Digital Data Transmission Notes

Size: px
Start display at page:

Download "Digital Data Transmission Notes"

Transcription

1 1 Digital Communication Systems The input to a digital communication system is a sequence of digits. The input could be sourced by a data set, computer, or quantized and digitized analog signal. Such digital signals are coded using what is known as a line coder. Figure 1 illustrates some examples of line codes. Figure 1: Line Code Examples On-off Return to Zero (RZ): Figure 1.a is an on-off (RZ) code. It is on-off because a 1 is transmitted by a positive one and a 0 is represented as a zero. It is return to zero because the bit value (either 1 or 0) is not held for the entire duration. Instead it returns to zero before the next bit is transmitted. Polar (RZ): Figure 1.b is a polar (RZ) code. The code is polar because a 1 is transmitted by a positive one and a 0 is represented as a negative one. It is return to Class: Digital Communications Dentato 2012 Page 1

2 Digital Data Transmission Notes zero because the bit value (either 1 or 0) is not held for the entire duration. Instead it returns to zero before the next bit is transmitted. Bipolar (RZ): Figure 1.c is a bipolar (RZ) code. The code is bipolar because a 1 is transmitted by a positive one or a negative one. Subsequent 1 s are inverted to create an alternating pattern, and a 0 is represented as a zero. It is return to zero because the bit value (either 1 or 0) is not held for the entire duration. Instead it returns to zero before the next bit is transmitted. On-off Non-Return to Zero (NRZ): Figure 1.d is an on-off (NRZ) code. It is on-off because a 1 is transmitted by a positive one and a 0 is represented as a zero. It is non-return to zero because the bit value (either 1 or 0) is held for the entire duration. Polar (NRZ): Figure 1.e is a polar (NRZ) code. It is polar because a 1 is transmitted by a positive one and a 0 is represented as a negative one. It is non-return to zero because the bit value (either 1 or 0) is held for the entire duration. Line coding take a sequence of digits and converts it to an electrical pulse or waveform for transmission over a channel. The digital source is symbol based and in the case of binary there are only two symbols ( 1 and 0 ). The digital source once again can come from a computer, telephone network, digitized audio data, and many other possibilities. Some desirable properties of line codes Transmission bandwidth should be as small as possible Power efficiency for a given bandwidth and specific error rate should be as low as possible Error detection and correction are nice features, but are not always necessary in some communication networks. For example a bipolar coded signal can cause a bipolar violation which can be easily detected. Favorable Power Spectral Density (PSD). It is desirable to have zero power at DC because ac coupling and transformers (which will act as high-pass filters) are often used at repeaters and other network critical hardware. Popular first-person shooter games employ User Datagram Protocol (UDP) which does not require error detection in IPv4. Some games, to achieve higher data rates (less lag), do not detect errors. Instead they may suffer the loss of data since the probability of an error ever propagating to the user is extremely small. Some games may detect errors, but will not necessarily fix errors. Rather they will just through the erroneous data on the floor and suffer the lag waiting on the next packet for updates. Again the probability of the user seeing any degradation in game play is very small. Class: Digital Communications Dentato 2012 Page 2

3 2 PSD of Various Line Codes Digital Data Transmission Notes We will directly apply the relationship between the PSD and the autocorrelation function to find a general expression for the PSD of a baseband modulation (line coding) output signal as shown in Figure 2. Figure 2: Random Pulse-Amplitude-Modulated Signal We will consider the pulse whose corresponding Fourier transform is. We can denote the line code symbol at time as. When the transmission rate is pulses per second, the line code generated a pulse train constructed from the basic pulse with amplitude starting at time ; in other words the kth symbol is transmitted as which can be seen in Figure 2.b. This signal consists of a succession of symbol transmissions seconds apart. The baseband signal is a pulse train of the form Class: Digital Communications Dentato 2012 Page 3

