# Unit 7 Practice Test: Light

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Unit 7 Practice Test: Light Name: Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used in a microscope? a. infrared waves c. visible light b. gamma rays d. ultraviolet light 2. Which portion of the electromagnetic spectrum is used to sterilize medical instruments? a. infrared waves c. X rays b. microwaves d. ultraviolet light 3. What is the wavelength of microwaves of Hz frequency? a m c m b m d m 4. What is the frequency of infrared light of wavelength? a Hz c Hz b Hz d Hz 5. When red light is compared with violet light, a. both have the same frequency. c. both travel at the same speed. b. both have the same wavelength. d. red light travels faster than violet light. 6. If you know the wavelength of any form of electromagnetic radiation, you can determine its frequency because a. all wavelengths travel at the same speed. b. the speed of light varies for each form. c. wavelength and frequency are equal. d. the speed of light increases as wavelength increases. 7. The farther light is from a source, a. the more spread out light becomes. c. the more bright light becomes. b. the more condensed light becomes. d. the more light is available per unit area. 8. If you are reading a book and you move twice as far away from the light source, how does the brightness at the new distance compare with that at the old distance? It is a. one-eighth c. one-half b. one-fourth d. twice 9. When a straight line is drawn perpendicular to a flat mirror at the point where an incoming ray strikes the mirror s surface, the angles of incidence and reflection are measured from the normal and a. the angles of incidence and reflection are equal. b. the angle of incidence is greater than the angle of reflection. c. the angle of incidence is less than the angle of reflection. d. the angle of incidence can be greater than or less than the angle of reflection. 10. If a light ray strikes a flat mirror at an angle of 27 from the normal, the reflected ray will be a. 27 from the mirror s surface. c. 90 from the mirror s surface. b. 27 from the normal. d. 63 from the normal. 11. If you stand 3.0 m in front of a flat mirror, how far away from you would your image be in the mirror? a. 1.5 m c. 6.0 m b. 3.0 m d m 12. Which of the following best describes the image produced by a flat mirror? a. virtual, inverted, and magnification greater than one c. virtual, upright, and magnification equal to one d. real, upright, and magnification equal to one

2 13. A concave mirror with a focal length of 10.0 cm creates a real image 30.0 cm away on its principal axis. How far from the mirror is the corresponding object? a cm c cm b cm d cm 14. A concave mirror forms a real image at 25 cm from the mirror surface along the principal axis. If the corresponding object is at a 10.0 cm distance, what is the mirror s focal length? a. 1.4 cm c. 12 cm b. 17 cm d. 7.1 cm 15. If a virtual image is formed 10.0 cm along the principal axis from a convex mirror with a focal length of 15.0 cm, what is the object s distance from the mirror? a cm c. 6.0 cm b. 12 cm d. 3.0 cm 16. In the diagram above, the image of object B would be a. virtual, enlarged, and inverted. c. virtual, reduced, and upright. b. real, enlarged, and upright. d. virtual, enlarged, and upright. 17. In the diagram above, the image of object B would be a. real, reduced, and upright. c. virtual, reduced, and inverted. b. virtual, enlarged, and upright. d. virtual, reduced, and upright. 18. Which best describes the image of a concave mirror when the object is located somewhere between the focal point and twice the focal-point distance from the mirror? a. virtual, upright, and magnification greater than one c. virtual, upright, and magnification less than one d. real, inverted, and magnification greater than one 19. Which best describes the image of a concave mirror when the object is at a distance greater than twice the focal-point distance from the mirror? a. virtual, upright, and magnification greater than one c. virtual, upright, and magnification less than one d. real, inverted, and magnification greater than one 20. Which best describes the image of a concave mirror when the object s distance from the mirror is less than the focal-point distance? a. virtual, upright, and magnification greater than one c. virtual, upright, and magnification less than one d. real, inverted, and magnification greater than one

