Kinetic Study of CO-CO 2 Reaction with MO x -CaO-SiO 2 Slags

Size: px
Start display at page:

Download "Kinetic Study of CO-CO 2 Reaction with MO x -CaO-SiO 2 Slags"

Transcription

1 Kinetic Study of CO-CO 2 Reaction with MO x -CaO-SiO 2 Slags Gary Gao Supervisor: Dr. Ken Coley /11/2006 1

2 Outline Background Technical need Gas-slag reaction mechanism Kinetic Model Objectives in this study Isotope exchange method Oxygen transfer reaction Mechanism Experimental Setup Preliminary results Conclusions Future work 2

3 Background Coal Addition to Slag Slag Metal e.g. Fe 2 O 3 +C=FeO + CO FeO + C= Fe + CO Direct smelting of iron (DIOS, AISI) Electric arc furnace Slag cleaning of copper making slags 3

4 Background Reaction Mechanism CO/CO 2 C Slag Mass Transfer in Slag MO x Reaction with CO/CO 2 Mass Transfer in Gas Halo Carbon Gasification MO x (s) MOx (s/g) CO (gas) + O (slag) = CO 2(gas) CO 2 (g/s) CO 2 (g/c) CO 2 (g/c)+c = CO(g/C) 4

5 Background Kinetics of Gas-Slag Reaction CO 2(gas) = O (slag) + CO (gas) r ν = r = P ( ) ( ) CO2 a ka P P a k 2 P P 2 P CO CO O CO CO eq CO r k = k 0 ( a ) α a a O r r v a = k ( a ) P = k P s s v a = k ( a ) P = k P 0 α a O CO a CO α a O CO a CO 5

6 Background Kinetics of Gas-Slag Reaction Apparent rate constant k a vs. Slag composition (MO x content in slag, slag basicity) Temperature Gas composition 6

7 Background Effect of Iron Oxide Content CaO-42.5SiO2-15Al2O3, 1773K, Li et al. ka, 10-5 mol/cm 2.s.atm CaO-65SiO2, 1873K, Mori et al. 38CaO-42SiO2-20Al2O3, 1623K, Sun 50CaO-50 SiO2, 1773 K, M. Barati FeOx wt% 7

8 Background Effect of Basicity ka, 10-5 mol/cm 2.s.atm ºC 1600 ºC CaO/SiO 2 M. Barati and K. Coley, Metall. Trans. 36B, 2005, pp

9 Background Effect of Temperature log (ka, mol-o/cm 2.s.atm) FeO=10 wt pct FeO=30 FeO=50 FeO=60 FeO=70 FeO=90 FeO=100 Linear (FeO=100) /T, K -1 M. Barati and K. Coley, Metall. Trans. 36B, 2005, pp

10 Background Effect of Oxidation State of Slag log (ka, mol-o/cm 2.s.atm) FeO=20 wt pct FeO=30 FeO=40 FeO=60 FeO=70 FeO=80 FeO=100 Linear (FeO=100) log (CO 2 /CO) M. Barati and K. Coley, Metall. Trans. 36B, 2005, pp

11 Background Reaction Mechanism (2Fe 2+,2O 2- ) + CO 2 = (2Fe 3+, 3O 2- ) + CO 1. CO 2(g) + = CO 2(ad) 2. CO 2(ad) + e - = CO - 2 (ad) <RDS> 3. CO - 2 (ad) + e - = CO (ad) + O 2-4. CO (ad) = CO (g) 5. 2Fe 2+ = 2Fe e - CO Fe 2+ e - O 2- Fe 3+ CO 2 M. Barati and K. Coley, Metall. Trans. 37B, 2006, pp

12 Background Kinetic Model Rate determining step: CO 2(ad) + e - = CO 2 - (ad) v = kγ ( a ) CO 2 ( ad ) 2 ( ad ) 1. Γ ( C ) CO 2+ ' 2. a = k exp( ) e Φ = F E e Fe Φ κt + Φ E 2 c s F E = E + T γ ln( ) [ Fe ] κ 3+ γ 3[ Fe ] T.H. Wolkenstein, Adv. Catal. Rel. Subj., 1960, vol. XII, pp H. Reiss, J. Phys. Chem., 1985, vol. 89, pp