4 Note: The line coder determines the symbol pulse. as the amplitude of the The values of are random in nature and is a PAM signal. The on-off, polar, and bipolar line codes are all special cases of the pulse train where takes on the values 0, 1, or -1 randomly. We can use the PSD to analyze many line codes, but unfortunately the PSD of depends on and. This means we would have to solve for the PSD all over again if we change the shape of the pulse. To overcome this we will find a more general expression using a pulse train that consists of impulse functions. Let s look back at Figure 2.d. We can see that for an input of where we will have. Back in chapter 3 we learned that the ESD of a function (in this case ) is And also that We can rewrite this as We now have a general expression where all we need to find is the PSD of, where is an impulse train as seen in Figure 2.c, and then simply multiplication will yield the PSD for the pulse shape. Class: Digital Communications Dentato 2012 Page 4

5 Figure 3: Derivation of PSD for random PAM signal To find the PSD of the impulse train we will consider the limited for of the rectangle function. Each pulse has a width, and a pulse height of Class: Digital Communications Dentato 2012 Page 5

6 This guarantees the strength of the impulse to be or Let s designate this pulse train as then the autocorrelation function is is an even function so we only consider positive values of. Consider the case of. In this case the integral is the area under the signal multiplied by delayed by where. This area can be seen in Figure 3.b. Figure 4: Autocorrelation Again, because the autocorrelation function is an even we have as seen in Figure 4 The area associated with the pulse is for positive, and thus ( ) Class: Digital Communications Dentato 2012 Page 6

7 ( ) Where During the averaging interval, there are pulses where, thus This says that for the period there is pulse of pulse width and so is the time average of the square of the pulse amplitude we can express as. Using the time average notation Once again, we are dealing with an even function so we can express the function as ( ) We find that for we have a triangle function of height with a width of centered at. Similarly to we have And for we have To find we let in. As, the width of the triangle pulse will also and the height will in such a way that the area will remain finite. In this way the triangle function becomes an impulse as seen in Figure 3.e. We end up with ( ) thus Class: Digital Communications Dentato 2012 Page 7

8 The PSD is the Fourier transform of. Therefore Recognizing that because is even we have ( ) For a pulse shape we have ( ) In summary the PSD of a line code is fully characterized by its function. 2.1 PSD of Polar Signaling and pulse shaping Class: Digital Communications Dentato 2012 Page 8

Digital Baseband Modulation

Digital Baseband Modulation Digital Baseband Modulation Later Outline Baseband & Bandpass Waveforms Baseband & Bandpass Waveforms, Modulation A Communication System Dig. Baseband Modulators (Line Coders) Sequence of bits are modulated

More information

20. Line Coding. If the transmitted pulse waveform is maintained for the entire duration of the pulse, this is called non-return-to-zero (NRZ) format.

20. Line Coding. If the transmitted pulse waveform is maintained for the entire duration of the pulse, this is called non-return-to-zero (NRZ) format. 2. Line Coding Introduction Line coding involves converting a sequence of 1s and s to a time-domain signal (a sequence of pulses) suitable for transmission over a channel. The following primary factors

More information

Digital Transmission (Line Coding)

Digital Transmission (Line Coding) Digital Transmission (Line Coding) Pulse Transmission Source Multiplexer Line Coder Line Coding: Output of the multiplexer (TDM) is coded into electrical pulses or waveforms for the purpose of transmission

More information

ANALOG VS DIGITAL. Copyright 1998, Professor John T.Gorgone

ANALOG VS DIGITAL. Copyright 1998, Professor John T.Gorgone ANALOG VS DIGITAL 1 BASICS OF DATA COMMUNICATIONS Data Transport System Analog Data Digital Data The transport of data through a telecommunications network can be classified into two overall transport

More information

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically. Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal

More information

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29. Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet

More information

MODULATION Systems (part 1)

MODULATION Systems (part 1) Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,

More information

Interferometric Dispersion Measurements

Interferometric Dispersion Measurements Application Note 2004-022A Interferometric Dispersion Measurements Overview This application note describes how the dbm 2355 Dispersion Measurement Module operates. Summary There are two primary methods

More information

NRZ Bandwidth - HF Cutoff vs. SNR

NRZ Bandwidth - HF Cutoff vs. SNR Application Note: HFAN-09.0. Rev.2; 04/08 NRZ Bandwidth - HF Cutoff vs. SNR Functional Diagrams Pin Configurations appear at end of data sheet. Functional Diagrams continued at end of data sheet. UCSP