3 21. A parabolic mirror, instead of a spherical mirror, can be used to reduce the occurrence of which effect? a. spherical aberration c. chromatic aberration b. mirages d. light scattering 22. When red light and green light shine on the same place on a piece of white paper, the spot appears to be a. yellow. c. white. b. brown. d. black. 23. Which of the following is NOT an additive primary color? a. yellow c. red b. blue d. green 24. What color does yellow pigment subtract from white light? a. blue c. yellow b. red d. green 25. What color does blue pigment subtract from white light? a. blue c. violet b. red d. green 26. Which of the following is NOT a primary subtractive color? a. yellow c. magenta b. cyan d. blue 27. When the transmission axis is perpendicular to the plane of polarization for light, a. all the light passes through. c. little of the light passes through. b. most of the light passes through. d. no light passes through. 28. If you looked at a light through the lenses from two polarizing sunglasses that were overlapped at right angles to one another, a. all of the light would pass through. c. little of the light would pass through. b. most of the light would pass through. d. none of the light would pass through. 29. Part of a pencil that is placed in a glass of water appears bent in relation to the part of the pencil that extends out of the water. What is this phenomenon called? a. interference c. diffraction b. refraction d. reflection 30. The of light can change when light is refracted because the wavelength changes. a. frequency c. color b. media d. transparency 31. When light passes at an angle to the normal from one material into another material in which its speed is higher, a. it is bent toward the normal to the surface. b. it always lies along the normal to the surface. c. it is unaffected. d. it is bent away from the normal to the surface. 32. When light passes at an angle to the normal from one material into another material in which its speed is lower, a. it is bent toward the normal to the surface. b. it always lies along the normal to the surface. c. it is unaffected. d. it is bent away from the normal to the surface. 33. When a light ray moves from air into glass at an angle of 45, its path is a. bent toward the normal. c. parallel to the normal. b. bent away from the normal. d. not bent. 34. A ray of light in air is incident on an air-to-glass boundary at an angle of exactly with the normal. If the index of refraction of the glass is 1.65, what is the angle of the refracted ray within the glass with respect to the normal? a. 56 c. 29 b. 46 d. 18

4 35. A lapidary cuts a diamond so that the light will refract at an angle of 17.0 to the normal. What is the index of refraction of the diamond when the angle of incidence is 45.0? a c b d A beam of light in air is incident at an angle of 35 to the surface of a rectangular block of clear plastic (n = 1.49). What is the angle of refraction? a. 42 c. 55 b. 23 d An object is placed along the principal axis of a thin converging lens that has a focal length of 30.0 cm. If the distance from the object to the lens is 40.0 cm, what is the distance from the image to the lens? a cm c m b cm d m 38. An object is placed 20.0 cm from a thin converging lens along the axis of the lens. If a real image forms behind the lens at a distance of 8.00 cm from the lens, what is the focal length of the lens? a cm c cm b cm d cm 39. An object is placed 14.0 cm from a diverging lens. If a virtual image appears 10.0 cm from the lens on the same side as the object, what is the focal length of the lens? a cm c cm b. 35 cm d. 8.0 cm 40. An object that is 18 cm from a converging lens forms a real image 22.5 cm from the lens. What is the magnification of the image? a c b d Which of the following describes what will happen to a light ray incident on a glass-to-air boundary at greater than the critical angle? a. total reflection c. partial reflection, partial transmission b. total transmission d. partial reflection, total transmission 42. If atmospheric refraction did not occur, how would the apparent time of sunrise and sunset be changed? a. Both would be later. b. Both would be earlier. c. Sunrise would be later, and sunset would be earlier. d. Sunrise would be earlier, and sunset would be later. 43. Interference effects observed in the early 1800s were instrumental in supporting a concept of the existence of which property of light? a. polarization c. wave nature b. particle nature d. electromagnetic character 44. If light waves are coherent, a. they shift over time. b. their intensity is less than that of incoherent light. c. they remain in phase. d. they have less than three different wavelengths. 45. Which of the following is a device that produces an intense, nearly parallel beam of coherent light? a. spectroscope c. laser b. telescope. d. diffraction grating Short Answer 46. The focal point and center of curvature of a spherical mirror all lie along the. 47. What occurs when beams of light of three primary colors are combined?