13 Background Kinetic Model ( E+ E ) ka= k ( C ) exp( Λ Fe ) r(1 + r) 2 RT 3+ Fe γ r = 2+ Fe γ CO ( ) CO Question: 1. Deviation happens at lower Ka range, why? 2. Does model work for other redox couples? 0.5 k a-meas 10 5 (mol.cm -2.atm -1.s -1 ) Li and Ratchev Matsuura et al. Barati and Coley k a-calc *10 5 (mol.cm -2.atm -1.s -1 ) M. Barati and K. Coley, Metall. Trans. 37B, 2006, pp

14 Objectives Find the cause leading to the deviation at low rate constants Measure the rate constant vs. slag composition, temperature and gas composition for different transition metal (Mn, Ti) redox couples Determine general applicability of Barati s model 14

15 Isotope Exchange Method H. J.Grabke, in 1960s G.R.Belton and his associates, using 14 C as tracer isotope in 1970s Nobuo Sano, using 13 C as tracer isotope in 1990s, neglected the natural abundances of 13 C, 1.108% McMaster University 15

16 Isotope exchange Method Oxygen Transfer Reaction Mechanism co 2 co 13 co co 2 co 13 co 2 co 2 o 13 co co 2 M n+ O 2- M n+ M n+ M (n+1)+ O 2- M n+ M (n+1)+ M (n+1)+ M (n+1)+ Slag 13 CO 2(g) + 12 CO (g) = 13 CO (g) + 12 CO2 (g) 16

17 Isotope exchange Method The formulae Measurement is done at gas-slag equilibrium No effect of mass transport 13 CO o ( p 13 ) p 13 2 k a = V 1 co eq ln ART 1 + B ( p ) p eq co co co k a : rate constant B: the CO 2 /CO ratio V: total flowrate T: temperature 17

18 Isotope exchange Method Experimental Arrangement The picture for MS and GC 18

19 Experimental Setup Additional detail M. Barati and K. Coley, Metall. Trans. 36B, 2005, pp

20 Isotope exchange Method The MS and GC 20

21 Experimental Setup Uncertainty in the experimental measurements Difficult to maintain a fixed area High gas flow rate lead to the formation of crater Change in oxygen potential may affect the wetting of crucible that changes the curvature of slag surface Unwanted fluctuations in the gas flow rates 21

22 Experimental Setup Uncertainty in the experimental measurements 22

23 Preliminary results Rate constant vs. gas flowrate 5 ka, 10-5 mol/cm 2.s.atm FeO x -15% Al 2 O 3 T= 1500 CO 2 /CO= Total Gas Flow Rate, ml/min 23

24 Preliminary results Rate constant vs. exposed height k a, 10-5 (mol-o/atm.cm 2.s) CO 2 /CO=0.5 CO 2 /CO=1.0 CO 2 /CO=2.5 CO 2 /CO= Height (cm) 1. Sidewall effect does exist 2. Difficult to control zero exposed height 3. Two choice: a) Multiple height for each set of conditions b) Accept error on very small height 24

25 Conclusions The rate constant deviation is caused by sidewall effect, which is fixed for a given set of conditions and will have a great impact at low rate constant. 25

26 Future work Calibrate the data obtained by Mansoor Barati Measure the rate constant vs. slag composition, temperature and gas composition for Manganese and Titanium redox couples 26

27 Acknowledgement Dr. Ken. Coley Dr. Fuzhong JI Elaine Chen, Yi Chen, Judy Li All friends in MSE 27

28 Thank you! Questions and comments? 28

EXTRACTION OF METALS

EXTRACTION OF METALS 1 EXTRACTION OF METALS Occurrence ores of some metals are very common (iron, aluminium) others occur only in limited quantities in selected areas ores need to be purified before being reduced to the metal

More information

Chem 1101. Highlights of last lecture. This lecture. Australian Mining Sites. A/Prof Sébastien Perrier. Metallurgy: (Extracting metal from ore)

Chem 1101. Highlights of last lecture. This lecture. Australian Mining Sites. A/Prof Sébastien Perrier. Metallurgy: (Extracting metal from ore) Chem 111 A/Prof Sébastien Perrier Room: 351 Phone: 9351-3366 Email: s.perrier@chem.usyd.edu.au Unless otherwise stated, all images in this file have been reproduced from: Blackman, Bottle, Schmid, Mocerino