More information

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

More information

Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:

Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional

More information

Digital vs. Analog Transmission

Digital vs. Analog Transmission Digital vs. Analog Transmission Two forms of transmission: digital transmission: data transmission using square waves analog transmission: data transmission using all other waves Four possibilities to

More information

5 Signal Design for Bandlimited Channels

5 Signal Design for Bandlimited Channels 225 5 Signal Design for Bandlimited Channels So far, we have not imposed any bandwidth constraints on the transmitted passband signal, or equivalently, on the transmitted baseband signal s b (t) I[k]g

More information

Physical Layer Part 2. Data Encoding Techniques. Networks: Data Encoding 1

Physical Layer Part 2. Data Encoding Techniques. Networks: Data Encoding 1 Physical Layer Part 2 Data Encoding Techniques Networks: Data Encoding 1 Analog and Digital Transmissions Figure 2-23.The use of both analog and digital transmissions for a computer to computer call. Conversion

More information

CONVERTERS. Filters Introduction to Digitization Digital-to-Analog Converters Analog-to-Digital Converters

CONVERTERS. Filters Introduction to Digitization Digital-to-Analog Converters Analog-to-Digital Converters CONVERTERS Filters Introduction to Digitization Digital-to-Analog Converters Analog-to-Digital Converters Filters Filters are used to remove unwanted bandwidths from a signal Filter classification according

More information

RF Measurements Using a Modular Digitizer

RF Measurements Using a Modular Digitizer RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.

More information

Appendix D Digital Modulation and GMSK

Appendix D Digital Modulation and GMSK D1 Appendix D Digital Modulation and GMSK A brief introduction to digital modulation schemes is given, showing the logical development of GMSK from simpler schemes. GMSK is of interest since it is used

More information

ADAPTIVE EQUALIZATION. Prepared by Deepa.T, Asst.Prof. /TCE

ADAPTIVE EQUALIZATION. Prepared by Deepa.T, Asst.Prof. /TCE ADAPTIVE EQUALIZATION Prepared by Deepa.T, Asst.Prof. /TCE INTRODUCTION TO EQUALIZATION Equalization is a technique used to combat inter symbol interference(isi). An Equalizer within a receiver compensates

More information

APPLICATION NOTE - 017

APPLICATION NOTE - 017 APPLICATION NOTE - 017 PWM Motor Drives Theory and Measurement Considerations Pulse Width Modulated (PWM) power electronic techniques represent a large and increasing proportion of modern power electronics.

More information

Lecture 1-6: Noise and Filters

Lecture 1-6: Noise and Filters Lecture 1-6: Noise and Filters Overview 1. Periodic and Aperiodic Signals Review: by periodic signals, we mean signals that have a waveform shape that repeats. The time taken for the waveform to repeat

More information

What s The Difference Between Bit Rate And Baud Rate?

What s The Difference Between Bit Rate And Baud Rate? What s The Difference Between Bit Rate And Baud Rate? Apr. 27, 2012 Lou Frenzel Electronic Design Serial-data speed is usually stated in terms of bit rate. However, another oftquoted measure of speed is

More information

ELE745 Assignment and Lab Manual

ELE745 Assignment and Lab Manual ELE745 Assignment and Lab Manual August 22, 2010 CONTENTS 1. Assignment 1........................................ 1 1.1 Assignment 1 Problems................................ 1 1.2 Assignment 1 Solutions................................