5 48. What occurs when light passed through a red filter is combined with light passed through a green filter? 49. What occurs when yellow light is combined with blue light? 50. What color results when yellow and blue pigment are combined? 51. How is the brightness of a light source affected by distance? 52. When does refraction occur? 53. The critical angle for internal reflection inside a certain transparent material is found to be 48. If entering light has an angle of incidence of 52, predict whether the light will be refracted or whether it will undergo total internal reflection. 54. A ray of light travels from calcite (n = 1.434) into air at an angle of 35. Predict whether the light will be refracted or whether it will undergo total internal reflection. 55. How does white light passing through a prism produce a visible spectrum? 56. What is the position and kind of image produced by the lens above? Draw a ray diagram to support your answer.

6 57. What is the position and kind of image produced by the lens above? Draw a ray diagram to support your answer. 58. What is the position and kind of image produced by the lens above? Draw a ray diagram to support your answer. 59. The dark lines in a double-slit interference pattern are due to interference, and the bright lines are due to interference. 60. What is diffraction? Problem 61. A convex mirror has a focal length of 17 cm. What is the radius of curvature? 62. A concave spherical mirror has a radius of curvature of 10.0 cm. A candle that is 5.0 cm tall is placed 14 cm in front of the mirror. Draw a ray diagram and find the image distance and magnification. 63. A candle 4.7 cm tall is 20.0 cm from a convex mirror that has a focal length of 6.0 cm. Draw a ray diagram and determine the position and magnification of the image.

7 Unit 7 Practice Test: Light Answer Section MULTIPLE GUESS 1. C 6. A 11. C 16. D 21. A 26. D 31. D 36. B 41. A 2. D 7. A 12. C 17. D 22. A 27. D 32. A 37. C 42. C 3. B 8. B 13. B 18. D 23. A 28. D 33. A 38. A 43. C 4. C 9. A 14. D 19. B 24. A 29. B 34. D 39. B 44. C 5. C 10. B 15. A 20. A 25. B 30. C 35. D 40. A 45. C SHORT ANSWER 46. principal axis 51. Brightness decreases by the square of the distance from the source. 47. They form white light. 52. Refraction occurs when light s velocity changes. 48. Yellow light appears. 53. The light will undergo total internal reflection. 49. White or colorless light appears. 54. The light will be refracted. 50. green 55. Each colored component of the incoming ray is refracted depending on its wavelength. The rays fan out from the second face of the prism to produce a visible spectrum. 56. A real image will be produced between F and 2F. 57. A real image will be produced at 2F. 58. A real image will be produced outside 2F. 59. destructive; constructive 60. Diffraction is the spreading of light into a region behind an obstruction. Can also be described as light slightly bending around the edges of an obstruction. PROBLEM cm 62. q = 7.8 cm; M = q = 4.6 cm; M = +0.23

### Study Guide for Exam on Light

Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used

### AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

### 1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft

Lenses and Mirrors 1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft 2. Which of the following best describes the image from

### C) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same

1. For a plane mirror, compared to the object distance, the image distance is always A) less B) greater C) the same 2. Which graph best represents the relationship between image distance (di) and object

### Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

### Chapter 17: Light and Image Formation

Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the

### Thin Lenses Drawing Ray Diagrams

Drawing Ray Diagrams Fig. 1a Fig. 1b In this activity we explore how light refracts as it passes through a thin lens. Eyeglasses have been in use since the 13 th century. In 1610 Galileo used two lenses

### Physics 25 Exam 3 November 3, 2009

1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

### Convex Mirrors. Ray Diagram for Convex Mirror

Convex Mirrors Center of curvature and focal point both located behind mirror The image for a convex mirror is always virtual and upright compared to the object A convex mirror will reflect a set of parallel

Eighth Grade Electromagnetic Radiation and Light Assessment 1a. Light waves are the only waves that can travel through. a. space b. solids 1b. Electromagnetic waves, such as light, are the only kind of

### Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light

1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton

### waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object

PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.

