Quantification of entanglement via uncertainties

Size: px
Start display at page:

Download "Quantification of entanglement via uncertainties"

Transcription

1 Quantification of entanglement via uncertainties Barış Öztop Bilkent University Department of Physics September 2007

2 In blessed memory of Alexander Stanislaw Shumovsky

3

4

5 Outline Introduction what can we say about entanglement? Measure of entanglement Two-qubit systems Higher dimensional bipartite systems Multi-qubit systems Dynamic symmetry approach Basic observables Variance/uncertainty New measure of entanglement Concluding remarks

6 Introduction Wikipedia: Quantum entanglement is a quantum mechanical phenomenon in which the quantum states of two or more objects have to be described with reference to each other, even though the individual objects may be spatially separated. This leads to correlations between observable physical properties of the systems. Stanford Encyclopedia of Philosophy: Quantum entanglement is a physical resource, like energy, associated with the peculiar nonclassical correlations that are possible between separated quantum systems. Entanglement can be measured, transformed, and purified. A pair of quantum systems in an entangled state can be used as a quantum information channel to perform computational and cryptographic tasks that are impossible for classical systems.

7 Entanglement By these two and many other definitions: Entanglement non-classical correlations for two or more systems that are separated spatially. Non-classical correlations non-locality. Non-locality Bell s conditions. But, unentangled states can violate Bell s conditions or violation of Bell s conditions can not be interpreted as an indisputable sign of quantum non-locality. H. Barnum, E. Knill, G. Ortiz, and L. Viola, Phys. Rev. A (2003) A.A. Klyachko, J. Phys.: Conf. Series 36, 87 (2006)

8 Entanglement Entanglement is a physical phenomenon representing the characteristic trait of quantum mechanics (Schödinger 1935). We can all agree that Entanglement is one of the basic resources for quantum computing and quantum information technologies. Quantum teleportation, critical ingredient for quantum computation networks, uses entangled states. Secure communications based on quantum key distribution has been realized by using the properties of the entangled states. = It is needed to find reliable methods of detection of the amount of entanglement carried by the states.

9 Measure of entanglement Two qubits The most basic part of a quantum information system is a qubit two level quantum system (e.g. spin-1/2 particle). A state of two qubits: ψ H = H A H B, ψ = 1 l,l =0 ψ ll l l, dimh A = dimh B = 2. For pure states of two qubits, ρ = ψ ψ, entanglement (entanglement of formation) is entropy of either of the two subsystems E(ψ) = Tr(ρ A log 2 ρ A ) = Tr(ρ B log 2 ρ B ). ρ A(B) is the partial trace of ρ over subsystem A(B).

10 Two qubits This can be recast into E(C) = h C2 (ρ) 2 h(x) = xlog 2 x (1 x)log 2 (1 x) is the binary entropy function and, C(ρ) = max{0, λ 1 λ 2 λ 3 λ 4 } is called concurrence, where λ i s are the square roots of the eigenvalues of the non-hermitian matrix ρ ρ = ρ(σ A y σ B y ρ σ A y σ B y ) and σ A j = σ j 1, σ B j = 1 σ j. E(C) is a monotonically increasing function of C and ranges from 0 to 1 as C goes from 0 to 1 = Concurrence itself is a measure of entanglement. C.H. Bennett et al, Phys. Rev. A 54, 3824 (1996) S. Hill and W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997).

11 Higher dimensional bipartite systems C(ψ) = 2 det[ψ] = 2 ψ 00 ψ 11 ψ 10 ψ 01 Concurrence can be recast into the form C(ρ) = ν[1 Tr(ρ 2 r)]. Here ν = d/(d 1) where d is the dimensionality of one of the subsystems. ρ r = ρ A = ρ B since reduced operators are isospectral. This general form of concurrence is the measure of the amount of entanglement that is valid for pure bipartite states or arbitrary dimensions. P. Rungta, V. Bužek, C.M. Caves, M. Hillery, and G.J. Milburn, Phys. Rev. A, 64, (2001).

12 Multi-qubit systems Example: Three qubit system An arbitrary normalized state of three qubits ψ = 1 l,m,n=0 ψ lmn lmn. The amount of entanglement in three qubit system is measured by 3-tangle τ(ψ) = 4 D(ψ). Here D(ψ) = det[ψ] the Cayley s hyperdeterminant (in this specific case 3-dimensional determinant) of the 3-dimensional coefficient matrix [ψ]. V. Coffman, J. Kundu and W.K. Wootters, Phys. Rev. A 61, (2000) A. Miyake, Phys. Rev. A 67, (2003). Problem: This only measures all party (in this case 3) correlations.