More information

Data Mining Analysis of the Relationship Between Input Variables and Hot Metal Silicon in a Blast Furnace

Data Mining Analysis of the Relationship Between Input Variables and Hot Metal Silicon in a Blast Furnace MASTER S THESIS 2005:241 CIV Data Mining Analysis of the Relationship Between Input Variables and Hot Metal Silicon in a Blast Furnace PIERRE WIKSTRÖM MASTER OF SCIENCE PROGRAMME Chemical Technology Luleå

More information

INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION. 37 74 20 40 60 80 m/e

INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION. 37 74 20 40 60 80 m/e CHM111(M)/Page 1 of 5 INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION SECTION A Answer ALL EIGHT questions. (52 marks) 1. The following is the mass spectrum

More information

Unit 6 The Mole Concept

Unit 6 The Mole Concept Chemistry Form 3 Page 62 Ms. R. Buttigieg Unit 6 The Mole Concept See Chemistry for You Chapter 28 pg. 352-363 See GCSE Chemistry Chapter 5 pg. 70-79 6.1 Relative atomic mass. The relative atomic mass

More information

How To Calculate Mass In Chemical Reactions

How To Calculate Mass In Chemical Reactions We have used the mole concept to calculate mass relationships in chemical formulas Molar mass of ethanol (C 2 H 5 OH)? Molar mass = 2 x 12.011 + 6 x 1.008 + 1 x15.999 = 46.069 g/mol Mass percentage of

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

More information

THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL. Hossam Halfa

THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL. Hossam Halfa THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL Hossam Halfa Steel Technology Department, Central Metallurgical R&D Institute (CMRDI), Helwan, Egypt, hossamhalfa@cmrdi.sci.eg;

More information

Effect of Magnesium Oxide Content on Final Slag Fluidity of Blast Furnace

Effect of Magnesium Oxide Content on Final Slag Fluidity of Blast Furnace China Steel Technical Report, No. 21, pp. 21-28, (2008) J. S. Shiau and S. H. Liu 21 Effect of Magnesium Oxide Content on Final Slag Fluidity of Blast Furnace JIA-SHYAN SHIAU and SHIH-HSIEN LIU Steel and

More information

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R 3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated

More information

CHAPTER 8: CHEMICAL COMPOSITION

CHAPTER 8: CHEMICAL COMPOSITION CHAPTER 8: CHEMICAL COMPOSITION Active Learning: 1-4, 6-8, 12, 18-25; End-of-Chapter Problems: 3-4, 9-82, 84-85, 87-92, 94-104, 107-109, 111, 113, 119, 125-126 8.2 ATOMIC MASSES: COUNTING ATOMS BY WEIGHING

More information

Effect of Slag Composition on the Distribution Behavior of Pb between Fe t O-SiO 2 (-CaO, Al 2 O 3 ) Slag and Molten Copper

Effect of Slag Composition on the Distribution Behavior of Pb between Fe t O-SiO 2 (-CaO, Al 2 O 3 ) Slag and Molten Copper Effect of Slag Composition on the Distribution Behavior of between Fe t O-SiO (-CaO, Al O ) Slag and Molten Copper Jung-Ho HEO 1), Soo-Sang PAR ) and Joo Hyun PAR 1), * 1) School of Materials Science and

More information

Element Partitioning and Earth's Core Composition. Bernie J. Wood. Summary by: Dave Stegman

Element Partitioning and Earth's Core Composition. Bernie J. Wood. Summary by: Dave Stegman Element Partitioning and Earth's Core Composition Bernie J. Wood Summary by: Dave Stegman Determining the composition of the Earth's Core is essential for understanding the internal structure, evolution,

More information

Lecture 35: Atmosphere in Furnaces

Lecture 35: Atmosphere in Furnaces Lecture 35: Atmosphere in Furnaces Contents: Selection of atmosphere: Gases and their behavior: Prepared atmospheres Protective atmospheres applications Atmosphere volume requirements Atmosphere sensors

More information

APPENDIX B: EXERCISES

APPENDIX B: EXERCISES BUILDING CHEMISTRY LABORATORY SESSIONS APPENDIX B: EXERCISES Molecular mass, the mole, and mass percent Relative atomic and molecular mass Relative atomic mass (A r ) is a constant that expresses the ratio

More information

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy.

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy. Chapter 13: Electrochemistry Redox Reactions Galvanic Cells Cell Potentials Cell Potentials and Equilbrium Batteries Electrolysis Electrolysis and Stoichiometry Corrosion Prevention Electrochemistry The

More information

Unit 19 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 19 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Unit 19 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The first law of thermodynamics can be given as. A) E = q + w B) =

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of

More information

Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) R f = k f * C A (2) R b = k b * C B (3)

Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) R f = k f * C A (2) R b = k b * C B (3) Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) 1. Background Consider the reaction given below: A B (1) If k f and k b are the rate constants of the forward

More information

Universidade Fernando Pessoa - CIAGEB, Praça de 9 de Abril 349, 4249-004 Porto, Portugal 2

Universidade Fernando Pessoa - CIAGEB, Praça de 9 de Abril 349, 4249-004 Porto, Portugal 2 1 Universidade Fernando Pessoa - CIAGEB, Praça de 9 de Abril 349, 4249-004 Porto, Portugal 2 Academia das Ciências de Lisboa, Rua da Academia das Ciências 19, 1249-122 Lisboa, Portugal 16-18 Sept 2009

More information

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline. Diffusion - how do atoms move through solids? Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

More information

Biomass Cofiring Overview

Biomass Cofiring Overview Biomass Cofiring Overview Larry Baxter Brigham Young University Provo, UT 84602 Second World Conference on Biomass for Energy, Industry, and World Climate Protection May 10-14, 2004 Rome, Italy Biomass

More information

CHEMICAL EQUILIBRIUM (ICE METHOD)

CHEMICAL EQUILIBRIUM (ICE METHOD) CHEMICAL EQUILIBRIUM (ICE METHOD) Introduction Chemical equilibrium occurs when opposing reactions are proceeding at equal rates. The rate at which the products are formed from the reactants equals the

More information

PHYS-2010: General Physics I Course Lecture Notes Section XIII

PHYS-2010: General Physics I Course Lecture Notes Section XIII PHYS-2010: General Physics I Course Lecture Notes Section XIII Dr. Donald G. Luttermoser East Tennessee State University Edition 2.5 Abstract These class notes are designed for use of the instructor and

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Introduction to Chemistry Exam 2 Practice Problems 1 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1.Atoms consist principally of what three

More information

Atomic Structure Chapter 5 Assignment & Problem Set

Atomic Structure Chapter 5 Assignment & Problem Set Atomic Structure Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Atomic Structure 2 Study Guide: Things You Must Know Vocabulary (know the definition

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* CHEMISTRY 0620/04 Paper 4 Theory (Extended) For Examination from 2016 SPECIMEN PAPER

More information

Galvanic cell and Nernst equation

Galvanic cell and Nernst equation Galvanic cell and Nernst equation Galvanic cell Some times called Voltaic cell Spontaneous reaction redox reaction is used to provide a voltage and an electron flow through some electrical circuit When

More information

CHEMISTRY II FINAL EXAM REVIEW

CHEMISTRY II FINAL EXAM REVIEW Name Period CHEMISTRY II FINAL EXAM REVIEW Final Exam: approximately 75 multiple choice questions Ch 12: Stoichiometry Ch 5 & 6: Electron Configurations & Periodic Properties Ch 7 & 8: Bonding Ch 14: Gas

More information

Chapter 8 - Chemical Equations and Reactions

Chapter 8 - Chemical Equations and Reactions Chapter 8 - Chemical Equations and Reactions 8-1 Describing Chemical Reactions I. Introduction A. Reactants 1. Original substances entering into a chemical rxn B. Products 1. The resulting substances from

More information

The prediction of flue gas emissions from the combustion in the industrial tubular heaters

The prediction of flue gas emissions from the combustion in the industrial tubular heaters Ovidius University Annals of Chemistry Volume, Number 1, pp.137-11, 9 The prediction of flue gas emissions from the combustion in the industrial tubular heaters Mirela VELICU a, Claudia-Irina KONCSAG b

More information

Chemistry 65 Chapter 6 THE MOLE CONCEPT

Chemistry 65 Chapter 6 THE MOLE CONCEPT THE MOLE CONCEPT Chemists find it more convenient to use mass relationships in the laboratory, while chemical reactions depend on the number of atoms present. In order to relate the mass and number of

More information

EXPERIMENT 4 The Periodic Table - Atoms and Elements

EXPERIMENT 4 The Periodic Table - Atoms and Elements EXPERIMENT 4 The Periodic Table - Atoms and Elements INTRODUCTION Primary substances, called elements, build all the materials around you. There are more than 109 different elements known today. The elements

More information

Technical considerations and viability of higher titania slag feedstock for the chloride process

Technical considerations and viability of higher titania slag feedstock for the chloride process BURGER, H., BESSINGER, D., and MOODLEY, S. Technical considerations and viability of higher titania slag feedstock for the chloride process. The 7th International Heavy Minerals Conference What next, The

More information

Chapter Test B. Chapter: Measurements and Calculations

Chapter Test B. Chapter: Measurements and Calculations Assessment Chapter Test B Chapter: Measurements and Calculations PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.

More information

Phase. Gibbs Phase rule

Phase. Gibbs Phase rule Phase diagrams Phase A phase can be defined as a physically distinct and chemically homogeneous portion of a system that has a particular chemical composition and structure. Water in liquid or vapor state

More information

Coal Properties, Sampling & Ash Characteristics by Rod Hatt Coal Combustion, Inc. Versailles, KY 859-873-0188

Coal Properties, Sampling & Ash Characteristics by Rod Hatt Coal Combustion, Inc. Versailles, KY 859-873-0188 Coal Properties, Sampling & Ash Characteristics by Rod Hatt Coal Combustion, Inc. Versailles, KY 859-873-0188 Introduction The Powder River Coal is classified as sub-bituminous ranked coal. Coal rank is

More information

SALT SPRAY AND IMMERSION CORROSION TESTING OF PM STAINLESS STEEL MATERIALS. W. Brian James Hoeganaes Corporation. Cinnaminson, NJ 08077

SALT SPRAY AND IMMERSION CORROSION TESTING OF PM STAINLESS STEEL MATERIALS. W. Brian James Hoeganaes Corporation. Cinnaminson, NJ 08077 SALT SPRAY AND IMMERSION CORROSION TESTING OF PM STAINLESS STEEL MATERIALS W. Brian James Hoeganaes Corporation Cinnaminson, NJ 08077 Leander F. Pease III Powder-Tech Associates Inc. Andover, MA 01845

More information

Neutralization of Acid Mine Drainage Using Stabilized Flue Gas Desulfurization Material

Neutralization of Acid Mine Drainage Using Stabilized Flue Gas Desulfurization Material Neutralization of Acid Mine Drainage Using Stabilized Flue Gas Desulfurization Material W. Wolfe 1, C.-M. Cheng 1, R. Baker 1, T. Butalia 1, J. Massey-Norton 2 1 The Ohio State University, 2 American Electric

More information

Appendice Caratteristiche Dettagliate dei Materiali Utilizzati

Appendice Caratteristiche Dettagliate dei Materiali Utilizzati Appendice Caratteristiche Dettagliate dei Materiali Utilizzati A.1 Materiale AISI 9840 UNI 38NiCrMo4 AISI 9840 Steel, 650 C (1200 F) temper, 25 mm (1 in.) round Material Notes: Quenched, 540 C temper,

More information

EXPERIMENT #9 CORROSION OF METALS

EXPERIMENT #9 CORROSION OF METALS EXPERIMENT #9 CORROSION OF METALS Objective The objective of this experiment is to measure the corrosion rate of two different metals and to show the effectiveness of the use of inhibitors to protect metals

More information

2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions.

2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions. 1. Using the Activity Series on the Useful Information pages of the exam write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as,

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

Chemistry 12 Worksheet 1-1 - Measuring Reaction Rates

Chemistry 12 Worksheet 1-1 - Measuring Reaction Rates Chemistry 12 Worksheet 1-1 - Measuring Reaction Rates 1. A chemist wishes to determine the rate of reaction of zinc with hydrochloric acid. The equation for the reaction is: Zn (s) + 2HCl (aq) oh 2(g)

More information

Chem 1721 Brief Notes: Chapter 19

Chem 1721 Brief Notes: Chapter 19 Chem 1721 Brief Notes: Chapter 19 Chapter 19: Electrochemistry Consider the same redox reaction set up 2 different ways: Cu metal in a solution of AgNO 3 Cu Cu salt bridge electrically conducting wire

More information

PRELIMINARY CHARACTERIZATION OF THE SAMPLES TAKEN FROM A SUBMERGED ARC FERROCHROME FURNACE DURING OPERATION

PRELIMINARY CHARACTERIZATION OF THE SAMPLES TAKEN FROM A SUBMERGED ARC FERROCHROME FURNACE DURING OPERATION PRELIMINARY CHARACTERIZATION OF THE SAMPLES TAKEN FROM A SUBMERGED ARC FERROCHROME FURNACE DURING OPERATION J. Ollila 1, P. Niemelä 2, A. Rousu 3 and O. Mattila 3 1 Outotec Oyj, Espoo, Finland; e-mail:

More information

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4) Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical

More information

Effect of Magnesium and Aluminum Oxides on Fluidity of Final Blast Furnace Slag and Its Application

Effect of Magnesium and Aluminum Oxides on Fluidity of Final Blast Furnace Slag and Its Application Materials Transactions, Vol. 53, No. 8 (2012) pp. 1449 to 1455 2012 The Japan Institute of Metals Effect of Magnesium and Aluminum Oxides on Fluidity of Final Blast Furnace Slag and Its Application Jia-Shyan

More information

Multiple Choice questions (one answer correct)

Multiple Choice questions (one answer correct) Mole Concept Multiple Choice questions (one answer correct) (1) Avogadro s number represents the number of atoms in (a) 12g of C 12 (b) 320g of sulphur (c) 32g of oxygen (d) 12.7g of iodine (2) The number

More information

Multicrystalline solar silicon production for development of photovoltaic industry

Multicrystalline solar silicon production for development of photovoltaic industry Multicrystalline solar silicon production for development of photovoltaic industry A.I. Nepomnyaschikh Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, E-mail: ainep@igc.irk.ru

More information

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* CHEMISTRY 0620/03 Paper 3 Theory (Core) For Examination from 2016 SPECIMEN PAPER 1 hour

More information

Amount of Substance. http://www.avogadro.co.uk/definitions/elemcompmix.htm

Amount of Substance. http://www.avogadro.co.uk/definitions/elemcompmix.htm Page 1 of 14 Amount of Substance Key terms in this chapter are: Element Compound Mixture Atom Molecule Ion Relative Atomic Mass Avogadro constant Mole Isotope Relative Isotopic Mass Relative Molecular

More information

1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams?

1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams? Name: Tuesday, May 20, 2008 1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams? 2 5 1. P2O 5 3. P10O4 2. P5O 2 4. P4O10 2. Which substance

More information

Ch. 6 Chemical Composition and Stoichiometry

Ch. 6 Chemical Composition and Stoichiometry Ch. 6 Chemical Composition and Stoichiometry The Mole Concept [6.2, 6.3] Conversions between g mol atoms [6.3, 6.4, 6.5] Mass Percent [6.6, 6.7] Empirical and Molecular Formula [6.8, 6.9] Bring your calculators!

More information

k 2f, k 2r C 2 H 5 + H C 2 H 6

k 2f, k 2r C 2 H 5 + H C 2 H 6 hemical Engineering HE 33 F pplied Reaction Kinetics Fall 04 Problem Set 4 Solution Problem. The following elementary steps are proposed for a gas phase reaction: Elementary Steps Rate constants H H f,

More information

Experiment #4, Ohmic Heat

Experiment #4, Ohmic Heat Experiment #4, Ohmic Heat 1 Purpose Physics 18 - Fall 013 - Experiment #4 1 1. To demonstrate the conversion of the electric energy into heat.. To demonstrate that the rate of heat generation in an electrical