More information

Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage

Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage Lecture 3: Signaling and Clock Recovery CSE 123: Computer Networks Stefan Savage Last time Protocols and layering Application Presentation Session Transport Network Datalink Physical Application Transport

More information

Physical Layer, Part 2 Digital Transmissions and Multiplexing

Physical Layer, Part 2 Digital Transmissions and Multiplexing Physical Layer, Part 2 Digital Transmissions and Multiplexing These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable

More information

Data Communications & Networks. Session 3 Main Theme Data Encoding and Transmission. Dr. Jean-Claude Franchitti

Data Communications & Networks. Session 3 Main Theme Data Encoding and Transmission. Dr. Jean-Claude Franchitti Data Communications & Networks Session 3 Main Theme Data Encoding and Transmission Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences

More information

MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com

MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com Abstract: Ultra Narrow Band Modulation ( Minimum Sideband Modulation ) makes

More information

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012 Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

More information

CHAPTER 10 Linear Time-Invariant (LTI) Models for Communication Channels

CHAPTER 10 Linear Time-Invariant (LTI) Models for Communication Channels MIT 6.02 DRAFT Lecture Notes Fall 2011 (Last update: November 5, 2011) Comments, questions or bug reports? Please contact verghese at mit.edu CHAPTER 10 Linear Time-Invariant (LTI) Models for Communication

More information

RECOMMENDATION ITU-R BO.786 *

RECOMMENDATION ITU-R BO.786 * Rec. ITU-R BO.786 RECOMMENDATION ITU-R BO.786 * MUSE ** system for HDTV broadcasting-satellite services (Question ITU-R /) (992) The ITU Radiocommunication Assembly, considering a) that the MUSE system

More information

Pulse Width Modulation

Pulse Width Modulation Pulse Width Modulation Pulse width modulation (PWM) is a technique in which a series of digital pulses is used to control an analog circuit. The length and frequency of these pulses determines the total

More information

Lezione 6 Communications Blockset

Lezione 6 Communications Blockset Corso di Tecniche CAD per le Telecomunicazioni A.A. 2007-2008 Lezione 6 Communications Blockset Ing. Marco GALEAZZI 1 What Is Communications Blockset? Communications Blockset extends Simulink with a comprehensive

More information

Digital to Analog Conversion Using Pulse Width Modulation

Digital to Analog Conversion Using Pulse Width Modulation Digital to Analog Conversion Using Pulse Width Modulation Samer El-Haj-Mahmoud Electronics Engineering Technology Program Texas A&M University Instructor s Portion Summary The purpose of this lab is to

More information

Digital Transmission of Analog Data: PCM and Delta Modulation

Digital Transmission of Analog Data: PCM and Delta Modulation Digital Transmission of Analog Data: PCM and Delta Modulation Required reading: Garcia 3.3.2 and 3.3.3 CSE 323, Fall 200 Instructor: N. Vlajic Digital Transmission of Analog Data 2 Digitization process

More information

PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUMBER OF REFERENCE SYMBOLS

PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUMBER OF REFERENCE SYMBOLS PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUM OF REFERENCE SYMBOLS Benjamin R. Wiederholt The MITRE Corporation Bedford, MA and Mario A. Blanco The MITRE

More information

Analog-to-Digital Voice Encoding

Analog-to-Digital Voice Encoding Analog-to-Digital Voice Encoding Basic Voice Encoding: Converting Analog to Digital This topic describes the process of converting analog signals to digital signals. Digitizing Analog Signals 1. Sample

More information

CBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD-1 STANDARD TEST DISC

CBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD-1 STANDARD TEST DISC CBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD-1 STANDARD TEST DISC 1. INTRODUCTION The CBS Records CD-1 Test Disc is a highly accurate signal source specifically designed for those interested in making

More information

Cumulative Diagrams: An Example

Cumulative Diagrams: An Example Cumulative Diagrams: An Example Consider Figure 1 in which the functions (t) and (t) denote, respectively, the demand rate and the service rate (or capacity ) over time at the runway system of an airport

More information

Probability and Random Variables. Generation of random variables (r.v.)

Probability and Random Variables. Generation of random variables (r.v.) Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly

More information

Analog and Digital Signals, Time and Frequency Representation of Signals

Analog and Digital Signals, Time and Frequency Representation of Signals 1 Analog and Digital Signals, Time and Frequency Representation of Signals Required reading: Garcia 3.1, 3.2 CSE 3213, Fall 2010 Instructor: N. Vlajic 2 Data vs. Signal Analog vs. Digital Analog Signals

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

Non-Data Aided Carrier Offset Compensation for SDR Implementation

Non-Data Aided Carrier Offset Compensation for SDR Implementation Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center

More information

Comparator and Schmitt Trigger

Comparator and Schmitt Trigger Comparator and Schmitt Trigger Comparator circuits find frequent application in measurement and instrumentation systems. Learning Objectives Understand the Op-Amp Comparator with and without an offset

More information

22. Amplitude-Shift Keying (ASK) Modulation

22. Amplitude-Shift Keying (ASK) Modulation . mplitude-shift Keying (SK) Modulation Introduction he transmission of digital signals is increasing at a rapid rate. Low-frequency analogue signals are often converted to digital format (PM) before transmission.

