies the formation and evolution of the

### Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation

Faber-Jackson relation: Faber-Jackson Relation In 1976, Faber & Jackson found that: Roughly, L! " 4 More luminous galaxies have deeper potentials Can show that this follows from the Virial Theorem Why

### What is the Sloan Digital Sky Survey?

What is the Sloan Digital Sky Survey? Simply put, the Sloan Digital Sky Survey is the most ambitious astronomical survey ever undertaken. The survey will map one-quarter of the entire sky in detail, determining

### FXA 2008. UNIT G485 Module 5 5.5.1 Structure of the Universe. Δλ = v λ c CONTENTS OF THE UNIVERSE. Candidates should be able to :

1 Candidates should be able to : CONTENTS OF THE UNIVERSE Describe the principal contents of the universe, including stars, galaxies and radiation. Describe the solar system in terms of the Sun, planets,

### HR Diagram Student Guide

Name: HR Diagram Student Guide Background Information Work through the background sections on Spectral Classification, Luminosity, and the Hertzsprung-Russell Diagram. Then complete the following questions

### 7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.

1. Most interstellar matter is too cold to be observed optically. Its radiation can be detected in which part of the electromagnetic spectrum? A. gamma ray B. ultraviolet C. infrared D. X ray 2. The space

### TELESCOPE AS TIME MACHINE

TELESCOPE AS TIME MACHINE Read this article about NASA s latest high-tech space telescope. Then, have fun doing one or both of the word puzzles that use the important words in the article. A TELESCOPE

### Lecture 19 Big Bang Cosmology

The Nature of the Physical World Lecture 19 Big Bang Cosmology Arán García-Bellido 1 News Exam 2: you can do better! Presentations April 14: Great Physicist life, Controlled fusion April 19: Nuclear power,

### STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

Name: Teacher: Pd. Date: STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves TEK 8.8C: Explore how different wavelengths of the electromagnetic spectrum such as light and radio waves are used to

### The Universe. The Solar system, Stars and Galaxies

The Universe The Universe is everything. All us, the room, the U.S. the earth, the solar system, all the other stars in the Milky way galaxy, all the other galaxies... everything. How big and how old is

### Other Planetary Systems

Other Planetary Systems Other Planetary Systems Learning goals How do we detect planets around other stars? What have other planetary systems taught us about our own? Extrasolar planet search

### Chapter 15 Cosmology: Will the universe end?

Cosmology: Will the universe end? 1. Who first showed that the Milky Way is not the only galaxy in the universe? a. Kepler b. Copernicus c. Newton d. Hubble e. Galileo Ans: d 2. The big bang theory and

### Using Photometric Data to Derive an HR Diagram for a Star Cluster

Using Photometric Data to Derive an HR Diagram for a Star Cluster In In this Activity, we will investigate: 1. How to use photometric data for an open cluster to derive an H-R Diagram for the stars and

### Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0

Elliptical galaxies: Ellipticals Old view (ellipticals are boring, simple systems)! Ellipticals contain no gas & dust! Ellipticals are composed of old stars! Ellipticals formed in a monolithic collapse,

### Top 10 Discoveries by ESO Telescopes

Top 10 Discoveries by ESO Telescopes European Southern Observatory reaching new heights in astronomy Exploring the Universe from the Atacama Desert, in Chile since 1964 ESO is the most productive astronomical

### Planets beyond the solar system

Planets beyond the solar system Review of our solar system Why search How to search Eclipses Motion of parent star Doppler Effect Extrasolar planet discoveries A star is 5 parsecs away, what is its parallax?

### Populations and Components of the Milky Way

Chapter 2 Populations and Components of the Milky Way Our perspective from within the Milky Way gives us an opportunity to study a disk galaxy in detail. At the same time, it s not always easy to relate

### Week 1-2: Overview of the Universe & the View from the Earth

Week 1-2: Overview of the Universe & the View from the Earth Hassen M. Yesuf (hyesuf@ucsc.edu) September 29, 2011 1 Lecture summary Protein molecules, the building blocks of a living organism, are made

### Explain the Big Bang Theory and give two pieces of evidence which support it.

Name: Key OBJECTIVES Correctly define: asteroid, celestial object, comet, constellation, Doppler effect, eccentricity, eclipse, ellipse, focus, Foucault Pendulum, galaxy, geocentric model, heliocentric

### Galaxy Formation. Leading questions for today How do visible galaxies form inside halos? Why do galaxies/halos merge so easily?