### Law of Reflection. The angle of incidence (i) is equal to the angle of reflection (r)

Light GCSE Physics Reflection Law of Reflection The angle of incidence (i) is equal to the angle of reflection (r) Note: Both angles are measured with respect to the normal. This is a construction line

Light and Other Radiations Visible light is a form of electromagnetic radiation. X-rays, infrared, microwaves and gamma rays are other forms of this type of radiation which make up the electromagnetic

### 1 of 9 2/9/2010 3:38 PM

1 of 9 2/9/2010 3:38 PM Chapter 23 Homework Due: 8:00am on Monday, February 8, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

### PROPERTIES OF THIN LENSES. Paraxial-ray Equations

PROPERTIES OF THIN LENSES Object: To measure the focal length of lenses, to verify the thin lens equation and to observe the more common aberrations associated with lenses. Apparatus: PASCO Basic Optical

### The Electromagnetic Spectrum

The Electromagnetic Spectrum 1 Look around you. What do you see? You might say "people, desks, and papers." What you really see is light bouncing off people, desks, and papers. You can only see objects

### Lenses. Types of Lenses (The word lens is derived from the Latin word lenticula, which means lentil. A lens is in the shape of a lentil.

Lenses Notes_10_ SNC2DE_09-10 Types of Lenses (The word lens is derived from the Latin word lenticula, which means lentil. A lens is in the shape of a lentil. ) Most lenses are made of transparent glass

### Waves Sound and Light

Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

### PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

### LIGHT REFLECTION AND REFRACTION

QUESTION BANK IN SCIENCE CLASS-X (TERM-II) 10 LIGHT REFLECTION AND REFRACTION CONCEPTS To revise the laws of reflection at plane surface and the characteristics of image formed as well as the uses of reflection

### Chapter 23. The Refraction of Light: Lenses and Optical Instruments

Chapter 23 The Refraction of Light: Lenses and Optical Instruments Lenses Converging and diverging lenses. Lenses refract light in such a way that an image of the light source is formed. With a converging

### Teacher s Resource. 2. The student will see the images reversed left to right.

Answer Booklet Reflection of Light With a Plane (Flat) Mirror Trace a Star Page 16 1. The individual students will complete the activity with varying degrees of difficulty. 2. The student will see the

### Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus

Lesson 29: Lenses Remembering the basics of mirrors puts you half ways towards fully understanding lenses as well. The same sort of rules apply, just with a few modifications. Keep in mind that for an

### Physics 10. Lecture 29A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 10 Lecture 29A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Converging Lenses What if we wanted to use refraction to converge parallel

### GEOMETRICAL OPTICS. Lens Prism Mirror

GEOMETRICAL OPTICS Geometrical optics is the treatment of the passage of light through lenses, prisms, etc. by representing the light as rays. A light ray from a source goes in a straight line through

### It bends away from the normal, like this. So the angle of refraction, r is greater than the angle of incidence, i.

Physics 1403 Lenses It s party time, boys and girls, because today we wrap up our study of physics. We ll get this party started in a bit, but first, you have some more to learn about refracted light.

### After a wave passes through a medium, how does the position of that medium compare to its original position?

Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

### Page 1 Class 10 th Physics LIGHT REFLECTION AND REFRACTION

Page 1 LIGHT Light is a form of energy, which induces the sensation of vision in our eyes and makes us able to see various things present in our surrounding. UNITS OF LIGHT Any object which has an ability

### Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The

### Light and its effects

Light and its effects Light and the speed of light Shadows Shadow films Pinhole camera (1) Pinhole camera (2) Reflection of light Image in a plane mirror An image in a plane mirror is: (i) the same size