More information

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

More information

Recommended Levels of Digital Signals Relative to Analog Video Levels

Recommended Levels of Digital Signals Relative to Analog Video Levels Recommended Levels of Digital Signals Relative to Analog Video Levels Introduction Audience This document provides recommendations for the operating levels of digital (64QAM and 256QAM) channels relative

More information

QAM and QPSK: Aim: Introduction:

QAM and QPSK: Aim: Introduction: QAM and QPSK: Aim: Review of Quadrature Amplitude Modulator (QAM) in digital communication system, generation of Quadrature Phase Shift Keyed (QPSK or 4-PSK) signal and demodulation. Introduction: The

More information

Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.

Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes. by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification

More information

Manchester Encoder-Decoder for Xilinx CPLDs

Manchester Encoder-Decoder for Xilinx CPLDs Application Note: CoolRunner CPLDs R XAPP339 (v.3) October, 22 Manchester Encoder-Decoder for Xilinx CPLDs Summary This application note provides a functional description of VHDL and Verilog source code

More information

Large-Capacity Optical Transmission Technologies Supporting the Optical Submarine Cable System

Large-Capacity Optical Transmission Technologies Supporting the Optical Submarine Cable System Large-Capacity Optical Transmission Technologies Supporting the Optical Submarine Cable System INOUE Takanori Abstract As one of the foundations of the global network, the submarine cable system is required

More information

AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE

AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE Atmel 8-bit and 32-bit Microcontrollers AVR127: Understanding ADC Parameters APPLICATION NOTE Introduction This application note explains the basic concepts of analog-to-digital converter (ADC) and the

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-18 Lec 3: Rectifier and Clipper circuits Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia 1 Rectifier Circuits:

More information

Using GNU Radio Companion: Tutorial 3. Receiving AM Signals

Using GNU Radio Companion: Tutorial 3. Receiving AM Signals Using GNU Radio Companion: Tutorial 3. Receiving AM Signals This tutorial is a guide to receiving AM signals. It uses a data file that contains several seconds of recorded signals from the AM broadcast

More information

DIGITAL TRANSMISSION AND CODING TECHNIQUES

DIGITAL TRANSMISSION AND CODING TECHNIQUES CHAPTER 12 DIGITAL TRANSMISSION AND CODING TECHNIQUES 12.1 INTRODUCTION Communications systems transmit signals by means of a number of coding techniques-electrical or optical. In this chapter, we review

More information

Modulation methods. S-72. 333 Physical layer methods in wireless communication systems. Sylvain Ranvier / Radio Laboratory / TKK 16 November 2004

Modulation methods. S-72. 333 Physical layer methods in wireless communication systems. Sylvain Ranvier / Radio Laboratory / TKK 16 November 2004 Modulation methods S-72. 333 Physical layer methods in wireless communication systems Sylvain Ranvier / Radio Laboratory / TKK 16 November 2004 sylvain.ranvier@hut.fi SMARAD / Radio Laboratory 1 Line out

More information

Chapter 14. MPEG Audio Compression

Chapter 14. MPEG Audio Compression Chapter 14 MPEG Audio Compression 14.1 Psychoacoustics 14.2 MPEG Audio 14.3 Other Commercial Audio Codecs 14.4 The Future: MPEG-7 and MPEG-21 14.5 Further Exploration 1 Li & Drew c Prentice Hall 2003 14.1

More information

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of

More information

BPSK - BINARY PHASE SHIFT KEYING

BPSK - BINARY PHASE SHIFT KEYING BPSK - BINARY PHASE SHIFT KEYING PREPARATION... 70 generation of BPSK... 70 bandlimiting... 71 BPSK demodulation... 72 phase ambiguity...72 EXPERIMENT... 73 the BPSK generator... 73 BPSK demodulator...

