- Free resources for K-12 1/5

Size: px
Start display at page:

Download "- Free resources for K-12 1/5"

Transcription

1 Activity: Estimating the Storage Capacity of a CD/DVD Summary Figure 1: Experimental set-up. copyright Students estimate the storage capacity of CDs and DVDs by assessing diffraction patterns of green and red laser beams. Engineering Connection Relating science and/or math concept(s) to engineering Optical science engineers and materials science engineers design and create devices that satisfy the ever increasing demand for digital storage. The advancement from CDs to DVDs allows more storage per disk but also provides challenges for engineers because the physical structures ("pits") that store data on the disks become smaller and the CD/DVD players' lasers operate at the diffraction limit (resolution) of light. Contents 1. Pre-Req Knowledge 2. Learning Objectives 3. Materials 4. Introduction/Motivation 5. Vocabulary 6. Procedure 7. Attachments 8. Safety Issues 9. Troubleshooting Tips 10. Assessment 11. Extensions Grade Level: 12 (11-12) Group Size: 4 Time Required: 30 minutes Activity Dependency :None Expendable Cost Per Group : US$ 1 The activity also requires non-expendable (reusable) items for each group (a red or green laser pointer); - Free resources for K-12 1/5

2 see the Materials List for details. Keywords: bit, byte, CD, compact disc, disc, DVD, diffraction, laser, nanotechnology, optical disc, storage Related Curriculum : subject areas Physics Educational Standards International Technology and Engineering Educators Association: Technology Texas: Science Pre-Req Knowledge (Return to Contents) Familiarity with the wave nature of light, as well as with interference and diffraction. Learning Objectives (Return to Contents) After this activity, students should be able to: Describe how a CD or DVD stores information. Explain that the laser's wavelength limits how small the pits on a CD or DVD can be. Explain why a Blu-ray disc can store more information than a CD or DVD. Materials List Each group needs: DVD CD (compact disc) red or green laser pointer; red ones cost less than $10 each; green ones cost ~$30 each protractor small spacers to place under protractor (such as cardboard pieces) plain white sheet of paper calculator Estimating Storage Capacity Worksheet, one per person To share with the entire class: tape Introduction/Motivation (Return to Contents) (optional: Show students the Estimating Storage Capacity Presentation [a PowerPoint file] as you go over the following information) Previously, you studied light, its interaction with matter, and the behavior of light waves. Today we will see how these concepts apply to our everyday lives through engineering and nanotechnology. (Hold up a CD in one hand, a DVD in the other hand.) Here I have one CD and one DVD. Can you tell which one is which? (Listen to students answers.) What is the difference between a CD and DVD? (Answer: The amount of storage capacity.) The rate of technological development is quickly increasing. Now we have Blu-rays, which are optical disc storage media just like CDs and DVDs, but can even store more information. However, Blu-ray players require a blue laser. After this activity you will understand why Blu-ray discs only work with blue lasers and not with lasers of higher wavelengths, such as red or green lasers. Who knows how we will store information cheaply in a few years! So now we know that the difference between CDs and DVDs is storage capacity. But how do we measure the size of digital data? (Answer: Digital data is measured in bytes, which is usually used with a prefix - Free resources for K-12 2/5

3 giga (109) or mega (106)) A byte is a unit of digital information. One byte consists of eight bits. One bit only has two states: 0/1, which can be regarded as on/off. All digital information is stored in the form of bits. You can think off it as huge lines of zeros and ones. Your cell phone, computer, TV, and ipod store your data in the form of long sequences of zeros and ones. To understand the difference between a CD and DVD, let's look at the details. (Show slide 2.) CDs and DVDs store large amounts of binary data (those patterns of 0s and 1s), which a CD/DVD player can read using a laser, optical devices and sophisticated electronics. CDs and DVDs are made mostly of plastic (polycarbonate) and can store more information by having multiple recording layers. The data is stored in a series of tiny pits, arranged in a spiral, tracking from the center of the disk to the edge. (Show slide 3.) The data layer is coated with a thin layer of aluminum or silver, making it highly reflective. If stretched out, this spiral of pits would be about 5 km long! The pit length and the distance between pits define the digital data. The depth of a pit is 0.11 µm and the width is 0.5 µm. Its length varies between 0.83 and 3.56 µm. The spiral of pits is a periodic structure that diffracts light into multiple beams. Such a periodic structure is called diffraction grating. The microscopic diffraction grating is the reason why you see beautiful rainbow colors when white light illuminates a CD. When a laser beam is reflected off the disc, a diffraction pattern is formed. (Show slide 4.) Remember that the angle of incidence is the angle of the incoming laser beam with respect to the normal of the CD surface. If the angle of incidence is close to the normal, the condition for constructive interference is identical to that for a transmission diffraction grating, which is given by the following equation: (Students should already be familiar with this equation; see Pre-Requisite Knowledge section.) dsin(θ)=mλ where m is the diffraction order, d is distance between the rows of pits, and θ is the angular position of the mth maximum. The wavelength of the laser determines its color. The red laser has a higher wavelength than the green laser. You will find the wavelength on the laser. Blue lasers have even shorter wavelengths, but are more expensive. The distance between the rows of pits, d, can be estimated by: (Write the equation on on the classroom board. Point out "d" on the slide.) d=mλ/sin(θ) By measuring θ and using the given value of λ, you can use this equation to calculate the distance between rows of pits. Vocabulary/Definitions (Return to Contents) angle of Angle between an incident light ray and the normal of the surface. incidence: constructive Phenomenon in which two wavers superimpose to form a resultant wave of greater interference: amplitude. Optical component with a periodic structure that diffracts light into multiple beams. diffraction Transmission diffraction gratings are light-transmissive, like lenses; reflective grating: diffraction gratings are light-reflecting, like mirrors. diffraction order: Integer corresponding to a diffracted beam. Binary digit. Basic unit of information. One bit can be represented by 0/1 or on/off. bit: Eight bites correspond to one byte. Unit of digital information. Often used with a prefix, such as MB (megabyte) or GB byte: (gigabyte). One byte consists of eight bits. pit: Microscopic indentation on CD/DVD that store on bit. pitch: Distance between two neighboring spiral tracks. Procedure Before the Activity Gather materials and make copies of the Estimating Storage Capacity Worksheet, one per student. - Free resources for K-12 3/5

4 Demonstrate the set-up and the activity in front of the entire class. With the Students Figure 2: Protractor measuring diffraction angles. copyright 1. Have each student group complete the following steps. Use tape to attach the CD and DVD next to each other on the edge of a table (see Figure 1). Face the label sides away from the table. Make sure that the centers of the CD and DVD are placed on the table edge. 2. Place a piece of white paper on the table, and align it along the CD. 3. Explain that students will use the protractors to measure diffracted laser beam angles, and that the protractors will be lifted off the table using spacers (see Figure 1). The spacers create a distance between the protractor and the table, and thereby allow the laser beam to go in the space between the sheet of paper and the protractor. 4. Before students turn on their laser pointers, remind them to make sure no one is in the path of the diffracted beams, and never shine the laser pointers in anyone's eyes! 5. Have students turn on the laser pointers, and direct the beams towards their CDs. Align the beam with the 90 mark and the center of the protractor. The laser beam should be aligned with the normal of the CD surface (perpendicular to the CD). Students may need to adjust their laser pointers slightly before seeing diffraction patterns shown in Figure When the incident and diffracted beams are clearly visible, direct students to measure the angles of the diffracted beams (the angle between the incident beam and diffracted beam) and record them in their worksheet tables. Remember that angles are measured from the normal (the 90 mark on the protractor). It might be easier for students to mark the beam positions on the white sheet of paper with a pencil and then measure the angle using their marks. Attachments (Return to Contents) - Free resources for K-12 4/5

5 Estimating Storage Capacity Presentation (ppts) Estimating Storage Capacity Presentation (pdf) Estimating Storage Capacity Worksheet (docx) Estimating Storage Capacity Worksheet (pdf) Estimating Storage Capacity Worksheet Answers (docx) Estimating Storage Capacity Worksheet Answers (pdf) Safety Issues Never point lasers directly towards other people. Be especially careful not to point to lasers towards someone's eyes. Troubleshooting Tips It is important to line up the edge of the table along the diameter of the CD. The center of the protractor should be lined up midway between the center and the rim of the CD. The angles are measured from the normal. For calculations, have students make sure their calculators are set to enter angles in degrees. Assessment (Return to Contents) Pre-Activity Assessment Question & Answer: Gauge students' prior knowledge about CDs and DVDs by posing the questions in the Introduction/Motivation section. Activity Embedded Assessment Student Engagement: While students work through the activity procedure, circulate by workstations to observe and ask questions to assess their understanding of what they are doing. Post-Activity Assessment Worksheet: Have students complete and hand in the Estimating Storage Capacity Worksheets. Examine their numerical results to see how well they understood the concepts. The results for the spacing ("d") might vary, but should be within a reasonable range. Activity Extensions (Return to Contents) Extend the activity by varying the angle of incidence. The activity described above uses an incoming laser beam that is perpendicular to the surface (such that the angle of incidence is zero). If the angle of incidence is not zero, the diffraction equation from above generalizes to: d(sin(θ i )+sin(θ m ))=mλ where θ i is the angle of incidence. Note that if θ i is set to zero, we get the equation outlined above. In the extended activity, have students measure the angle of incidence in addition to all other quantities described above. Contributors Lars Seemann, Mila Bersabal Supporting Program (Return to Contents) University of Houston, National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs Last Modified: April 23, Free resources for K-12 5/5

USING CDs AND DVDs AS DIFFRACTION GRATINGS

USING CDs AND DVDs AS DIFFRACTION GRATINGS USING CDs AND DVDs AS DIFFRACTION GRATINGS Rama Balachandran Riverwood High School Atlanta, GA Karen Porter-Davis Chamblee Charter High School Chamblee, GA Copyright Georgia Institute of Technology 2009

More information

Mirror, mirror - Teacher Guide

Mirror, mirror - Teacher Guide Introduction Mirror, mirror - Teacher Guide In this activity, test the Law of Reflection based on experimental evidence. However, the back-silvered glass mirrors present a twist. As light travels from

More information

Interference. Physics 102 Workshop #3. General Instructions

Interference. Physics 102 Workshop #3. General Instructions Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

Theremino System Theremino Spectrometer Technology

Theremino System Theremino Spectrometer Technology Theremino System Theremino Spectrometer Technology theremino System - Theremino Spectrometer Technology - August 15, 2014 - Page 1 Operation principles By placing a digital camera with a diffraction grating

More information

Activity Template. Drexel-SDP GK-12 ACTIVITY

Activity Template. Drexel-SDP GK-12 ACTIVITY Activity Template Drexel-SDP GK-12 ACTIVITY Subject Area(s) Earth & Space, Measurement Associated Unit: Astronomy Associated Lesson: Astrolabe Activity Title: Classroom Gazing Grade Level 6 (6-7) Time

More information

What s so special about the laser?

What s so special about the laser? What s so special about the laser? A guide for taking LaserFest into the classroom. Developed by 2010 SPS SOCK interns Patrick Haddox & Jasdeep Maggo. www.spsnational.org Activity 1: Exploring laser light

More information

Parts of a Computer. Preparation. Objectives. Standards. Materials. 1 1999 Micron Technology Foundation, Inc. All Rights Reserved

Parts of a Computer. Preparation. Objectives. Standards. Materials. 1 1999 Micron Technology Foundation, Inc. All Rights Reserved Parts of a Computer Preparation Grade Level: 4-9 Group Size: 20-30 Time: 75-90 Minutes Presenters: 1-3 Objectives This lesson will enable students to: Identify parts of a computer Categorize parts of a

More information

The Blu-ray Disc. Teacher's manual. Jean Schleipen, Philips Research, Eindhoven, The Netherlands

The Blu-ray Disc. Teacher's manual. Jean Schleipen, Philips Research, Eindhoven, The Netherlands Jean Schleipen, Philips Research, Eindhoven, The Netherlands Many parties were involved in making this project available for schools: This technology project was originally developed by Philips (The Netherlands)

More information

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

WAVELENGTH OF LIGHT - DIFFRACTION GRATING PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant

More information

Drexel-SDP GK-12 ACTIVITY

Drexel-SDP GK-12 ACTIVITY Drexel-SDP GK-12 ACTIVITY Subject Area(s): Biology Associated Unit: None Associated Lesson: None Activity Title : Plant or Animal Cell? Grade Level: 7 and 8 (7-9) Activity Dependency: None Time Required:

More information

After a wave passes through a medium, how does the position of that medium compare to its original position?

After a wave passes through a medium, how does the position of that medium compare to its original position? Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

More information

Diffraction of Laser Light

Diffraction of Laser Light Diffraction of Laser Light No Prelab Introduction The laser is a unique light source because its light is coherent and monochromatic. Coherent light is made up of waves, which are all in phase. Monochromatic

More information

Phi: The Golden Ratio

Phi: The Golden Ratio Phi: The Golden Ratio Subject Areas Associated Unit Associated Lesson Activity Title Header Algebra, measurement, numbers, and operations Discovering Phi Grade Level 7(6-8) Activity Dependency Time Required

More information

Diffraction and Young s Single Slit Experiment

Diffraction and Young s Single Slit Experiment Diffraction and Young s Single Slit Experiment Developers AB Overby Objectives Preparation Background The objectives of this experiment are to observe Fraunhofer, or far-field, diffraction through a single

More information

b. In Laser View - click on wave. Pose an explanation that explains why the light bends when it enters the water.

b. In Laser View - click on wave. Pose an explanation that explains why the light bends when it enters the water. Sierzega/Ferri: Optics 5 Observation Experiments: Light Bending Go to: http://phet.colorado.edu/en/simulation /bending-light You have a laser beam (press the button to turn it on!) that is shining from

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System

More information

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Three-surface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus

More information

Reflection Lesson Plan

Reflection Lesson Plan Lauren Beal Seventh Grade Science AMY-Northwest Middle School Three Days May 2006 (45 minute lessons) 1. GUIDING INFORMATION: Reflection Lesson Plan a. Student and Classroom Characteristics These lessons

More information

Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.

Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away. Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light 1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton

More information

Calculate Gravitational Acceleration

Calculate Gravitational Acceleration Calculate Gravitational Acceleration Subject Areas Associated Unit Associated Lesson Activity Title Header Algebra, measurement, physics, science and technology Calculate Gravitational Acceleration Insert

More information

Study Guide for Exam on Light

Study Guide for Exam on Light Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used

More information

To explain the basics of how lasers work and let visitors experiment with laser properties.

To explain the basics of how lasers work and let visitors experiment with laser properties. Laser Lights Activity Goal To explain the basics of how lasers work and let visitors experiment with laser properties. NGSS Domain(s) PS1.A Structure of Matter PS3.B Definitions of Energy PS4.A Wave Properties

More information

Digital Versus Analog Lesson 2 of 2

Digital Versus Analog Lesson 2 of 2 Digital Versus Analog Lesson 2 of 2 HDTV Grade Level: 9-12 Subject(s): Science, Technology Prep Time: < 10 minutes Activity Duration: 50 minutes Materials Category: General classroom National Education

More information

Overview of Optical Recording Technology- Current Status and Near Term Projections

Overview of Optical Recording Technology- Current Status and Near Term Projections Overview of Optical Recording Technology- Current Status and Near Term Projections Koichi Sadashige Sadashige Associates 15 Amherst Rd, Voorhees NJ 08043-4901 Phone: +1-856-767-2644, FAX: +1-856-767-1462

More information

CSCA0102 IT & Business Applications. Foundation in Business Information Technology School of Engineering & Computing Sciences FTMS College Global

CSCA0102 IT & Business Applications. Foundation in Business Information Technology School of Engineering & Computing Sciences FTMS College Global CSCA0102 IT & Business Applications Foundation in Business Information Technology School of Engineering & Computing Sciences FTMS College Global Chapter 2 Data Storage Concepts System Unit The system unit

More information

Using the Spectrophotometer

Using the Spectrophotometer Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to

More information

Light Energy. Countdown: Experiment 1: 1 tomato paste can (without top or bottom) table lamp white poster board, 7 x 9

Light Energy. Countdown: Experiment 1: 1 tomato paste can (without top or bottom) table lamp white poster board, 7 x 9 Light Energy Grade Level: 5 Time Required: 1-2 class periods Suggested TEKS: Science - 5.8 Suggested SCANS: Information. Acquires and evaluates information. National Science and Math Standards Science

More information

LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003.

LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. STANDARDS: Students know an object is seen when light traveling from an object enters our eye. Students will differentiate

More information

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm? Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through

More information

A Guide to Acousto-Optic Modulators

A Guide to Acousto-Optic Modulators A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam

More information

Fraunhofer Diffraction

Fraunhofer Diffraction Physics 334 Spring 1 Purpose Fraunhofer Diffraction The experiment will test the theory of Fraunhofer diffraction at a single slit by comparing a careful measurement of the angular dependence of intensity

More information

Measuring index of refraction

Measuring index of refraction Grzegorz F. Wojewoda Zespół Szkół Ogólnokształcących nr 1 Bydgoszcz, Poland Logo designed by Armella Leung, www.armella.fr.to Translation: Małgorzata Czart Measuring index of refraction The advent of low-cost

More information

This lesson can be adapted to the grade level by the presenter. Decide the level of content and activities as appropriate.

This lesson can be adapted to the grade level by the presenter. Decide the level of content and activities as appropriate. Binary Coding Preparation Grade Level: K-5 Group Size: 20-30 Time: 50 Minutes Presenters: 1-3 This lesson can be adapted to the grade level by the presenter. Decide the level of content and activities

More information

Refraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface.

Refraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface. Refraction of Light at a Plane Surface Object: To study the refraction of light from water into air, at a plane surface. Apparatus: Refraction tank, 6.3 V power supply. Theory: The travel of light waves

More information

Which month has larger and smaller day time?

Which month has larger and smaller day time? ACTIVITY-1 Which month has larger and smaller day time? Problem: Which month has larger and smaller day time? Aim: Finding out which month has larger and smaller duration of day in the Year 2006. Format

More information

Solution Derivations for Capa #14

Solution Derivations for Capa #14 Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from

More information

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control

More information

Holography 1 HOLOGRAPHY

Holography 1 HOLOGRAPHY Holography 1 HOLOGRAPHY Introduction and Background The aesthetic appeal and commercial usefulness of holography are both related to the ability of a hologram to store a three-dimensional image. Unlike

More information

Color and Light. DELTA SCIENCE READER Overview... 125 Before Reading... 126 Guide the Reading... 127 After Reading... 133

Color and Light. DELTA SCIENCE READER Overview... 125 Before Reading... 126 Guide the Reading... 127 After Reading... 133 Color and Light T ABLE OF CONTENTS ABOUT DELTA SCIENCE MODULES Program Introduction................... iii Teacher s Guide..................... iv Delta Science Readers............... vi Equipment and

More information

Digital Image Formation. Storage Technology

Digital Image Formation. Storage Technology Digital Image Formation Storage Technology Storage Technology Quiz Name one type of data storage?! Storage Technology Data Storage Device is a device for recording (storing) information (data).!! Recording

More information

measurement, number & operations, reasoning & proof, and science & technology

measurement, number & operations, reasoning & proof, and science & technology Pi What is it? Subject Area(s) Associated Unit Associated Lesson Activity Title measurement, number & operations, reasoning & proof, and science & technology None None Let s Take a Slice of Pi Header Insert

More information

Alignement of a ring cavity laser

Alignement of a ring cavity laser Alignement of a ring cavity laser 1 Introduction This manual describes a procedure to align the cavity of our Ti:Sapphire ring laser and its injection with an Argon-Ion pump laser beam. The setup is shown

More information

Lecture 12: Cameras and Geometry. CAP 5415 Fall 2010

Lecture 12: Cameras and Geometry. CAP 5415 Fall 2010 Lecture 12: Cameras and Geometry CAP 5415 Fall 2010 The midterm What does the response of a derivative filter tell me about whether there is an edge or not? Things aren't working Did you look at the filters?

More information

Reflection and Refraction

Reflection and Refraction Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

More information

Review Vocabulary spectrum: a range of values or properties

Review Vocabulary spectrum: a range of values or properties Standards 7.3.19: Explain that human eyes respond to a narrow range of wavelengths of the electromagnetic spectrum. 7.3.20: Describe that something can be seen when light waves emitted or reflected by

More information

Waves Sound and Light

Waves Sound and Light Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

More information

Polarization of Light

Polarization of Light Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights

More information

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189-196 Optics Bench a) For convenience of discussion we assume that the light

More information

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent

More information

Chapter 8 Memory Units

Chapter 8 Memory Units Chapter 8 Memory Units Contents: I. Introduction Basic units of Measurement II. RAM,ROM,PROM,EPROM Storage versus Memory III. Auxiliary Storage Devices-Magnetic Tape, Hard Disk, Floppy Disk IV.Optical

More information

FIFTH GRADE WORKBOOK

FIFTH GRADE WORKBOOK FIFTH GRADE WORKBOOK students Math/Science Nucleus 1990,2001 APPLIED SCIENCE - SCIENCE AND MATH (5A) PROBLEM: Can you learn how to estimate? PREDICTION: MATERIALS: 3 containers filled with items given

More information

Using light scattering method to find The surface tension of water

Using light scattering method to find The surface tension of water Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector

More information

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves Name: Teacher: Pd. Date: STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves TEK 8.8C: Explore how different wavelengths of the electromagnetic spectrum such as light and radio waves are used to

More information

The Fibonacci Sequence

The Fibonacci Sequence The Fibonacci Sequence Subject Area(s) Associated Unit Associated Lesson Activity Title Header Algebra, Problem Solving, Science & Technology Fibonacci s Robots Grade Level 7 (6-8) Activity Dependency

More information

Chapter 17: Light and Image Formation

Chapter 17: Light and Image Formation Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the

More information

Today we will learn about:

Today we will learn about: Storage Devices Today we will learn about: Storage Devices Ancient technology (from my days as a student) Floppies CD_ROM, DVDs Hard drives Magnetic tape Storage versus Memory Memory holds data, programs

More information

Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )

Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) 1 of 13 2/17/2016 5:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,

More information

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours) INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as

More information

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to : PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

More information

Lab 9: The Acousto-Optic Effect

Lab 9: The Acousto-Optic Effect Lab 9: The Acousto-Optic Effect Incoming Laser Beam Travelling Acoustic Wave (longitudinal wave) O A 1st order diffracted laser beam A 1 Introduction qb d O 2qb rarefractions compressions Refer to Appendix

More information

Optical Storage Technology. Optical Disc Storage

Optical Storage Technology. Optical Disc Storage Optical Storage Technology Optical Disc Storage Introduction Since the early 1940s, magnetic recording has been the mainstay of electronic information storage worldwide. Magnetic tape has been used extensively

More information

COMPACT DISK STANDARDS & SPECIFICATIONS

COMPACT DISK STANDARDS & SPECIFICATIONS COMPACT DISK STANDARDS & SPECIFICATIONS History: At the end of 1982, the Compact Disc Digital Audio (CD-DA) was introduced. This optical disc digitally stores audio data in high quality stereo. The CD-DA

More information

A Fishy Tale. Observing the Circulatory System of a Goldfish with a Compound Light Microscope

A Fishy Tale. Observing the Circulatory System of a Goldfish with a Compound Light Microscope A Fishy Tale Observing the Circulatory System of a Goldfish with a Compound Light Microscope A Fishy Tale About this Lesson In this lesson, students will explore a computer animation of the human body

More information

Drexel-SDP GK-12 ACTIVITY

Drexel-SDP GK-12 ACTIVITY Toothpick Bridges Subject Area(s): Math, Physics, Engineering Associated Unit: None Grade Level 6 (6-10) Activity Dependency: None Drexel-SDP GK-12 ACTIVITY Time Required: 65-165 minutes (Note: 1 30 minute

More information

Name Class Date Laboratory Investigation 4B Chapter 4: Cell Structure

Name Class Date Laboratory Investigation 4B Chapter 4: Cell Structure Name Class Date Laboratory Investigation 4B Chapter 4: Cell Structure The Microscope: A Tool of the Scientist You may refer to pages 66-67, 72-73 in your textbook for a general discussion of microscopes.

More information

Potential vs. Kinetic Energy

Potential vs. Kinetic Energy Potential vs. Kinetic Energy Subject Area(s) Associated Unit Associated Lesson Activity Title measurement, number & operations, reasoning & proof, and science & technology None None Is it Potential or

More information

1 Laboratory #5: Grating Spectrometer

1 Laboratory #5: Grating Spectrometer SIMG-215-20061: LABORATORY #5 1 Laboratory #5: Grating Spectrometer 1.1 Objective: To observe and measure the spectra of different light sources. 1.2 Materials: 1. OSA optics kit. 2. Nikon digital camera

More information

Animal Colors and Shapes Teacher s Guide

Animal Colors and Shapes Teacher s Guide Teacher s Guide Grade Level: K 2 Curriculum Focus: Math, Science Lesson Duration: 1 2 class periods Program Description Animals come in all colors, shapes, and sizes. Learn about the shapes animals have

More information

Diffraction of a Circular Aperture

Diffraction of a Circular Aperture Diffraction of a Circular Aperture Diffraction can be understood by considering the wave nature of light. Huygen's principle, illustrated in the image below, states that each point on a propagating wavefront

More information

1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002

1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical

More information

A concise guide to Safety Glasses, the different standards and the effects of light on the eye. Contents. Links. Year of publication: 2010

A concise guide to Safety Glasses, the different standards and the effects of light on the eye. Contents. Links. Year of publication: 2010 A concise guide to Safety Glasses, the different standards and the effects of light on the eye Year of publication: 2010 Produced by the leading supplier of Safety Glasses in the UK. All Rights Reserved.

More information

Physics 116. Nov 4, 2011. Session 22 Review: ray optics. R. J. Wilkes Email: ph116@u.washington.edu

Physics 116. Nov 4, 2011. Session 22 Review: ray optics. R. J. Wilkes Email: ph116@u.washington.edu Physics 116 Session 22 Review: ray optics Nov 4, 2011 R. J. Wilkes Email: ph116@u.washington.edu ! Exam 2 is Monday!! All multiple choice, similar to HW problems, same format as Exam 1!!! Announcements

More information

Count the Dots Binary Numbers

Count the Dots Binary Numbers Activity 1 Count the Dots Binary Numbers Summary Data in computers is stored and transmitted as a series of zeros and ones. How can we represent words and numbers using just these two symbols? Curriculum

More information

Bay Area Scientists in Schools Presentation Plan

Bay Area Scientists in Schools Presentation Plan Bay Area Scientists in Schools Presentation Plan Lesson Name Presenter(s) Grade Level Sound and Music EE Outreach @ Berkeley K 5 with CA standards connection at 2 nd and NGSS 1 st and 4 th Standards Connection(s):

More information

Tech Application Chapter 3 STUDY GUIDE

Tech Application Chapter 3 STUDY GUIDE Name: Class: Date: Tech Application Chapter 3 STUDY GUIDE Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. This type of device retains data

More information

Lumens & Solar Energy Voltage

Lumens & Solar Energy Voltage Drexel-SDP GK-12 ACTIVITY Lumens & Solar Energy Voltage Subject Area(s) Associated Unit Associated Lesson Earth & Space Activity Title Discover The Relationship Between Lumens and Solar Generated Voltage

More information

Plotting Earthquake Epicenters an activity for seismic discovery

Plotting Earthquake Epicenters an activity for seismic discovery Plotting Earthquake Epicenters an activity for seismic discovery Tammy K Bravo Anne M Ortiz Plotting Activity adapted from: Larry Braile and Sheryl Braile Department of Earth and Atmospheric Sciences Purdue

More information

I. ABSTRACT II. III. IV.

I. ABSTRACT II. III. IV. Teaching About Magnets in Kindergarten Grade Level or Special Area: Kindergarten Written by: Lori Dawn Montanez, Swallows Charter Academy, Pueblo West, CO Length of Unit: Five lessons (approximately two

More information

Experiment #2: Determining Sugar Content of a Drink. Objective. Introduction

Experiment #2: Determining Sugar Content of a Drink. Objective. Introduction Experiment #2: Determining Sugar Content of a Drink Objective How much sugar is there in your drink? In this experiment, you will measure the amount of sugar dissolved in a soft drink by using two different

More information

Tuesday 20 May 2014 Morning

Tuesday 20 May 2014 Morning Tuesday 20 May 2014 Morning AS GCE PHYSICS B (ADVANCING PHYSICS) G491/01 Physics in Action *1203458796* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae and Relationships

More information

TEACHER S GUIDE TO RUSH HOUR

TEACHER S GUIDE TO RUSH HOUR Using Puzzles to Teach Problem Solving TEACHER S GUIDE TO RUSH HOUR Includes Rush Hour 2, 3, 4, Rush Hour Jr., Railroad Rush Hour and Safari Rush Hour BENEFITS Rush Hour is a sliding piece puzzle that

More information

Lesson 26: Reflection & Mirror Diagrams

Lesson 26: Reflection & Mirror Diagrams Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect

More information

GETTING CURRENT: Generating Electricity Using a Magnet

GETTING CURRENT: Generating Electricity Using a Magnet GETTING CURRENT: Generating Electricity Using a Magnet PLANNING OVERVIEW SUBJECT AREAS: Physical Science, Math, Language Arts TIMING: Preparation: 30 minutes Activity: 1-2 45-minute class periods Summary

More information

William Stallings Computer Organization and Architecture 7 th Edition. Chapter 6 External Memory

William Stallings Computer Organization and Architecture 7 th Edition. Chapter 6 External Memory William Stallings Computer Organization and Architecture 7 th Edition Chapter 6 External Memory Types of External Memory Magnetic Disk RAID Removable Optical CD-ROM CD-Recordable (CD-R) CD-R/W DVD Magnetic

More information

Chapter 3: Computer Hardware Components: CPU, Memory, and I/O

Chapter 3: Computer Hardware Components: CPU, Memory, and I/O Chapter 3: Computer Hardware Components: CPU, Memory, and I/O What is the typical configuration of a computer sold today? The Computer Continuum 1-1 Computer Hardware Components In this chapter: How did

More information

Chapter 7 Types of Storage. Discovering Computers 2012. Your Interactive Guide to the Digital World

Chapter 7 Types of Storage. Discovering Computers 2012. Your Interactive Guide to the Digital World Chapter 7 Types of Storage Discovering Computers 2012 Your Interactive Guide to the Digital World Objectives Overview Differentiate between storage devices and storage media Describe the characteristics

More information

Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset.

Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset. Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning:! How does your eye form an image?! How do we record images? How does your eye form an image?

More information

2002 Worcester Public Schools (WPS) Benchmarks for Grade 3 1. 03.SC.TE.05 Develop a knowledge and understanding of the metric measurement system.

2002 Worcester Public Schools (WPS) Benchmarks for Grade 3 1. 03.SC.TE.05 Develop a knowledge and understanding of the metric measurement system. 3.G.2 What is a Centimeter? An introduction to measuring length in the metric system Grade Level 3 Sessions Seasonality Instructional Mode(s) Team Size WPS Benchmarks MA Frameworks Key Words (1): 1 at

More information

INTERFERENCE OBJECTIVES PRE-LECTURE. Aims

INTERFERENCE OBJECTIVES PRE-LECTURE. Aims 53 L4 INTERFERENCE Aims OBJECTIVES When you have finished this chapter you should understand how the wave model of light can be used to explain the phenomenon of interference. You should be able to describe

More information

Physics 25 Exam 3 November 3, 2009

Physics 25 Exam 3 November 3, 2009 1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

More information

Discovering Math: Exploring Geometry Teacher s Guide

Discovering Math: Exploring Geometry Teacher s Guide Teacher s Guide Grade Level: 6 8 Curriculum Focus: Mathematics Lesson Duration: Three class periods Program Description Discovering Math: Exploring Geometry From methods of geometric construction and threedimensional

More information

Base Conversion written by Cathy Saxton

Base Conversion written by Cathy Saxton Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,

More information

Reflectance Measurements of Materials Used in the Solar Industry. Selecting the Appropriate Accessories for UV/Vis/NIR Measurements.

Reflectance Measurements of Materials Used in the Solar Industry. Selecting the Appropriate Accessories for UV/Vis/NIR Measurements. T e c h n i c a l N o t e Reflectance Measurements of Materials Used in the Solar Industry UV/Vis/NIR Author: Dr. Jeffrey L. Taylor PerkinElmer, Inc. 710 Bridgeport Avenue Shelton, CT 06484 USA Selecting

More information

Primary Memory. Input Units CPU (Central Processing Unit)

Primary Memory. Input Units CPU (Central Processing Unit) Basic Concepts of Computer Hardware Primary Memory Input Units CPU (Central Processing Unit) Output Units This model of the typical digital computer is often called the von Neuman compute Programs and

More information

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance Your name Lab section 1. What do you investigate in this lab? 2. Two straight wires are in parallel and carry electric currents in opposite directions

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

BD-R 25GB BD-R 50GB. Write-once Blu-ray Disc. Write-once Blu-ray Disc. BD-RE 25GB Blu-Ray BD-RE 50GB

BD-R 25GB BD-R 50GB. Write-once Blu-ray Disc. Write-once Blu-ray Disc. BD-RE 25GB Blu-Ray BD-RE 50GB BD-R 25GB Write-once Blu-ray Disc. BD-R 50GB Write-once Blu-ray Disc. DURABIS2 hard coating DURABIS2 hard coating. BD-RE 25GB Blu-Ray Rewritable Blu-ray Disc. Phase change recording layer guarantees 10.000

More information