### 2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec.

Physics for Scientists and Engineers, 4e (Giancoli) Chapter 33 Lenses and Optical Instruments 33.1 Conceptual Questions 1) State how to draw the three rays for finding the image position due to a thin

### Physics 30 Worksheet # 14: Michelson Experiment

Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the

### Interference. Physics 102 Workshop #3. General Instructions

Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

### Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )

1 of 13 2/17/2016 5:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,

### 15 Imaging ESSENTIAL IDEAS. How we see images. Option C. Understanding the human eye

Option C 15 Imaging ESSENTIAL IDEAS The progress of a wave can be modelled using the ray or the wavefront. The change in wave speed when moving between media changes the shape of the wave. Optical microscopes

### RAY OPTICS II 7.1 INTRODUCTION

7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)

### Basic Optics System OS-8515C

40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System

### Name: Class: Date: ID: A

Name: Class: _ Date: _ Practice Quiz 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is the wavelength of the longest wavelength light that can

### WHITE LIGHT AND COLORED LIGHT

grades K 5 Objective This activity offers two simple ways to demonstrate that white light is made of different colors of light mixed together. The first uses special glasses to reveal the colors that make

### Question 2: The radius of curvature of a spherical mirror is 20 cm. What is its focal length?

Question 1: Define the principal focus of a concave mirror. ANS: Light rays that are parallel to the principal axis of a concave mirror converge at a specific point on its principal axis after reflecting

### LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003.

LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. STANDARDS: Students know an object is seen when light traveling from an object enters our eye. Students will differentiate

### EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189-196 Optics Bench a) For convenience of discussion we assume that the light

### Chapter 23. The Reflection of Light: Mirrors

Chapter 23 The Reflection of Light: Mirrors Wave Fronts and Rays Defining wave fronts and rays. Consider a sound wave since it is easier to visualize. Shown is a hemispherical view of a sound wave emitted

### Theremino System Theremino Spectrometer Technology

Theremino System Theremino Spectrometer Technology theremino System - Theremino Spectrometer Technology - August 15, 2014 - Page 1 Operation principles By placing a digital camera with a diffraction grating

### Lesson 26: Reflection & Mirror Diagrams

Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect

### Light Waves and Matter

Name: Light Waves and Matter Read from Lesson 2 of the Light Waves and Color chapter at The Physics Classroom: http://www.physicsclassroom.com/class/light/u12l2a.html MOP Connection: Light and Color: sublevel

### Ellenor Brown and Cornelius Ejimofor, Georgia Institute of Technology Graduate Students. Shape

4-8 th Grade Math and Science Lessons Ellenor Brown and Cornelius Ejimofor, Georgia Institute of Technology Graduate Students Shape Georgia Performance Standards Grade 4 M4G1 Students will define and identify

### Name Class Date. spectrum. White is not a color, but is a combination of all colors. Black is not a color; it is the absence of all light.

Exercises 28.1 The Spectrum (pages 555 556) 1. Isaac Newton was the first person to do a systematic study of color. 2. Circle the letter of each statement that is true about Newton s study of color. a.

### Physics 116. Nov 4, 2011. Session 22 Review: ray optics. R. J. Wilkes Email: ph116@u.washington.edu

Physics 116 Session 22 Review: ray optics Nov 4, 2011 R. J. Wilkes Email: ph116@u.washington.edu ! Exam 2 is Monday!! All multiple choice, similar to HW problems, same format as Exam 1!!! Announcements

### 12.1 What is Refraction pg. 515. Light travels in straight lines through air. What happens to light when it travels from one material into another?

12.1 What is Refraction pg. 515 Light travels in straight lines through air. What happens to light when it travels from one material into another? Bending Light The light traveling from an object in water

Color and Light T ABLE OF CONTENTS ABOUT DELTA SCIENCE MODULES Program Introduction................... iii Teacher s Guide..................... iv Delta Science Readers............... vi Equipment and

### Chapter 36 - Lenses. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 36 - Lenses A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Determine

### 1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002

05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical

### Determination of Focal Length of A Converging Lens and Mirror

Physics 41- Lab 5 Determination of Focal Length of A Converging Lens and Mirror Objective: Apply the thin-lens equation and the mirror equation to determine the focal length of a converging (biconvex)

### Size Of the Image Nature Of the Image At Infinity At the Focus Highly Diminished, Point Real and Inverted

CHAPTER-10 LIGHT REFLECTION AND REFRACTION Light rays; are; electromagnetic in nature, and do not need material medium for Propagation Speed of light in vacuum in 3*10 8 m/s When a light ray falls on a

### Chapter 22: Mirrors and Lenses

Chapter 22: Mirrors and Lenses How do you see sunspots? When you look in a mirror, where is the face you see? What is a burning glass? Make sure you know how to:. Apply the properties of similar triangles;

### UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

### SNC 2D Grade 10 Science, Academic Unit: Light and Geometric Optics

Page 1 SNC 2D Grade 10 Science, Academic Unit: Light and Geometric Optics The Big Ideas: Light has characteristics and properties that can be manipulated with mirrors and lenses for a range of uses. Society

### Note it they ancients had known Newton s first law, the retrograde motion of the planets would have told them that the Earth was moving.

6/24 Discussion of the first law. The first law appears to be contained within the second and it is. Why state it? Newton s laws are not always valid they are not valid in, say, an accelerating automobile.

### Physics Open House. Faraday's Law and EM Waves Change in the magnetic field strength in coils generates a current. Electromagnetic Radiation

Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic radiation: Light Infrared Ultraviolet Microwaves AM radio FM radio TV signals Cell phone signals

### Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed

Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Three-surface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus

### 19 - RAY OPTICS Page 1 ( Answers at the end of all questions )

19 - RAY OPTICS Page 1 1 ) A ish looking up through the water sees the outside world contained in a circular horizon. I the reractive index o water is 4 / 3 and the ish is 1 cm below the surace, the radius

### 6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through

Practice Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes

### Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.

Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining

### v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

### How Do Lenses and Mirrors Affect Light?

Essential Question How Do Lenses and Mirrors Affect Light? What reflective surfaces do you see in your classroom? What are the different properties of these surfaces that make some reflections better than

### Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

### 9/16 Optics 1 /11 GEOMETRIC OPTICS

9/6 Optics / GEOMETRIC OPTICS PURPOSE: To review the basics of geometric optics and to observe the function of some simple and compound optical devices. APPARATUS: Optical bench, lenses, mirror, target

### Lab 9. Optics. 9.1 Introduction

Lab 9 Name: Optics 9.1 Introduction Unlike other scientists, astronomers are far away from the objects they want to examine. Therefore astronomers learn everything about an object by studying the light

### Review Vocabulary spectrum: a range of values or properties

Standards 7.3.19: Explain that human eyes respond to a narrow range of wavelengths of the electromagnetic spectrum. 7.3.20: Describe that something can be seen when light waves emitted or reflected by

### Geometric Optics Physics 118/198/212. Geometric Optics

Background Geometric Optics This experiment deals with image formation with lenses. We will use what are referred to as thin lenses. Thin lenses are ordinary lenses like eyeglasses and magnifiers, but

### STOP for science. Light is a wave. Like waves in water, it can be characterized by a wavelength.

INTRODUCTION Most students have encountered rainbows, either spotting them directly on those special days when the raindrops fall while the Sun still finds cloudless regions to peek through, or at least

### Three Lasers Converging at a Focal Point : A Demonstration

Three Lasers Converging at a Focal Point : A Demonstration Overview In this activity, students will see how we can use the property of refraction to focus parallel rays of light. Students will observe

### 7 Light and Geometric Optics

7 Light and Geometric Optics By the end of this chapter, you should be able to do the following: Use ray diagrams to analyse situations in which light reflects from plane and curved mirrors state the law

### Crystal Optics of Visible Light

Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means

### Conceptual Physics Review (Chapters 25, 26, 27 & 28) Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of

Conceptual Physics Review (Chapters 25, 26, 27 & 28) Solutions Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of waves. Describe wave motion. Describe factors