More information

Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd Chapter 1 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved Analog Quantities Most natural quantities that we see

More information

Digital to Analog Converter. Raghu Tumati

Digital to Analog Converter. Raghu Tumati Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................

More information

Fundamentals Series Analog vs. Digital. Polycom, Inc. All rights reserved.

Fundamentals Series Analog vs. Digital. Polycom, Inc. All rights reserved. Fundamentals Series Analog vs. Digital Polycom, Inc. All rights reserved. Fundamentals Series Signals H.323 Analog vs. Digital SIP Defining Quality Standards Network Communication I Network Communication

More information

Software Defined Radio

Software Defined Radio Software Defined Radio GNU Radio and the USRP Overview What is Software Defined Radio? Advantages of Software Defined Radio Traditional versus SDR Receivers SDR and the USRP Using GNU Radio Introduction

More information

Example/ an analog signal f ( t) ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency.

Example/ an analog signal f ( t) ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency. 1 2 3 4 Example/ an analog signal f ( t) = 1+ cos(4000πt ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency. Sol/ H(f) -7KHz -5KHz -3KHz -2KHz 0 2KHz 3KHz

More information

A WEB BASED TRAINING MODULE FOR TEACHING DIGITAL COMMUNICATIONS

A WEB BASED TRAINING MODULE FOR TEACHING DIGITAL COMMUNICATIONS A WEB BASED TRAINING MODULE FOR TEACHING DIGITAL COMMUNICATIONS Ali Kara 1, Cihangir Erdem 1, Mehmet Efe Ozbek 1, Nergiz Cagiltay 2, Elif Aydin 1 (1) Department of Electrical and Electronics Engineering,

More information

The Class-D Amplifier

The Class-D Amplifier The Class-D Amplifier (From the book Introduction to Electroacoustics and Audio Amplifier Design, Second Edition - Revised Printing, by W. Marshall Leach, Jr., published by Kendall/Hunt, c 2001.) A class-d

More information

DigiPoints Volume 1. Student Workbook. Module 4 Bandwidth Management

DigiPoints Volume 1. Student Workbook. Module 4 Bandwidth Management Bandwidth Management Page 4.1 DigiPoints Volume 1 Module 4 Bandwidth Management Summary This module will cover Time Division Multiplexing (TDM). TDM technology allows many users to access a particular

More information

The Calculation of G rms

The Calculation of G rms The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving

More information

Introduction to digital communication

Introduction to digital communication Chapter 1 Introduction to digital communication Communication has been one of the deepest needs of the human race throughout recorded history. It is essential to forming social unions, to educating the

More information

Email: tjohn@mail.nplindia.ernet.in

Email: tjohn@mail.nplindia.ernet.in USE OF VIRTUAL INSTRUMENTS IN RADIO AND ATMOSPHERIC EXPERIMENTS P.N. VIJAYAKUMAR, THOMAS JOHN AND S.C. GARG RADIO AND ATMOSPHERIC SCIENCE DIVISION, NATIONAL PHYSICAL LABORATORY, NEW DELHI 110012, INDIA

More information

Transmitter Characteristics (83D.3.1) Ryan Latchman, Mindspeed

Transmitter Characteristics (83D.3.1) Ryan Latchman, Mindspeed Transmitter haracteristics (83D.3.) Ryan Latchman, Mindspeed Transmit equalizer Transmitter equalizer range The AUI-4 chip-to-chip transmitter includes programmable equalization to compensate for the frequency-dependent

More information

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1 WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

More information

Objectives. Lecture 4. How do computers communicate? How do computers communicate? Local asynchronous communication. How do computers communicate?

Objectives. Lecture 4. How do computers communicate? How do computers communicate? Local asynchronous communication. How do computers communicate? Lecture 4 Continuation of transmission basics Chapter 3, pages 75-96 Dave Novak School of Business University of Vermont Objectives Line coding Modulation AM, FM, Phase Shift Multiplexing FDM, TDM, WDM

More information

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military

More information

CTA300. Communication Trainer Analog RELATED PRODUCTS. Communication Trainer kit

CTA300. Communication Trainer Analog RELATED PRODUCTS. Communication Trainer kit Communication Trainer kit Communication Trainer RELATED PRODUCTS v Digital Communication Trainers v Optical Fibers Communication Trainers v Digital and Communication Trainers v Communication Electronic

More information

Frequency Hopping Spread Spectrum PHY of the 802.11 Wireless LAN Standard. Why Frequency Hopping?

Frequency Hopping Spread Spectrum PHY of the 802.11 Wireless LAN Standard. Why Frequency Hopping? Frequency Hopping Spread Spectrum PHY of the 802.11 Wireless LAN Standard Presentation to IEEE 802 March 11, 1996 Naftali Chayat BreezeCom 1 Why Frequency Hopping? Frequency Hopping is one of the variants

More information

Lecture Notes for ECE 361. Fall 1995

Lecture Notes for ECE 361. Fall 1995 Introduction to Digital Communication Systems Lecture Notes for ECE 361 Fall 1995 Dilip V. Sarwate Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana, Illinois

More information

Simulation and Analysis of AC-AC Converter With Improved Power Quality

Simulation and Analysis of AC-AC Converter With Improved Power Quality 24 IJEDR Volume 2, Issue ISSN: 232-9939 Simulation and Analysis of AC-AC Converter With Improved Power Quality Srujal R. Patel, 2 Md Aftab Alam, 3 Nigam K. Prajapati M.Tech Scholar, 2 Assistant professor,

More information

From Concept to Production in Secure Voice Communications

From Concept to Production in Secure Voice Communications From Concept to Production in Secure Voice Communications Earl E. Swartzlander, Jr. Electrical and Computer Engineering Department University of Texas at Austin Austin, TX 78712 Abstract In the 1970s secure

More information

Binary Adders: Half Adders and Full Adders

Binary Adders: Half Adders and Full Adders Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order

More information

Sequential multi-effect sequencer

Sequential multi-effect sequencer Sequential multi-effect sequencer WHAT IS IT INTRODUCTION Sequential is a dynamic multi-effect that allows you to trigger different processing and synthesis algorithms in a rhythmical fashion. It features

More information

HD Radio FM Transmission System Specifications Rev. F August 24, 2011

HD Radio FM Transmission System Specifications Rev. F August 24, 2011 HD Radio FM Transmission System Specifications Rev. F August 24, 2011 SY_SSS_1026s TRADEMARKS HD Radio and the HD, HD Radio, and Arc logos are proprietary trademarks of ibiquity Digital Corporation. ibiquity,

More information

Data Communications Prof. Ajit Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture # 03 Data and Signal

Data Communications Prof. Ajit Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture # 03 Data and Signal (Refer Slide Time: 00:01:23) Data Communications Prof. Ajit Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture # 03 Data and Signal Hello viewers welcome

More information

CDMA TECHNOLOGY. Brief Working of CDMA

CDMA TECHNOLOGY. Brief Working of CDMA CDMA TECHNOLOGY History of CDMA The Cellular Challenge The world's first cellular networks were introduced in the early 1980s, using analog radio transmission technologies such as AMPS (Advanced Mobile

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 2: RF Basics and Signal Encoding September 22, 2005 2005 Matt Welsh Harvard University 1 Today's Lecture Basics of wireless communications

More information

The Boonton USB Peak Power Sensor, Wi-Fi ac Signals and the ETSI EN Standard

The Boonton USB Peak Power Sensor, Wi-Fi ac Signals and the ETSI EN Standard Application Note The Boonton 55006 USB Peak Power Sensor, Wi-Fi 802.11ac Signals and the ETSI EN 300 328 Standard Stephen Shaw Applications Engineer, Boonton Electronics Abstract This application note