13 Multi-qubit systems Example: Three qubit system Consider the well-known GHZ-state GHZ = 1 2 ( ). 3-qubit correlations = τ(ghz) = 1, maximally entangled and no pairwise correlations. Consider the W -state W = 1 3 ( No 3-qubit correlations, but obviously there are pair correlations between all three qubits = entanglement, but τ(w ) = 0. What is the amount of entanglement? Consider biseparable state Bi = ( ). Again no 3-qubit correlations, but there are pair correlations between last two qubits = there is entanglement, but τ(bi) = 0. Let s consider another approach to entanglement and a possible measure for its degree.

14 Dynamic symmetry approach Q: What is not entanglement? A: It is a property inherit in quantum systems only. = Any attempt to explain entanglement requires the definition of a quantum system. Quantum entanglement manifests itself via measurement of physical observables (Bell 1966). von Neumann picture: all Hermitian operators represent measurable physical quantities and all of them are supposed to be equally accessible. Physical nature of the system often imposes inevitable constraints. E.g. components of the composite system H AB = H A H B may be spatially separated by tens of kilometers = only local local observations X A and X B are available.

15 Dynamic symmetry approach So, available observables should be included in description of any quantum system from the outset. The basic principles of quantum mechanics seem to require the postulation of a Lie algebra of observables and a representation of this algebra by skew-hermitian operators. (Robert Hermann 1966) Lie algebra of observables L. We choose orthogonal basis X i of L as basic observables, whose measurement give us the whole allowed information about a given state of the system. The corresponding Lie group G = exp(il) determines the dynamic symmetry of the system, dynamic symmetry group. Unitary representation of G in the state space H S is quantum dynamical system. A.A. Klyachko, E-print quant-ph/

16 Dynamic symmetry approach Examples: A qubit (state in two-dimensional Hilbert space H 2 ). Dynamic symmetry groupg = SU(2) Basic observables = 3 Pauli operators X i = σ i, (i = x, y, z). N qubits (state in H = N j=1 H 2 ) Dynamic symmetry group G = N j=1 SU(2) Basic observables = 3N pauli operators (3 Pauli operators for each part) Xi α = σi α (e.g. σi A = σ i 1 1)). }{{} N 1

17 Dynamic symmetry approach Variance The level of quantum fluctuations of a basic observable Xi α ψ H S os a system S is given by the variance V (X α i, ψ) = ψ (X α i ) 2 ψ ψ X α i ψ 2 0. in state Summation over all basic observables of the quantum dynamic system V (ψ) = V α i (Xα i, ψ) = i ψ (Xα i ) 2 ψ ψ Xi α ψ 2 is total uncertainty peculiar to the state ψ. For a compact Lie algebra L, i Xi 2 = C HS 1 is Casimir operator. = V (ψ) = NC HS α N is the number of parties. i ψ Xα i ψ 2,

18 Dynamic symmetry approach Definition of completely entangled states Necessary and sufficient condition of complete entanglement i, α ψ CE X i ψ CE = 0, for ψ CE H S. A.A. Klyachko, E-print quant-ph/ A.A. Klyachko and A.S. Shumovsky 2004 J. Opt. B: Quant. and Semiclas. Optics 6 S29. = V (ψ CE ) = max ψ H S V (ψ) = C HS. Very similar to the maximum of entropy principle, defining the equilibrium states in quantum statistical mechanics (Landau and Lifshitz 1980). These definitions of basic observables and equations of complete entanglement do not assume the composite nature of the system S.

19 Dynamic symmetry approach New measure of entanglement So, one can see entanglement as a manifestation of quantum fluctuations in a state where they come to their extreme! Q: Can total uncertainty for a pure state of a quantum system tell us anything about the amount of entanglement? A: YES! States opposite to entangled ones, those with minimal total level of quantum fluctuations are known as coherent states. For multicomponent systems like H A H B ψ coh = ψ A ψ B. For two component systems C 2 (ψ) = V (ψ) V coh V CE V coh. A.A. Klyachko, B. Öztop and A.S. Shumovsky, Appl. Phys. Lett. 88, (2006).