8-5-2015see http://www.strw.leidenuniv.nl/ franx/college/ mf-sts-2015-c9-1 8-5-2015see http://www.strw.leidenuniv.nl/ franx/college/ mf-sts-2015-c9-2 Galaxy Formation Leading questions for today How do

### 1 Introduction. Name: 1.1 Spectral Classification of Stars. PHYS-1050 Hertzsprung-Russell Diagram Solutions Spring 2013

Name: 1 Introduction Read through this information before proceeding on with the lab. 1.1 Spectral Classification of Stars 1.1.1 Types of Spectra Astronomers are very interested in spectra graphs of intensity

### The Formation of Planetary Systems. Astronomy 1-1 Lecture 20-1

The Formation of Planetary Systems Astronomy 1-1 Lecture 20-1 Modeling Planet Formation Any model for solar system and planet formation must explain 1. Planets are relatively isolated in space 2. Planetary

### The facts we know today will be the same tomorrow but today s theories may tomorrow be obsolete.

The Scale of the Universe Some Introductory Material and Pretty Pictures The facts we know today will be the same tomorrow but today s theories may tomorrow be obsolete. A scientific theory is regarded

### Chapter 13 Other Planetary Systems The New Science of Distant Worlds. Why is it so difficult to detect planets around other stars?

Chapter 13 Other Planetary Systems The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning Why is it so difficult to detect planets around other stars? How do we detect

### Chapter 13 Other Planetary Systems: The New Science of Distant Worlds

Chapter 13 Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning: Why is it so difficult to detect planets around other stars? How do we detect

### Chapter 13 Other Planetary Systems. The New Science of Distant Worlds

Chapter 13 Other Planetary Systems The New Science of Distant Worlds Why is it so difficult to detect planets around other stars? Brightness Difference A Sun-like star is about a billion times brighter

### Why is the Night Sky Dark?

Why is the Night Sky Dark? Cosmology Studies of the universe as a whole Today Brief history of ideas (Early Greeks Big Bang) The expanding universe (Hubble, Relativity, density & destiny) An alternative

### Invisible Galaxies. University of Nebraska, October Beth Willman (Haverford College)

Invisible Galaxies University of Nebraska, October 2013 Beth Willman (Haverford College) Invisible Galaxies Finding and studying invisible galaxies The connection with dark matter Contributions of Haverford

### Lecture 7: Light Waves. Newton s Laws of Motion (1666) Newton s First Law of Motion

Lecture 7: Light Waves Isaac Newton (1643-1727) was born in the year Galileo died He discovered the Law of Gravitation in 1665 He developed the Laws of Mechanics that govern all motions In order to solve

### Knox Academy, Haddington. Our Dynamic Universe. 4. The Expanding Universe and Big Bang Theory

Knox Academy, Haddington Our Dynamic Universe 4. The Expanding Universe and Big Bang Theory 2014 Our Dynamic Universe: The Expanding Universe and Big Bang Theory Contents Unit Specification... 2 Notes...

### The Birth of the Universe Newcomer Academy High School Visualization One

The Birth of the Universe Newcomer Academy High School Visualization One Chapter Topic Key Points of Discussion Notes & Vocabulary 1 Birth of The Big Bang Theory Activity 4A the How and when did the universe

### Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer

Malcolm S. Longair Galaxy Formation With 141 Figures and 12 Tables Springer Contents Part I Preliminaries 1. Introduction, History and Outline 3 1.1 Prehistory 3 1.2 The Theory of the Expanding Universe

### Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan. 2011 Pearson Education, Inc.

Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

### Science Focus 9 Space Exploration Review Booklet

Science Focus 9 Unit E Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Space Exploration Space Link: NASA http://www.nasa.gov/home/index.html For Our Eyes Only Frames of Reference What

### The Messier Objects As A Tool in Teaching Astronomy

The Messier Objects As A Tool in Teaching Astronomy Dr. Jesus Rodrigo F. Torres President, Rizal Technological University Individual Member, International Astronomical Union Chairman, Department of Astronomy,

### Einstein Rings: Nature s Gravitational Lenses

National Aeronautics and Space Administration Einstein Rings: Nature s Gravitational Lenses Leonidas Moustakas and Adam Bolton Taken from: Hubble 2006 Science Year in Review The full contents of this book

### The Doppler Effect & Hubble

The Doppler Effect & Hubble Objectives Explain the Doppler Effect. Describe Hubble s discoveries. Explain Hubble s Law. The Doppler Effect The Doppler Effect is named after Austrian physicist Christian

### Giant Molecular Clouds

Giant Molecular Clouds http://www.astro.ncu.edu.tw/irlab/projects/project.htm Galactic Open Clusters Galactic Structure GMCs The Solar System and its Place in the Galaxy In Encyclopedia of the Solar System

### Related Standards and Background Information

Related Standards and Background Information Earth Patterns, Cycles and Changes This strand focuses on student understanding of patterns in nature, natural cycles, and changes that occur both quickly and

### Answers for the Student Worksheet for the Hubble Space Telescope Scavenger Hunt

Instructions: Answers are typed in blue. Answers for the Student Worksheet for the Hubble Space Telescope Scavenger Hunt Crab Nebula What is embedded in the center of the nebula? Neutron star Who first

### Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE

Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question

### Ay 20 - Fall Lecture 17. Stellar Luminosity and Mass Functions * * * * * History and Formation of Our Galaxy

Ay 20 - Fall 2004 - Lecture 17 Stellar Luminosity and Mass Functions * * * * * History and Formation of Our Galaxy Stellar Luminosity and Mass Functions Basic statistical descriptors of stellar populations:

### Beginning of the Universe Classwork 6 th Grade PSI Science

Beginning of the Universe Classwork Name: 6 th Grade PSI Science 1 4 2 5 6 3 7 Down: 1. Edwin discovered that galaxies are spreading apart. 2. This theory explains how the Universe was flattened. 3. All

### SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY l0595. l. Course #:PHYSC 151 2. NAME OF ORIGINATOR /REVISOR: PAUL ROBINSON

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY l0595 l. Course #:PHYSC 151 2. NAME OF ORIGINATOR /REVISOR: PAUL ROBINSON NAME OF COURSE: ASTRONOMY 3. CURRENT DATE: OCTOBER 26, 2011. Please indicate

### Monday 23 June 2014 Morning

H Monday 23 June 2014 Morning GCSE TWENTY FIRST CENTURY SCIENCE PHYSICS A/FURTHER ADDITIONAL SCIENCE A A183/02 Module P7 (Higher Tier) *3173662729* Candidates answer on the Question Paper. A calculator

### Galaxies and the Universe

BIG Idea Observations of galaxy expansion, cosmic background radiation, and the Big Bang theory describe an expanding universe that is 13.7 billion years old. 30.1 The Milky Way Galaxy MAIN Idea Stars

### The Size & Shape of the Galaxy

name The Size & Shape of the Galaxy The whole lab consists of plotting two graphs. What s the catch? Aha visualizing and understanding what you have plotted of course! Form the Earth Science Picture of

### Lecture 17: Dark Energy & The Big Bang

Lecture 17: Dark Energy & The Big Bang As with all course material (including homework, exams), these lecture notes are not be reproduced, redistributed, or sold in any form. Solution? ~1998 astronomers

### Chapter 13 Other Planetary Systems. Detecting Extrasolar Planets Brightness Difference. How do we detect planets around other stars?

Chapter 13 Other Planetary Systems The New Science of Distant Worlds Detecting Extrasolar Planets Brightness Difference A Sun-like star is about a billion times brighter than the sunlight reflected from

### Unit 8 Lesson 2 Gravity and the Solar System

Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe

### 1) The final phase of a star s evolution is determined by the star s a. Age b. Gravitational pull c. Density d. Mass

Science Olympiad Astronomy Multiple Choice: Choose the best answer for each question. Each question is worth one point. In the event of a tie, there will be a tie-breaking word problem. 1) The final phase

### Test 2 --- Natural Sciences 102, Professors Rieke --- VERSION B March 3, 2010

Enter your answers on the form provided. Be sure to write your name and student ID number on the first blank at the bottom of the form. Please mark the version (B) in the Key ID space at the top of the

### Evolution of Close Binary Systems

Evolution of Close Binary Systems Before going on to the evolution of massive stars and supernovae II, we ll think about the evolution of close binary systems. There are many multiple star systems in the

### Chapter 13 Other Planetary Systems: The New Science of Distant Worlds

Chapter 13 Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning: Why is it so difficult to detect planets around other stars? How do we detect

### Once you have assembled the cards, they can be used either as fact cards or for a variety of activities in the classroom including:

Our Place in Space This activity consists of a series of 15 cards that include images of astronomical objects on the front and information about these objects on the reverse. The card backs include information

### Modeling the Expanding Universe

H9 Modeling the Expanding Universe Activity H9 Grade Level: 8 12 Source: This activity is produced by the Universe Forum at NASA s Office of Space Science, along with their Structure and Evolution of the

### LESSON 3 THE SOLAR SYSTEM. Chapter 8, Astronomy

LESSON 3 THE SOLAR SYSTEM Chapter 8, Astronomy OBJECTIVES Identify planets by observing their movement against background stars. Explain that the solar system consists of many bodies held together by gravity.

### Chapter 6: Our Solar System and Its Origin

Chapter 6: Our Solar System and Its Origin What does our solar system look like? The planets are tiny compared to the distances between them (a million times smaller than shown here), but they exhibit

### Size and Scale of the Universe

Size and Scale of the Universe (Teacher Guide) Overview: The Universe is very, very big. But just how big it is and how we fit into the grand scheme can be quite difficult for a person to grasp. The distances

### 3 HOW WERE STARS FORMED?

3 HOW WERE STARS FORMED? David Christian explains how the first stars were formed. This two-part lecture begins by focusing on what the Universe was like in its first 200 million years of existence, a

### THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk

THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk 1.INTRODUCTION Late in the nineteenth century, astronomers had tools that revealed a great deal about stars. By that time, advances in telescope

### Chapter 8 Welcome to the Solar System

Chapter 8 Welcome to the Solar System 8.1 The Search for Origins What properties of our solar system must a formation theory explain? What theory best explains the features of our solar system? What properties

### Introduction to the Solar System

Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction