# quicksort (normally) faster than mergesort and heapsort runtime heapsort is another O(n log n)

Save this PDF as:

Size: px
Start display at page:

Download "quicksort (normally) faster than mergesort and heapsort runtime heapsort is another O(n log n)"

## Transcription

1 , etc 3/25

2 (normally) faster than mergesort and heapsort heapsort is another O(n log n) runtime like shell sort, depends somewhat on part of the algorithm n log n on most data

3 the idea: pick some element p (the pivot) split the array into two halves: < p > p move p into place sort the left and right sub-parts

4 partitioning (splitting array into small and big numbers) iterate: find leftmost element greater than pivot find rightmost element less than pivot swap them stop when the indices cross

5 red = pivot green = left partition blue = right partition Step 1: pick pivot

6 red = pivot green = left partition blue = right partition example: pick last element Step 2: find leftmost element greater than (or equal to) pivot

7 red = pivot green = left partition blue = right partition Step 2: find leftmost element greater than (or equal to) pivot

8 red = pivot green = left partition blue = right partition Step 2: find leftmost element greater than (or equal to) pivot

9 red = pivot green = left partition blue = right partition Step 2: find leftmost element greater than (or equal to) pivot found it!

10 red = pivot green = left partition blue = right partition Step 3: find rightmost element less than (or equal to) pivot

11 red = pivot green = left partition blue = right partition Step 3: find rightmost element less than (or equal to) pivot

12 red = pivot green = left partition blue = right partition Step 3: find rightmost element less than (or equal to) pivot found it!

13 red = pivot green = left partition blue = right partition Step 4: swap the elements we found Keep iterating with steps 2/3/4

14 red = pivot green = left partition blue = right partition partitioning stops when left/ right index variable cross or equal each other

15 red = pivot green = left partition blue = right partition swap pivot with end of left partition or start of right partition

16 after partitioning, the pivot is in the place it should be (for the sorted array) this property is important

17 recursively sort the left and right partitions why does this work? our partitioning creates two piles each of those piles becomes two finergrained piles until it s completely sorted!

18 if we split into two evenly-sized partitions: complexity? O(n log n) what s the most unbalanced the partitions can be? does this affect the complexity? recurrence relation?

19 speed depends on how we pick the pivot the actual data

20 picking the pivot first (or last) element (last shown in example) what happens on pre-sorted or reversesorted data? we re picking the min or max one partition is empty every time O(n 2 )

21 picking the pivot middle element swap it to the end after picking it swap back later O(1) extra work, but makes the code easier how well will this work on presorted or reversed?

22 is quicksort O(n2 ) when picking middle element? yes, though it s rare how about a random element? still O(n 2 ), but can provide a probability for how unlikely it is

23 what s the ideal pivot? the median can we find the median in O(n)? why do we need to find it in O(n) or better? yes, but it s complicated and slow normal methods involve sorting

24 can we do better than middle element? median of some fixed number of elements median of three (first, mid, last) how to compute median of three? manual insertion sort or tree of if/then

25 median of three only O(1) extra work (because 3 is constant) if N is large, it s negligible, but provides better partitioning if N is small, the extra work may not be worth it what happens when we do mo3 for N=3?

26 median of three pros closer to true median than others don t need to check first/last for partitioning first serves as a sentinel (can remove loop condition) cons need special case for small arrays

27 picking pivots can we do better? depends... whatever we try must be O(n) though or else no chance of O(n log n) for the sort

28 picking pivots Tukey s ninther do three different median-of-threes take median of the medians setting it up to get a sentinel value in the first element can be challenging

29 picking pivots could insertion sort sqrt(n) data or shell sort, or merge sort, etc etc common idea: running O(n 2 ) algorithm on sqrt(n) data is O(n) overall

30 iterative version manually maintain a stack (can use vector<int>) push the left/right on, pop them off like a stack of work orders this is akin to implementing the function calls in assembly

31 small arrays can use insertion sort for small arrays just like with mergesort main difference: quicksort processes, then recurses can do a single insertion sort call after the entire tree of quicksort recursion ends usually faster than millions of insertion sort calls

32 small arrays can use insertion sort for small arrays we may want to modify the first-pass findmin if we re doing a single insertion sort call after also, beware that quicksort can be broken and it ll still sort but it ll be O(n 2 )

33 random data N = 10m 20m Shell (SW) 6-7s 13-14s Merge (alt, small cutoff) Quicksort (basic) Quicksort (mo3, small cut) 4s 8-9s 4s 8-9s 3s 7s

34 pre-sorted data N = 10m 20m Shell (SW) 1s 3s Merge (alt, small cutoff) Quicksort (basic) Quicksort (mo3, small cut) 1s 2-3s 1-2s 2s 1s 2s

35 notes quicksort optimizations interact with -O3 a little can have a different pivot selection for large vs medium vs small arrays med-of-3 is relatively less costly for larger quicksort performs especially well for reversed arrays - why?

36 future directions midterm Q&A sorting specialty sorts: bucket sort, radix sort searching - linear, binary, interpolated trees and graphs and hashtables!

### Merge Sort. 2004 Goodrich, Tamassia. Merge Sort 1

Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Merge Sort 1 Divide-and-Conquer Divide-and conquer is a general algorithm design paradigm: Divide: divide the input data S in two disjoint subsets

### Sorting revisited. Build the binary search tree: O(n^2) Traverse the binary tree: O(n) Total: O(n^2) + O(n) = O(n^2)

Sorting revisited How did we use a binary search tree to sort an array of elements? Tree Sort Algorithm Given: An array of elements to sort 1. Build a binary search tree out of the elements 2. Traverse

### Binary Search. Search for x in a sorted array A.

Divide and Conquer A general paradigm for algorithm design; inspired by emperors and colonizers. Three-step process: 1. Divide the problem into smaller problems. 2. Conquer by solving these problems. 3.

### Binary Heaps * * * * * * * / / \ / \ / \ / \ / \ * * * * * * * * * * * / / \ / \ / / \ / \ * * * * * * * * * *

Binary Heaps A binary heap is another data structure. It implements a priority queue. Priority Queue has the following operations: isempty add (with priority) remove (highest priority) peek (at highest

### Introduction to Algorithms March 10, 2004 Massachusetts Institute of Technology Professors Erik Demaine and Shafi Goldwasser Quiz 1.

Introduction to Algorithms March 10, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Quiz 1 Quiz 1 Do not open this quiz booklet until you are directed

### Mergesort and Quicksort

Mergesort Mergesort and Quicksort Basic plan: Divide array into two halves. Recursively sort each half. Merge two halves to make sorted whole. mergesort mergesort analysis quicksort quicksort analysis

### 6. Standard Algorithms

6. Standard Algorithms The algorithms we will examine perform Searching and Sorting. 6.1 Searching Algorithms Two algorithms will be studied. These are: 6.1.1. inear Search The inear Search The Binary

### The Tower of Hanoi. Recursion Solution. Recursive Function. Time Complexity. Recursive Thinking. Why Recursion? n! = n* (n-1)!

The Tower of Hanoi Recursion Solution recursion recursion recursion Recursive Thinking: ignore everything but the bottom disk. 1 2 Recursive Function Time Complexity Hanoi (n, src, dest, temp): If (n >

### Sorting Algorithms. Nelson Padua-Perez Bill Pugh. Department of Computer Science University of Maryland, College Park

Sorting Algorithms Nelson Padua-Perez Bill Pugh Department of Computer Science University of Maryland, College Park Overview Comparison sort Bubble sort Selection sort Tree sort Heap sort Quick sort Merge

### Heap. Binary Search Tree. Heaps VS BSTs. < el el. Difference between a heap and a BST:

Heaps VS BSTs Difference between a heap and a BST: Heap el Binary Search Tree el el el < el el Perfectly balanced at all times Immediate access to maximal element Easy to code Does not provide efficient

### Quick Sort. Implementation

Implementation Next, recall that our goal is to partition all remaining elements based on whether they are smaller than or greater than the pivot We will find two entries: One larger than the pivot (staring

### CSC148 Lecture 8. Algorithm Analysis Binary Search Sorting

CSC148 Lecture 8 Algorithm Analysis Binary Search Sorting Algorithm Analysis Recall definition of Big Oh: We say a function f(n) is O(g(n)) if there exists positive constants c,b such that f(n)

### Data Structures and Data Manipulation

Data Structures and Data Manipulation What the Specification Says: Explain how static data structures may be used to implement dynamic data structures; Describe algorithms for the insertion, retrieval

### Divide-and-Conquer Algorithms Part Four

Divide-and-Conquer Algorithms Part Four Announcements Problem Set 2 due right now. Can submit by Monday at 2:15PM using one late period. Problem Set 3 out, due July 22. Play around with divide-and-conquer

### Questions 1 through 25 are worth 2 points each. Choose one best answer for each.

Questions 1 through 25 are worth 2 points each. Choose one best answer for each. 1. For the singly linked list implementation of the queue, where are the enqueues and dequeues performed? c a. Enqueue in

Divide and Conquer Paradigm Melissa Manley California State University Northridge Author s address: 18111 Nordhoff Street, Northridge, CA, 91330 Permission to make digital/hard copy of all or part of this

### DATA STRUCTURES USING C

DATA STRUCTURES USING C QUESTION BANK UNIT I 1. Define data. 2. Define Entity. 3. Define information. 4. Define Array. 5. Define data structure. 6. Give any two applications of data structures. 7. Give

### Converting a Number from Decimal to Binary

Converting a Number from Decimal to Binary Convert nonnegative integer in decimal format (base 10) into equivalent binary number (base 2) Rightmost bit of x Remainder of x after division by two Recursive

### Krishna Institute of Engineering & Technology, Ghaziabad Department of Computer Application MCA-213 : DATA STRUCTURES USING C

Tutorial#1 Q 1:- Explain the terms data, elementary item, entity, primary key, domain, attribute and information? Also give examples in support of your answer? Q 2:- What is a Data Type? Differentiate

### Closest Pair Problem

Closest Pair Problem Given n points in d-dimensions, find two whose mutual distance is smallest. Fundamental problem in many applications as well as a key step in many algorithms. p q A naive algorithm

### Biostatistics 615/815

Merge Sort Biostatistics 615/815 Lecture 8 Notes on Problem Set 2 Union Find algorithms Dynamic Programming Results were very ypositive! You should be gradually becoming g y g comfortable compiling, debugging

### Data Structures. Level 6 C30151. www.fetac.ie. Module Descriptor

The Further Education and Training Awards Council (FETAC) was set up as a statutory body on 11 June 2001 by the Minister for Education and Science. Under the Qualifications (Education & Training) Act,

### Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees. Binary Search Trees. Lecturer: Georgy Gimel farb

Binary Search Trees Lecturer: Georgy Gimel farb COMPSCI 220 Algorithms and Data Structures 1 / 27 1 Properties of Binary Search Trees 2 Basic BST operations The worst-case time complexity of BST operations

### 8.2 Quicksort. 332 Chapter 8. Sorting

332 Chapter 8. Sorting For randomly ordered data, the operations count goes approximately as N 1.25,at least for N50, however, Quicksort is generally faster. The program follows: void shell(unsigned

### CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.

Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure

### Algorithms. Margaret M. Fleck. 18 October 2010

Algorithms Margaret M. Fleck 18 October 2010 These notes cover how to analyze the running time of algorithms (sections 3.1, 3.3, 4.4, and 7.1 of Rosen). 1 Introduction The main reason for studying big-o

### APP INVENTOR. Test Review

APP INVENTOR Test Review Main Concepts App Inventor Lists Creating Random Numbers Variables Searching and Sorting Data Linear Search Binary Search Selection Sort Quick Sort Abstraction Modulus Division

### 1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++

Answer the following 1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++ 2) Which data structure is needed to convert infix notations to postfix notations? Stack 3) The

### Exam study sheet for CS2711. List of topics

Exam study sheet for CS2711 Here is the list of topics you need to know for the final exam. For each data structure listed below, make sure you can do the following: 1. Give an example of this data structure

### External Sorting. Chapter 13. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

External Sorting Chapter 13 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Why Sort? A classic problem in computer science! Data requested in sorted order e.g., find students in increasing

### Quicksort is a divide-and-conquer sorting algorithm in which division is dynamically carried out (as opposed to static division in Mergesort).

Chapter 7: Quicksort Quicksort is a divide-and-conquer sorting algorithm in which division is dynamically carried out (as opposed to static division in Mergesort). The three steps of Quicksort are as follows:

### Class Overview. CSE 326: Data Structures. Goals. Goals. Data Structures. Goals. Introduction

Class Overview CSE 326: Data Structures Introduction Introduction to many of the basic data structures used in computer software Understand the data structures Analyze the algorithms that use them Know

### CS473 - Algorithms I

CS473 - Algorithms I Lecture 9 Sorting in Linear Time View in slide-show mode 1 How Fast Can We Sort? The algorithms we have seen so far: Based on comparison of elements We only care about the relative

### External Sorting. Why Sort? 2-Way Sort: Requires 3 Buffers. Chapter 13

External Sorting Chapter 13 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Why Sort? A classic problem in computer science! Data requested in sorted order e.g., find students in increasing

### Analysis of Binary Search algorithm and Selection Sort algorithm

Analysis of Binary Search algorithm and Selection Sort algorithm In this section we shall take up two representative problems in computer science, work out the algorithms based on the best strategy to

### 6 March 2007 1. Array Implementation of Binary Trees

Heaps CSE 0 Winter 00 March 00 1 Array Implementation of Binary Trees Each node v is stored at index i defined as follows: If v is the root, i = 1 The left child of v is in position i The right child of

### Analysis of Algorithms I: Binary Search Trees

Analysis of Algorithms I: Binary Search Trees Xi Chen Columbia University Hash table: A data structure that maintains a subset of keys from a universe set U = {0, 1,..., p 1} and supports all three dictionary

### Zabin Visram Room CS115 CS126 Searching. Binary Search

Zabin Visram Room CS115 CS126 Searching Binary Search Binary Search Sequential search is not efficient for large lists as it searches half the list, on average Another search algorithm Binary search Very

### 1 2-3 Trees: The Basics

CS10: Data Structures and Object-Oriented Design (Fall 2013) November 1, 2013: 2-3 Trees: Inserting and Deleting Scribes: CS 10 Teaching Team Lecture Summary In this class, we investigated 2-3 Trees in

### Algorithm Analysis [2]: if-else statements, recursive algorithms. COSC 2011, Winter 2004, Section N Instructor: N. Vlajic

1 Algorithm Analysis []: if-else statements, recursive algorithms COSC 011, Winter 004, Section N Instructor: N. Vlajic Algorithm Analysis for-loop Running Time The running time of a simple loop for (int

### Rethinking SIMD Vectorization for In-Memory Databases

SIGMOD 215, Melbourne, Victoria, Australia Rethinking SIMD Vectorization for In-Memory Databases Orestis Polychroniou Columbia University Arun Raghavan Oracle Labs Kenneth A. Ross Columbia University Latest

### Binary Heaps. CSE 373 Data Structures

Binary Heaps CSE Data Structures Readings Chapter Section. Binary Heaps BST implementation of a Priority Queue Worst case (degenerate tree) FindMin, DeleteMin and Insert (k) are all O(n) Best case (completely

### Today s Outline. Exercise. Binary Search Analysis. Linear Search Analysis. Asymptotic Analysis. Analyzing Code. Announcements. Asymptotic Analysis

Today s Outline Announcements Assignment #1 due Thurs, Oct 7 at 11:45pm Asymptotic Analysis Asymptotic Analysis CSE 7 Data Structures & Algorithms Ruth Anderson Autumn 2010 Exercise Analyzing Code bool

### Intro. to the Divide-and-Conquer Strategy via Merge Sort CMPSC 465 CLRS Sections 2.3, Intro. to and various parts of Chapter 4

Intro. to the Divide-and-Conquer Strategy via Merge Sort CMPSC 465 CLRS Sections 2.3, Intro. to and various parts of Chapter 4 I. Algorithm Design and Divide-and-Conquer There are various strategies we

### UNIT 5C Merge Sort. Course Announcements

UNIT 5C Merge Sort 1 Course Announcements Exam rooms for Lecture 1, 2:30 3:20 Sections A, B, C, D at Rashid Sections E, F, G at Baker A51 (Giant Eagle Auditorium) Exam rooms for Lecture 2, 3:30 4:20 Sections

### CMPS 102 Solutions to Homework 1

CMPS 0 Solutions to Homework Lindsay Brown, lbrown@soe.ucsc.edu September 9, 005 Problem..- p. 3 For inputs of size n insertion sort runs in 8n steps, while merge sort runs in 64n lg n steps. For which

### Divide and Conquer: Counting Inversions

Divide and Conquer: Counting Inversions Rank Analysis Collaborative filtering matches your preference (books, music, movies, restaurants) with that of others finds people with similar tastes recommends

### Data Structures. Topic #12

Data Structures Topic #12 Today s Agenda Sorting Algorithms insertion sort selection sort exchange sort shell sort radix sort As we learn about each sorting algorithm, we will discuss its efficiency Sorting

### CSE373: Data Structures and Algorithms Lecture 1: Introduction; ADTs; Stacks/Queues. Nicki Dell Spring 2014

CSE373: Data Structures and Algorithms Lecture 1: Introduction; ADTs; Stacks/Queues Nicki Dell Spring 2014 Registration We have 140 students registered and 140+ on the wait list! If you re thinking of

### Binary Search Trees. A Generic Tree. Binary Trees. Nodes in a binary search tree ( B-S-T) are of the form. P parent. Key. Satellite data L R

Binary Search Trees A Generic Tree Nodes in a binary search tree ( B-S-T) are of the form P parent Key A Satellite data L R B C D E F G H I J The B-S-T has a root node which is the only node whose parent

### Searching and Sorting. Searching. Binary Search. Linear Search. k N-1. <= x??? > x. x not in here???

Searching and Sorting It s a fundamental area of CS since the beginning of time. Well understood! ll professional programmers should have a good understanding of it. lso provides good example for discussion

### CS335 Program2: ConvexHulls A Divide-and-Conquer Algorithm 15 points Due: Tues, October 6

CS335 Program2: ConvexHulls A Divide-and-Conquer Algorithm 15 points Due: Tues, October 6 Convex Hulls There is a complex mathematical definition of a convex hull, but the informal definition is sufficient

### Data Structure [Question Bank]

Unit I (Analysis of Algorithms) 1. What are algorithms and how they are useful? 2. Describe the factor on best algorithms depends on? 3. Differentiate: Correct & Incorrect Algorithms? 4. Write short note:

### Outline. Introduction Linear Search. Transpose sequential search Interpolation search Binary search Fibonacci search Other search techniques

Searching (Unit 6) Outline Introduction Linear Search Ordered linear search Unordered linear search Transpose sequential search Interpolation search Binary search Fibonacci search Other search techniques

### Java Software Structures

INTERNATIONAL EDITION Java Software Structures Designing and Using Data Structures FOURTH EDITION John Lewis Joseph Chase This page is intentionally left blank. Java Software Structures,International Edition

### Format of Divide-and-Conquer algorithms:

CS 360: Data Structures and Algorithms Divide-and-Conquer (part 1) Format of Divide-and-Conquer algorithms: Divide: Split the array or list into smaller pieces Conquer: Solve the same problem recursively

### Why Use Binary Trees?

Binary Search Trees Why Use Binary Trees? Searches are an important application. What other searches have we considered? brute force search (with array or linked list) O(N) binarysearch with a pre-sorted

### 1. The memory address of the first element of an array is called A. floor address B. foundation addressc. first address D.

1. The memory address of the first element of an array is called A. floor address B. foundation addressc. first address D. base address 2. The memory address of fifth element of an array can be calculated

### CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team

CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team Lecture Summary In this lecture, we learned about the ADT Priority Queue. A

### Heaps & Priority Queues in the C++ STL 2-3 Trees

Heaps & Priority Queues in the C++ STL 2-3 Trees CS 3 Data Structures and Algorithms Lecture Slides Friday, April 7, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks

### Shortest Path Algorithms

Shortest Path Algorithms Jaehyun Park CS 97SI Stanford University June 29, 2015 Outline Cross Product Convex Hull Problem Sweep Line Algorithm Intersecting Half-planes Notes on Binary/Ternary Search Cross

### AP Computer Science AB Syllabus 1

AP Computer Science AB Syllabus 1 Course Resources Java Software Solutions for AP Computer Science, J. Lewis, W. Loftus, and C. Cocking, First Edition, 2004, Prentice Hall. Video: Sorting Out Sorting,

### Cpt S 223. School of EECS, WSU

Priority Queues (Heaps) 1 Motivation Queues are a standard mechanism for ordering tasks on a first-come, first-served basis However, some tasks may be more important or timely than others (higher priority)

### Binary Heap Algorithms

CS Data Structures and Algorithms Lecture Slides Wednesday, April 5, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks CHAPPELLG@member.ams.org 2005 2009 Glenn G. Chappell

### from Recursion to Iteration

from Recursion to Iteration 1 Quicksort Revisited using arrays partitioning arrays via scan and swap recursive quicksort on arrays 2 converting recursion into iteration an iterative version with a stack

### Introduction to Algorithms. Part 1: Divide and Conquer Sorting and Searching

Introduction to Algorithms Part 1: Divide and Conquer Sorting and Searching 1) Convex Hulls: An Example 2) Divide and Conquer 3) Sorting Revisited 4) Parallel Sorting 5) Finding the Median 6) Books c Wayne

### MAX = 5 Current = 0 'This will declare an array with 5 elements. Inserting a Value onto the Stack (Push) -----------------------------------------

=============================================================================================================================== DATA STRUCTURE PSEUDO-CODE EXAMPLES (c) Mubashir N. Mir - www.mubashirnabi.com

### 1/18/2013. 5.5-year Ph.D. student internships in. Done job hunting recently. Will join Yahoo! Labs soon. Interviewed with

Liangjie Hong Ph.D. Candidate Dept. of Computer Science and Engineering 5.5-year Ph.D. student internships in a local software company (2008, 2 months) Yahoo! Labs (2010, 3 months) Yahoo! Labs (2011, 3

### Sample Questions Csci 1112 A. Bellaachia

Sample Questions Csci 1112 A. Bellaachia Important Series : o S( N) 1 2 N N i N(1 N) / 2 i 1 o Sum of squares: N 2 N( N 1)(2N 1) N i for large N i 1 6 o Sum of exponents: N k 1 k N i for large N and k

### Binary Search Trees. basic implementations randomized BSTs deletion in BSTs

Binary Search Trees basic implementations randomized BSTs deletion in BSTs eferences: Algorithms in Java, Chapter 12 Intro to Programming, Section 4.4 http://www.cs.princeton.edu/introalgsds/43bst 1 Elementary

### Data Structures and Algorithm Analysis (CSC317) Intro/Review of Data Structures Focus on dynamic sets

Data Structures and Algorithm Analysis (CSC317) Intro/Review of Data Structures Focus on dynamic sets We ve been talking a lot about efficiency in computing and run time. But thus far mostly ignoring data

### Decision Trees from large Databases: SLIQ

Decision Trees from large Databases: SLIQ C4.5 often iterates over the training set How often? If the training set does not fit into main memory, swapping makes C4.5 unpractical! SLIQ: Sort the values

### Previous Lectures. B-Trees. External storage. Two types of memory. B-trees. Main principles

B-Trees Algorithms and data structures for external memory as opposed to the main memory B-Trees Previous Lectures Height balanced binary search trees: AVL trees, red-black trees. Multiway search trees:

### Chapter 7. Ch.7 Problem Solving and Algorithms

Chapter 7 Ch.7 Problem Solving and Algorithms QUIZ: Match the steps in Polya s method to the ones in the computer method for problem solving Devise a plan Look back Understand Carry out the plan Analysis

### Analysis of a Search Algorithm

CSE 326 Lecture 4: Lists and Stacks 1. Agfgd 2. Dgsdsfd 3. Hdffdsf 4. Sdfgsfdg 5. Tefsdgass We will review: Analysis: Searching a sorted array (from last time) List ADT: Insert, Delete, Find, First, Kth,

### 28 Closest-Point Problems -------------------------------------------------------------------

28 Closest-Point Problems ------------------------------------------------------------------- Geometric problems involving points on the plane usually involve implicit or explicit treatment of distances

### Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally

Recurrence Relations Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally modeled by recurrence relations. A recurrence relation is an equation which

### PES Institute of Technology-BSC QUESTION BANK

PES Institute of Technology-BSC Faculty: Mrs. R.Bharathi CS35: Data Structures Using C QUESTION BANK UNIT I -BASIC CONCEPTS 1. What is an ADT? Briefly explain the categories that classify the functions

### 1/1 7/4 2/2 12/7 10/30 12/25

Binary Heaps A binary heap is dened to be a binary tree with a key in each node such that: 1. All leaves are on, at most, two adjacent levels. 2. All leaves on the lowest level occur to the left, and all

### Knowledge of searching using linear search. around 15 minutes, can be used within a longer workshop activity

20 Questions Age group: Abilities assumed: Time: Size of group: adult Knowledge of searching using linear search around 5 minutes, can be used within a longer workshop activity anything from 2 to hundreds

### Symbol Tables. Introduction

Symbol Tables Introduction A compiler needs to collect and use information about the names appearing in the source program. This information is entered into a data structure called a symbol table. The

### Algorithms and Data Structures

Algorithms and Data Structures Part 2: Data Structures PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering (CiE) Summer Term 2016 Overview general linked lists stacks queues trees 2 2

### Introduction to Programming System Design. CSCI 455x (4 Units)

Introduction to Programming System Design CSCI 455x (4 Units) Description This course covers programming in Java and C++. Topics include review of basic programming concepts such as control structures,

### 12 Abstract Data Types

12 Abstract Data Types 12.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Define the concept of an abstract data type (ADT).

### Divide and Conquer. Textbook Reading Chapters 4, 7 & 33.4

Divide d Conquer Textook Reading Chapters 4, 7 & 33.4 Overview Design principle Divide d conquer Proof technique Induction, induction, induction Analysis technique Recurrence relations Prolems Sorting

### Chapter 13: Query Processing. Basic Steps in Query Processing

Chapter 13: Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 13.1 Basic Steps in Query Processing 1. Parsing

### Data Structures and Algorithms Stacks and Queues

Data Structures and Algorithms Stacks and Queues Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/23 6-0: Stacks and

### A binary search tree or BST is a binary tree that is either empty or in which the data element of each node has a key, and:

Binary Search Trees 1 The general binary tree shown in the previous chapter is not terribly useful in practice. The chief use of binary trees is for providing rapid access to data (indexing, if you will)

### recursion, O(n), linked lists 6/14

recursion, O(n), linked lists 6/14 recursion reducing the amount of data to process and processing a smaller amount of data example: process one item in a list, recursively process the rest of the list

### Persistent Binary Search Trees

Persistent Binary Search Trees Datastructures, UvA. May 30, 2008 0440949, Andreas van Cranenburgh Abstract A persistent binary tree allows access to all previous versions of the tree. This paper presents

### 10CS35: Data Structures Using C

CS35: Data Structures Using C QUESTION BANK REVIEW OF STRUCTURES AND POINTERS, INTRODUCTION TO SPECIAL FEATURES OF C OBJECTIVE: Learn : Usage of structures, unions - a conventional tool for handling a

### recursion here it is in C++ power function cis15 advanced programming techniques, using c++ fall 2007 lecture # VI.1

topics: recursion searching cis15 advanced programming techniques, using c++ fall 2007 lecture # VI.1 recursion recursion is defining something in terms of itself there are many examples in nature and

### To My Parents -Laxmi and Modaiah. To My Family Members. To My Friends. To IIT Bombay. To All Hard Workers

To My Parents -Laxmi and Modaiah To My Family Members To My Friends To IIT Bombay To All Hard Workers Copyright 2010 by CareerMonk.com All rights reserved. Designed by Narasimha Karumanchi Printed in

### Binary search algorithm

Binary search algorithm Definition Search a sorted array by repeatedly dividing the search interval in half. Begin with an interval covering the whole array. If the value of the search key is less than

### AS-2261 M.Sc.(First Semester) Examination-2013 Paper -fourth Subject-Data structure with algorithm

AS-2261 M.Sc.(First Semester) Examination-2013 Paper -fourth Subject-Data structure with algorithm Time: Three Hours] [Maximum Marks: 60 Note Attempts all the questions. All carry equal marks Section A

### CSE 326: Data Structures B-Trees and B+ Trees

Announcements (4//08) CSE 26: Data Structures B-Trees and B+ Trees Brian Curless Spring 2008 Midterm on Friday Special office hour: 4:-5: Thursday in Jaech Gallery (6 th floor of CSE building) This is

### Technical Terms Algorithm, computational thinking, algorithmic thinking, efficiency, testing.

The Swap Puzzle Age group: Abilities assumed: Time: 7 adult Nothing Size of group: 8 to 30 50-60 minutes, Focus What is an algorithm? Testing Efficiency of algorithms Computational Thinking: algorithmic

### Dynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction

Lecture 11 Dynamic Programming 11.1 Overview Dynamic Programming is a powerful technique that allows one to solve many different types of problems in time O(n 2 ) or O(n 3 ) for which a naive approach