More information

TCOM 370 NOTES 99-6 VOICE DIGITIZATION AND VOICE/DATA INTEGRATION

TCOM 370 NOTES 99-6 VOICE DIGITIZATION AND VOICE/DATA INTEGRATION TCOM 370 NOTES 99-6 VOICE DIGITIZATION AND VOICE/DATA INTEGRATION (Please read appropriate parts of Section 2.5.2 in book) 1. VOICE DIGITIZATION IN THE PSTN The frequencies contained in telephone-quality

More information

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

More information

Lecture - 4 Diode Rectifier Circuits

Lecture - 4 Diode Rectifier Circuits Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

More information

568 Subject Index. exponential distribution, 106, 108, 539 extension field, 545, 551 eye diagram, 193

568 Subject Index. exponential distribution, 106, 108, 539 extension field, 545, 551 eye diagram, 193 SUBJECT INDEX additive system, 182 additive white Gaussian noise, 99, 103 aliasing, 52, 54 amplifier AM/AM characteristic, 332, 342 AM/PM characteristic, 332, 342 nonlinear, 344 two-box model, 344 amplifiers,

More information

Frequency Shift Dither for Analogue to Digital Converters

Frequency Shift Dither for Analogue to Digital Converters Frequency Shift Dither for Analogue to Digital Converters Authors: Cornelis Jan Kikkert Associate Professor Head of Electrical and Computer Engineering Townsville, Queensland, 4811 Phone 07-47814259 Fax

More information

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19 Doppler Doppler Chapter 19 A moving train with a trumpet player holding the same tone for a very long time travels from your left to your right. The tone changes relative the motion of you (receiver) and

More information

VoIP network planning guide

VoIP network planning guide VoIP network planning guide Document Reference: Volker Schüppel 08.12.2009 1 CONTENT 1 CONTENT... 2 2 SCOPE... 3 3 BANDWIDTH... 4 3.1 Control data 4 3.2 Audio codec 5 3.3 Packet size and protocol overhead

More information

PCM Encoding and Decoding:

PCM Encoding and Decoding: PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth

More information

DIGITAL SYSTEM DESIGN LAB

DIGITAL SYSTEM DESIGN LAB EXPERIMENT NO: 7 STUDY OF FLIP FLOPS USING GATES AND IC S AIM: To verify various flip-flops like D, T, and JK. APPARATUS REQUIRED: Power supply, Digital Trainer kit, Connecting wires, Patch Chords, IC

More information

MP3 Player CSEE 4840 SPRING 2010 PROJECT DESIGN. zl2211@columbia.edu. ml3088@columbia.edu

MP3 Player CSEE 4840 SPRING 2010 PROJECT DESIGN. zl2211@columbia.edu. ml3088@columbia.edu MP3 Player CSEE 4840 SPRING 2010 PROJECT DESIGN Zheng Lai Zhao Liu Meng Li Quan Yuan zl2215@columbia.edu zl2211@columbia.edu ml3088@columbia.edu qy2123@columbia.edu I. Overview Architecture The purpose

More information

- T-Carrier Technologies -

- T-Carrier Technologies - 1 T-Carrier Fundamentals - T-Carrier Technologies - T-Carrier systems provide digitized communication for voice or data traffic across a telephone provider s network. The T-Carrier specification defines

More information

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,

More information

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2

More information

HD Radio FM Transmission System Specifications

HD Radio FM Transmission System Specifications HD Radio FM Transmission System Specifications Rev. E January 30, 2008 Doc. No. SY_SSS_1026s TRADEMARKS The ibiquity Digital logo and ibiquity Digital are registered trademarks of ibiquity Digital Corporation.

More information

COMMITTEE T1 TELECOMMUNICATIONS Working Group T1E1.4 (DSL Access) Arlington, VA; April 20, 1999

COMMITTEE T1 TELECOMMUNICATIONS Working Group T1E1.4 (DSL Access) Arlington, VA; April 20, 1999 COMMITTEE T1 TELECOMMUNICATIONS Working Group T1E1.4 (DSL Access) Arlington, VA; April 20, 1999 T1E1.4/99-204 CONTRIBUTION TITLE: SOURCE: AUTHOR(S): PROJECT: Measured Spectral Compatibility of T1.413 FDD

More information