### Reflection and Refraction

Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

### STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

Name: Teacher: Pd. Date: STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves TEK 8.8C: Explore how different wavelengths of the electromagnetic spectrum such as light and radio waves are used to

### Lecture Notes for Chapter 34: Images

Lecture Notes for hapter 4: Images Disclaimer: These notes are not meant to replace the textbook. Please report any inaccuracies to the professor.. Spherical Reflecting Surfaces Bad News: This subject

### P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as

### Color Part I. (The two items we can determine: a. How bright is the light is. b. What color the light is.)

Color Part I Name Color is one of the most important pieces of information scientists have used for all time. In space it is one of only two pieces of information we can collect without sending probes

Chapter 2: Electromagnetic Radiation Radiant Energy I Goals of Period 2 Section 2.1: To introduce electromagnetic radiation Section 2.2: To discuss the wave model of radiant energy Section 2.3: To describe

### Solution Derivations for Capa #14

Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from

### - the. or may. scales on. Butterfly wing. magnified about 75 times.

Lecture Notes (Applications of Diffraction) Intro: - the iridescent colors seen in many beetles is due to diffraction of light rays hitting the small groovess of its exoskeleton - these ridges are only

### Thin Lenses. Physics 102 Workshop #7. General Instructions

Thin Lenses Physics 102 Workshop #7 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A single slit forms a diffraction pattern, with the first minimum at an angle of 40 from

### Processes affecting propagation of electromagnetic radiation (light)

Chapter 4 Light and Color, and Atmospheric Optics Useful links: http://www.atoptics.co.uk/ http://www.gi.alaska.edu/atmossci/links.mainpage/arcti c_optical.html Processes affecting propagation of electromagnetic

### (c) eruption of volcanoes (d) none of these 5. A solar eclipse can occur only on a

5 LIGHT I. Tick ( ) the most appropriate answer. 1. Light causes the (a) sensation of heat (b) sensation of sound (c) sensation of sight (d) sensation of touch 2. Objects which emit light of their own

### Light Energy OBJECTIVES

11 Light Energy Can you read a book in the dark? If you try to do so, then you will realize, how much we are dependent on light. Light is very important part of our daily life. We require light for a number

### Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

### Understanding astigmatism Spring 2003

MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest

### Lenses and Apertures of A TEM

Instructor: Dr. C.Wang EMA 6518 Course Presentation Lenses and Apertures of A TEM Group Member: Anup Kr. Keshri Srikanth Korla Sushma Amruthaluri Venkata Pasumarthi Xudong Chen Outline Electron Optics

### Chapter 3 Telescopes

Chapter 3 Telescopes Units of Chapter 3 Optical Telescopes Telescope Size High-Resolution Astronomy Radio Astronomy Other Astronomies 3.1 Optical Telescopes Images can be formed through reflection or refraction

### Atmospheric Optical Phenomena

Atmospheric Optical Phenomena Atmospheric Optical Phenomena are produced by the reflection, refraction, dispersion and scattering / diffusion of rays of sunlight. These principles in physics explain commonly

### M01/430/H(3) Name PHYSICS HIGHER LEVEL PAPER 3. Number. Wednesday 16 May 2001 (morning) 1 hour 15 minutes INSTRUCTIONS TO CANDIDATES

INTERNATIONAL BACCALAUREATE BACCALAURÉAT INTERNATIONAL BACHILLERATO INTERNACIONAL M01/430/H(3) PHYSICS HIGHER LEVEL PAPER 3 Wednesday 16 May 2001 (morning) Name Number 1 hour 15 minutes INSTRUCTIONS TO

### THE NATURE OF LIGHT AND COLOR

THE NATURE OF LIGHT AND COLOR THE PHYSICS OF LIGHT Electromagnetic radiation travels through space as electric energy and magnetic energy. At times the energy acts like a wave and at other times it acts