20 Dynamic symmetry approach New measure of entanglement This clarifies physical meaning of the concurrence as a measure of overall quantum fluctuations in the system and leads us to the natural measure of entanglement of pure states µ(ψ) = V (ψ) V coh V CE V coh. A.A. Klyachko, B. Öztop and A.S. Shumovsky, Phys. Rev. A 75, (2007). This measure is shown to be valid to measure the amount of entanglement for pure states of any dimensional multi-component systems. For bipartite systems of arbitrary dimensions it coincides with the earlier definition C(ψ) = d d 1 (1 Tr ρ2 r).

21 Dynamic symmetry approach New measure of entanglement In the case of multipartite system, it gives the total amount of entanglement carried by all types of inter-party correlations. Examples GHZ-type state of three qubits G = x x 2 111, x [0, 1] carries only 3-party entanglement and its amount is τ(g) = 4 x 2 (1 x 2 ). Easy to check τ(g) = µ 2 (G). W -state of three qubits W = 1 3 ( ) is a nonseparable state, but it does not manifest 3-party entanglement, τ(w ) = 0. The measure µ(w ) = is nonzero since there is 2-qubit entanglement. Similar results can be obtained for the so-called biseparable states of three qubits (e.g. Bi = ( )) since there is also 2-qubit entanglement.

22 Conclusion Successful measures of entanglement for some specific type of systems are present, and they work well within their boundaries. We need a precise definition of a quantum system to define and measure a quantum-only property = dynamic symmetry approach. A new measure of entanglement for pure states of arbitrary systems, it works for the known examples and measures entanglement carried by all types of inter-party correlations. It cannot be directly applied to calculation of entanglement of mixed states because it is incapable of separation of classical and quantum contributions into the total variance. Therefore, µ(ρ) always gives estimation from above for the entanglement of mixed states.

arxiv:quant-ph/9607009v1 11 Jul 1996

arxiv:quant-ph/9607009v1 11 Jul 1996 Distillability of Inseparable Quantum Systems Micha l Horodecki Department of Mathematics and Physics University of Gdańsk, 80 952 Gdańsk, Poland arxiv:quant-ph/9607009v1 11 Jul 1996 Pawe l Horodecki Faculty

More information

Mutltiparticle Entanglement. Andreas Osterloh Krakow, 31.03.2014

Mutltiparticle Entanglement. Andreas Osterloh Krakow, 31.03.2014 Mutltiparticle Entanglement Andreas Osterloh Krakow, 31.3.214 Outline Introduction to entanglement Genuine multipartite entanglement Balanced states Generalizations single particle d ψ H = C d ; ψ = ψ

More information

Detection of quantum entanglement in physical systems

Detection of quantum entanglement in physical systems Detection of quantum entanglement in physical systems Carolina Moura Alves Merton College University of Oxford A thesis submitted for the degree of Doctor of Philosophy Trinity 2005 Abstract Quantum entanglement

More information

BOX. The density operator or density matrix for the ensemble or mixture of states with probabilities is given by

BOX. The density operator or density matrix for the ensemble or mixture of states with probabilities is given by 2.4 Density operator/matrix Ensemble of pure states gives a mixed state BOX The density operator or density matrix for the ensemble or mixture of states with probabilities is given by Note: Once mixed,

More information

0.1 Phase Estimation Technique

0.1 Phase Estimation Technique Phase Estimation In this lecture we will describe Kitaev s phase estimation algorithm, and use it to obtain an alternate derivation of a quantum factoring algorithm We will also use this technique to design

More information

Quantum Mechanics and Representation Theory

Quantum Mechanics and Representation Theory Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30

More information

Quantum Computing. Robert Sizemore

Quantum Computing. Robert Sizemore Quantum Computing Robert Sizemore Outline Introduction: What is quantum computing? What use is quantum computing? Overview of Quantum Systems Dirac notation & wave functions Two level systems Classical

More information

arxiv:1410.3605v2 [quant-ph] 13 May 2015

arxiv:1410.3605v2 [quant-ph] 13 May 2015 Locality and Classicality: role of entropic inequalities arxiv:1410.3605v2 [quant-ph] 13 May 2015 J. Batle 1, Mahmoud Abdel-Aty 2,3, C. H. Raymond Ooi 4, S. Abdalla 5 and Y. Al-hedeethi 5 1 Departament

More information

Chapter 9 Unitary Groups and SU(N)

Chapter 9 Unitary Groups and SU(N) Chapter 9 Unitary Groups and SU(N) The irreducible representations of SO(3) are appropriate for describing the degeneracies of states of quantum mechanical systems which have rotational symmetry in three

More information

Towards a Tight Finite Key Analysis for BB84

Towards a Tight Finite Key Analysis for BB84 The Uncertainty Relation for Smooth Entropies joint work with Charles Ci Wen Lim, Nicolas Gisin and Renato Renner Institute for Theoretical Physics, ETH Zurich Group of Applied Physics, University of Geneva

More information

QUANTUM INFORMATION, COMPUTATION AND FUNDAMENTAL LIMITATION

QUANTUM INFORMATION, COMPUTATION AND FUNDAMENTAL LIMITATION Arun K. Pati Theoretical Physics Division QUANTUM INFORMATION, COMPUTATION AND FUNDAMENTAL LIMITATION Introduction Quantum information theory is a marriage between two scientific pillars of the twentieth

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology. Problem Set 5

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology. Problem Set 5 8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Tuesday March 5 Problem Set 5 Due Tuesday March 12 at 11.00AM Assigned Reading: E&R 6 9, App-I Li. 7 1 4 Ga. 4 7, 6 1,2

More information

Least-Squares Intersection of Lines

Least-Squares Intersection of Lines Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a

More information

3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.

3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices. Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R

More information

Authentic Digital Signature Based on Quantum Correlation

Authentic Digital Signature Based on Quantum Correlation Authentic Digital Signature Based on Quantum Correlation Xiao-Jun Wen, Yun Liu School of Electronic Information Engineering, Beijing Jiaotong University, Beijing 00044, China Abstract: An authentic digital

More information

Teaching the mathematics of quantum entanglement using elementary mathematical tools

Teaching the mathematics of quantum entanglement using elementary mathematical tools ENSEÑANZA Revista Mexicana de Física E 58 (20) 6 66 JUNIO 20 Teaching the mathematics of quantum entanglement using elementary mathematical tools A. Gómez-Rodríguez Departamento de Materia Condensada,

More information

Entanglement and its Role in Shor's Algorithm

Entanglement and its Role in Shor's Algorithm ntanglement and its Role in Shor's Algorithm Vivien M. Kendon 1, William J. Munro Trusted Systems Laboratory P Laboratories Bristol PL-2005-215 December 5, 2005* entanglement, Shor's algorithm ntanglement

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

Bits Superposition Quantum Parallelism

Bits Superposition Quantum Parallelism 7-Qubit Quantum Computer Typical Ion Oscillations in a Trap Bits Qubits vs Each qubit can represent both a or at the same time! This phenomenon is known as Superposition. It leads to Quantum Parallelism

More information

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION) MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced

More information

Quantum Computation: Towards the Construction of a Between Quantum and Classical Computer

Quantum Computation: Towards the Construction of a Between Quantum and Classical Computer Quantum Computation: Towards the Construction of a Between Quantum and Classical Computer Diederik Aerts and Bart D Hooghe Center Leo Apostel for Interdisciplinary Studies (CLEA) Foundations of the Exact

More information

OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

More information

Quantum Network Coding

Quantum Network Coding Salah A. Aly Department of Computer Science Texas A& M University Quantum Computing Seminar April 26, 2006 Network coding example In this butterfly network, there is a source S 1 and two receivers R 1

More information

Quantum Computing Lecture 7. Quantum Factoring. Anuj Dawar

Quantum Computing Lecture 7. Quantum Factoring. Anuj Dawar Quantum Computing Lecture 7 Quantum Factoring Anuj Dawar Quantum Factoring A polynomial time quantum algorithm for factoring numbers was published by Peter Shor in 1994. polynomial time here means that

More information

arxiv:quant-ph/0611042v2 8 Nov 2006

arxiv:quant-ph/0611042v2 8 Nov 2006 Quantum states characterization for the zero-error capacity arxiv:quant-ph/0611042v2 8 Nov 2006 Rex A C Medeiros,,1,2 Romain Alléaume,2, Gérard Cohen,3 and Francisco M. de Assis,4 Département Informatique

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

"in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta". h is the Planck constant he called it

in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta. h is the Planck constant he called it 1 2 "in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta". h is the Planck constant he called it the quantum of action 3 Newton believed in the corpuscular

More information

PHYSICAL REVIEW A 79, 052110 2009. Multiple-time states and multiple-time measurements in quantum mechanics

PHYSICAL REVIEW A 79, 052110 2009. Multiple-time states and multiple-time measurements in quantum mechanics Multiple-time states and multiple-time measurements in quantum mechanics Yakir Aharonov, 1, Sandu Popescu, 3,4 Jeff Tollaksen, and Lev Vaidman 1 1 Raymond and Beverly Sackler School of Physics and Astronomy,

More information

Bevezetés a kvantum-informatikába és kommunikációba 2014/2015 tavasz. Mérés, NCT, kvantumállapot. 2015. március 12.

Bevezetés a kvantum-informatikába és kommunikációba 2014/2015 tavasz. Mérés, NCT, kvantumállapot. 2015. március 12. Bevezetés a kvantum-informatikába és kommunikációba 2014/2015 tavasz Mérés, NCT, kvantumállapot 2015. március 12. Tegnap még összefonódtam, mára megmértek 2015.03.18. 2 Slides for Quantum Computing and

More information

Applied Linear Algebra I Review page 1

Applied Linear Algebra I Review page 1 Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties

More information

A Modest View of Bell s Theorem. Steve Boughn, Princeton University and Haverford College

A Modest View of Bell s Theorem. Steve Boughn, Princeton University and Haverford College A Modest View of Bell s Theorem Steve Boughn, Princeton University and Haverford College Talk given at the 2016 Princeton-TAMU Symposium on Quantum Noise Effects in Thermodynamics, Biology and Information

More information

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013 Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

More information

Linear Algebra: Vectors

Linear Algebra: Vectors A Linear Algebra: Vectors A Appendix A: LINEAR ALGEBRA: VECTORS TABLE OF CONTENTS Page A Motivation A 3 A2 Vectors A 3 A2 Notational Conventions A 4 A22 Visualization A 5 A23 Special Vectors A 5 A3 Vector

More information

arxiv:quant-ph/0404128v1 22 Apr 2004

arxiv:quant-ph/0404128v1 22 Apr 2004 How to teach Quantum Mechanics arxiv:quant-ph/0404128v1 22 Apr 2004 Oliver Passon Fachbereich Physik, University of Wuppertal Postfach 100 127, 42097 Wuppertal, Germany E-mail: Oliver.Passon@cern.ch In

More information

Simulation of quantum dynamics via classical collective behavior

Simulation of quantum dynamics via classical collective behavior arxiv:quant-ph/0602155v1 17 Feb 2006 Simulation of quantum dynamics via classical collective behavior Yu.I.Ozhigov Moscow State University, Institute of physics and technology of RAS March 25, 2008 Abstract

More information

ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

More information

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they

More information

ENTANGLEMENT EXCHANGE AND BOHMIAN MECHANICS

ENTANGLEMENT EXCHANGE AND BOHMIAN MECHANICS ENTANGLEMENT EXCHANGE AND BOHMIAN MECHANICS NICK HUGGETT TIZIANA VISTARINI PHILOSOPHY, UNIVERSITY OF ILLINOIS AT CHICAGO When two systems, of which we know the states by their respective representatives,

More information

The Graphical Method: An Example

The Graphical Method: An Example The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

More information

Quantum Computation with Bose-Einstein Condensation and. Capable of Solving NP-Complete and #P Problems. Abstract

Quantum Computation with Bose-Einstein Condensation and. Capable of Solving NP-Complete and #P Problems. Abstract Quantum Computation with Bose-Einstein Condensation and Capable of Solving NP-Complete and #P Problems Yu Shi Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom Abstract It

More information

How To Solve An Npa-Complete Problems With Quantum Computing And Chaotic Dynamics

How To Solve An Npa-Complete Problems With Quantum Computing And Chaotic Dynamics CDMTCS Research Report Series A New Quantum Algorithm for NP-complete Problems Masanori Ohya Igor V. Volovich Science University of Tokyo Steklov Mathematical Institute CDMTCS-194 September 00 Centre for

More information

Notes from February 11

Notes from February 11 Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The

More information

Is Quantum Mechanics Exact?

Is Quantum Mechanics Exact? Is Quantum Mechanics Exact? Anton Kapustin Simons Center for Geometry and Physics Stony Brook University This year Quantum Theory will celebrate its 90th birthday. Werner Heisenberg s paper Quantum theoretic

More information

Entanglement Dynamics in Quantum Information Theory

Entanglement Dynamics in Quantum Information Theory Technische Universität München Max-Planck-Institut für Quantenoptik Entanglement Dynamics in Quantum Information Theory Toby S. Cubitt Vollständiger Abdruck der von der Fakultät für Physik der Technischen

More information

Quantum Computing and Grover s Algorithm

Quantum Computing and Grover s Algorithm Quantum Computing and Grover s Algorithm Matthew Hayward January 14, 2015 1 Contents 1 Motivation for Study of Quantum Computing 3 1.1 A Killer App for Quantum Computing.............. 3 2 The Quantum Computer

More information

8 Square matrices continued: Determinants

8 Square matrices continued: Determinants 8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Javier Enciso encisomo@in.tum.de Joint Advanced Student School 009 Technische Universität München April, 009 Abstract In this paper, a gentle introduction to Quantum Computing

More information

Dominik Janzing. Computer Science Approach to Quantum Control

Dominik Janzing. Computer Science Approach to Quantum Control Dominik Janzing Computer Science Approach to Quantum Control Computer Science Approach to Quantum Control von Dominik Janzing Habilitation, Universität Karlsruhe (TH) Fakultät für Informatik, 2006 Impressum

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

Coding Theoretic Construction of Quantum Ramp Secret Sharing

Coding Theoretic Construction of Quantum Ramp Secret Sharing Coding Theoretic Construction of Quantum Ramp Secret Sharing Ryutaroh Matsumoto Department of Communications and Computer Engineering Tokyo Institute of Technology, 52-8550 Japan Email: ryutaroh@it.ce.titech.ac.jp

More information

Factor Analysis. Chapter 420. Introduction

Factor Analysis. Chapter 420. Introduction Chapter 420 Introduction (FA) is an exploratory technique applied to a set of observed variables that seeks to find underlying factors (subsets of variables) from which the observed variables were generated.

More information

7. Show that the expectation value function that appears in Lecture 1, namely

7. Show that the expectation value function that appears in Lecture 1, namely Lectures on quantum computation by David Deutsch Lecture 1: The qubit Worked Examples 1. You toss a coin and observe whether it came up heads or tails. (a) Interpret this as a physics experiment that ends

More information

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A = MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

More information

Keywords Quantum logic gates, Quantum computing, Logic gate, Quantum computer

Keywords Quantum logic gates, Quantum computing, Logic gate, Quantum computer Volume 3 Issue 10 October 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com An Introduction

More information

arxiv:quant-ph/0002033v2 12 Jun 2000

arxiv:quant-ph/0002033v2 12 Jun 2000 Multi-Valued Logic Gates for Quantum Computation Ashok Muthukrishnan and C. R. Stroud, Jr. The Institute of Optics, University of Rochester, Rochester, New York 1467 (February 1, 008) arxiv:quant-ph/000033v

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

More information

Unsupervised and supervised dimension reduction: Algorithms and connections

Unsupervised and supervised dimension reduction: Algorithms and connections Unsupervised and supervised dimension reduction: Algorithms and connections Jieping Ye Department of Computer Science and Engineering Evolutionary Functional Genomics Center The Biodesign Institute Arizona

More information

THE APPROXIMATION OF ONE MATRIX BY ANOTHER OF LOWER RANK. CARL ECKART AND GALE YOUNG University of Chicago, Chicago, Illinois

THE APPROXIMATION OF ONE MATRIX BY ANOTHER OF LOWER RANK. CARL ECKART AND GALE YOUNG University of Chicago, Chicago, Illinois PSYCHOMETRIKA--VOL. I, NO. 3 SEPTEMBER, 193.6 THE APPROXIMATION OF ONE MATRIX BY ANOTHER OF LOWER RANK CARL ECKART AND GALE YOUNG University of Chicago, Chicago, Illinois The mathematical problem of approximating

More information

Entanglement analysis of atomic processes and quantum registers

Entanglement analysis of atomic processes and quantum registers Entanglement analysis of atomic processes and quantum registers Inaugural-Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat. vorgelegt beim Fachbereich Naturwissenschaften

More information

arxiv:hep-th/0507236v1 25 Jul 2005

arxiv:hep-th/0507236v1 25 Jul 2005 Non perturbative series for the calculation of one loop integrals at finite temperature Paolo Amore arxiv:hep-th/050736v 5 Jul 005 Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo

More information

Theory of electrons and positrons

Theory of electrons and positrons P AUL A. M. DIRAC Theory of electrons and positrons Nobel Lecture, December 12, 1933 Matter has been found by experimental physicists to be made up of small particles of various kinds, the particles of

More information

CAUSALITY AND NONLOCALITY AS AXIOMS FOR QUANTUM MECHANICS

CAUSALITY AND NONLOCALITY AS AXIOMS FOR QUANTUM MECHANICS TAUP 2452-97 CAUSALITY AND NONLOCALITY AS AXIOMS FOR QUANTUM MECHANICS Sandu Popescu Isaac Newton Institute, 20 Clarkson Road, Cambridge, U.K. CB3 0EH Daniel Rohrlich School of Physics and Astronomy, Tel

More information

Review Jeopardy. Blue vs. Orange. Review Jeopardy

Review Jeopardy. Blue vs. Orange. Review Jeopardy Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?

More information

On Quantum Hamming Bound

On Quantum Hamming Bound On Quantum Hamming Bound Salah A. Aly Department of Computer Science, Texas A&M University, College Station, TX 77843-3112, USA Email: salah@cs.tamu.edu We prove quantum Hamming bound for stabilizer codes

More information

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap. A Thesis Submitted for the Degree of PhD at the University of Warwick

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap. A Thesis Submitted for the Degree of PhD at the University of Warwick University of Warwick institutional repository: http://go.warwick.ac.uk/wrap A Thesis Submitted for the Degree of PhD at the University of Warwick http://go.warwick.ac.uk/wrap/63940 This thesis is made

More information

arxiv:quant-ph/0405110v3 14 Feb 2005

arxiv:quant-ph/0405110v3 14 Feb 2005 Information-capacity description of spin-chain correlations Vittorio Giovannetti and Rosario Fazio NEST-INFM & Scuola Normale Superiore, piazza dei Cavalieri 7, I-5616 Pisa, Italy. Information capacities

More information

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015 ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2015 These notes have been used before. If you can still spot any errors or have any suggestions for improvement, please let me know. 1

More information

The Quantum Harmonic Oscillator Stephen Webb

The Quantum Harmonic Oscillator Stephen Webb The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems

More information

Group Theory and Molecular Symmetry

Group Theory and Molecular Symmetry Group Theory and Molecular Symmetry Molecular Symmetry Symmetry Elements and perations Identity element E - Apply E to object and nothing happens. bject is unmoed. Rotation axis C n - Rotation of object

More information

Continuous Groups, Lie Groups, and Lie Algebras

Continuous Groups, Lie Groups, and Lie Algebras Chapter 7 Continuous Groups, Lie Groups, and Lie Algebras Zeno was concerned with three problems... These are the problem of the infinitesimal, the infinite, and continuity... Bertrand Russell The groups

More information

arxiv:1509.06896v2 [quant-ph] 17 Oct 2015

arxiv:1509.06896v2 [quant-ph] 17 Oct 2015 ON HIDDEN VARIABLES: VALUE AND EXPECTATION NO-GO THEOREMS arxiv:1509.06896v2 [quant-ph] 17 Oct 2015 ANDREAS BLASS AND YURI GUREVICH Abstract. No-go theorems assert that hidden-variable theories, subject

More information

Open Problems in Quantum Information Processing. John Watrous Department of Computer Science University of Calgary

Open Problems in Quantum Information Processing. John Watrous Department of Computer Science University of Calgary Open Problems in Quantum Information Processing John Watrous Department of Computer Science University of Calgary #1 Open Problem Find new quantum algorithms. Existing algorithms: Shor s Algorithm (+ extensions)

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

arxiv:1404.6042v1 [math.dg] 24 Apr 2014

arxiv:1404.6042v1 [math.dg] 24 Apr 2014 Angle Bisectors of a Triangle in Lorentzian Plane arxiv:1404.604v1 [math.dg] 4 Apr 014 Joseph Cho August 5, 013 Abstract In Lorentzian geometry, limited definition of angles restricts the use of angle

More information

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers

More information

1 Review of Least Squares Solutions to Overdetermined Systems

1 Review of Least Squares Solutions to Overdetermined Systems cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

More information

Hello, my name is Olga Michasova and I present the work The generalized model of economic growth with human capital accumulation.

Hello, my name is Olga Michasova and I present the work The generalized model of economic growth with human capital accumulation. Hello, my name is Olga Michasova and I present the work The generalized model of economic growth with human capital accumulation. 1 Without any doubts human capital is a key factor of economic growth because

More information

A class of quantum LDPC codes: construction and performances under iterative decoding

A class of quantum LDPC codes: construction and performances under iterative decoding A class of quantum LDPC codes: construction and performances under iterative decoding Thomas Camara INRIA, Projet Codes, BP 05, Domaine de Voluceau F-7853 Le Chesnay, France. Email: thomas.camara@inria.fr

More information

Second Order Linear Partial Differential Equations. Part I

Second Order Linear Partial Differential Equations. Part I Second Order Linear Partial Differential Equations Part I Second linear partial differential equations; Separation of Variables; - point boundary value problems; Eigenvalues and Eigenfunctions Introduction

More information

The New Approach of Quantum Cryptography in Network Security

The New Approach of Quantum Cryptography in Network Security The New Approach of Quantum Cryptography in Network Security Avanindra Kumar Lal 1, Anju Rani 2, Dr. Shalini Sharma 3 (Avanindra kumar) Abstract There are multiple encryption techniques at present time

More information

An elementary proof of Wigner's theorem on quantum mechanical symmetry transformations

An elementary proof of Wigner's theorem on quantum mechanical symmetry transformations An elementary proof of Wigner's theorem on quantum mechanical symmetry transformations University of Szeged, Bolyai Institute and MTA-DE "Lendület" Functional Analysis Research Group, University of Debrecen

More information

QUANTUM COMPUTER ELEMENTS BASED ON COUPLED QUANTUM WAVEGUIDES

QUANTUM COMPUTER ELEMENTS BASED ON COUPLED QUANTUM WAVEGUIDES Ó³ Ÿ. 2007.. 4, º 2(138).. 237Ä243 Š Œ œ ƒˆˆ ˆ ˆŠˆ QUANTUM COMPUTER ELEMENTS BASED ON COUPLED QUANTUM WAVEGUIDES M. I. Gavrilov, L. V. Gortinskaya, A. A. Pestov, I. Yu. Popov 1, E. S. Tesovskaya Department

More information

Examples on Monopoly and Third Degree Price Discrimination

Examples on Monopoly and Third Degree Price Discrimination 1 Examples on Monopoly and Third Degree Price Discrimination This hand out contains two different parts. In the first, there are examples concerning the profit maximizing strategy for a firm with market

More information

Time dependence in quantum mechanics Notes on Quantum Mechanics

Time dependence in quantum mechanics Notes on Quantum Mechanics Time dependence in quantum mechanics Notes on Quantum Mechanics http://quantum.bu.edu/notes/quantummechanics/timedependence.pdf Last updated Thursday, November 20, 2003 13:22:37-05:00 Copyright 2003 Dan

More information

THE DIMENSION OF A VECTOR SPACE

THE DIMENSION OF A VECTOR SPACE THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field

More information

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate

More information

Statistical mechanics for real biological networks

Statistical mechanics for real biological networks Statistical mechanics for real biological networks William Bialek Joseph Henry Laboratories of Physics, and Lewis-Sigler Institute for Integrative Genomics Princeton University Initiative for the Theoretical

More information

Factor Analysis. Sample StatFolio: factor analysis.sgp

Factor Analysis. Sample StatFolio: factor analysis.sgp STATGRAPHICS Rev. 1/10/005 Factor Analysis Summary The Factor Analysis procedure is designed to extract m common factors from a set of p quantitative variables X. In many situations, a small number of

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

Physik Department. Matrix Product Formalism

Physik Department. Matrix Product Formalism Physik Department Matrix Product Formalism Diplomarbeit von María Gracia Eckholt Perotti Angefertigt an der Technische Universität München und am Max-Planck-Institut für Quantenoptik Garching, September

More information

4. Matrix Methods for Analysis of Structure in Data Sets:

4. Matrix Methods for Analysis of Structure in Data Sets: ATM 552 Notes: Matrix Methods: EOF, SVD, ETC. D.L.Hartmann Page 64 4. Matrix Methods for Analysis of Structure in Data Sets: Empirical Orthogonal Functions, Principal Component Analysis, Singular Value

More information

Introduction to the Monte Carlo method

Introduction to the Monte Carlo method Some history Simple applications Radiation transport modelling Flux and Dose calculations Variance reduction Easy Monte Carlo Pioneers of the Monte Carlo Simulation Method: Stanisław Ulam (1909 1984) Stanislaw

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1

ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1 19 MDOF Dynamic Systems ASEN 3112 Lecture 1 Slide 1 A Two-DOF Mass-Spring-Dashpot Dynamic System Consider the lumped-parameter, mass-spring-dashpot dynamic system shown in the Figure. It has two point

More information