More information

Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions

Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions OCN 623 Chemical Oceanography Balanced chemical reactions are the math of chemistry They show the relationship between the reactants

More information

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790. CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

More information

TI-B 103 (94) Test Method Activation Energy for the Maturity Method

TI-B 103 (94) Test Method Activation Energy for the Maturity Method Activation Energy for the Maturity Method Danish Technological Institute Building Technology Activation Energy for the Maturity Method Descriptors: Concrete, Properties, Maturity, Activation Energy PRELIMINARY

More information

The Periodic Table: Periodic trends

The Periodic Table: Periodic trends Unit 1 The Periodic Table: Periodic trends There are over one hundred different chemical elements. Some of these elements are familiar to you such as hydrogen, oxygen, nitrogen and carbon. Each one has

More information

Ionic Bonding Pauling s Rules and the Bond Valence Method

Ionic Bonding Pauling s Rules and the Bond Valence Method Ionic Bonding Pauling s Rules and the Bond Valence Method Chemistry 754 Solid State Chemistry Dr. Patrick Woodward Lecture #14 Pauling Rules for Ionic Structures Linus Pauling,, J. Amer. Chem. Soc. 51,,

More information

Module 5: Combustion Technology. Lecture 33: Combustion air calculation

Module 5: Combustion Technology. Lecture 33: Combustion air calculation 1 P age Module 5: Combustion Technology Lecture 33: Combustion air calculation 2 P age Keywords: Heat of combustion, stoichiometric air, excess air, natural gas combustion Combustion air calculation The

More information

K + Cl - Metal M. Zinc 1.0 M M(NO

K + Cl - Metal M. Zinc 1.0 M M(NO Redox and Electrochemistry This section should be fresh in your minds because we just did this section in the text. Closely related to electrochemistry is redox chemistry. Count on at least one question

More information

Concepts in Syngas Manufacture

Concepts in Syngas Manufacture CATALYTIC SCIENCE SERIES VOL. 10 Series Editor: Graham J. Hutchings Concepts in Syngas Manufacture Jens Rostrup-Nielsen Lars J. Christiansen Haldor Topsoe A/S, Denmark Imperial College Press Contents Preface

More information

How do single crystals differ from polycrystalline samples? Why would one go to the effort of growing a single crystal?

How do single crystals differ from polycrystalline samples? Why would one go to the effort of growing a single crystal? Crystal Growth How do single crystals differ from polycrystalline samples? Single crystal specimens maintain translational symmetry over macroscopic distances (crystal dimensions are typically 0.1 mm 10

More information

LASER CUTTING OF STAINLESS STEEL

LASER CUTTING OF STAINLESS STEEL LASER CUTTING OF STAINLESS STEEL Laser inert gas cutting is the most applicable process type used for cutting of stainless steel. Laser oxygen cutting is also applied in cases where the cut face oxidation

More information

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole Topic 4 National Chemistry Summary Notes Formulae, Equations, Balancing Equations and The Mole LI 1 The chemical formula of a covalent molecular compound tells us the number of atoms of each element present

More information

THE MOLE / COUNTING IN CHEMISTRY

THE MOLE / COUNTING IN CHEMISTRY 1 THE MOLE / COUNTING IN CHEMISTRY ***A mole is 6.0 x 10 items.*** 1 mole = 6.0 x 10 items 1 mole = 60, 00, 000, 000, 000, 000, 000, 000 items Analogy #1 1 dozen = 1 items 18 eggs = 1.5 dz. - to convert

More information

Element of same atomic number, but different atomic mass o Example: Hydrogen

Element of same atomic number, but different atomic mass o Example: Hydrogen Atomic mass: p + = protons; e - = electrons; n 0 = neutrons p + + n 0 = atomic mass o For carbon-12, 6p + + 6n 0 = atomic mass of 12.0 o For chlorine-35, 17p + + 18n 0 = atomic mass of 35.0 atomic mass

More information

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions Oxidation-Reduction Reactions Chapter 11 Electrochemistry Oxidation and Reduction Reactions An oxidation and reduction reaction occurs in both aqueous solutions and in reactions where substances are burned

More information

CHEM 1411 Chapter 5 Homework Answers

CHEM 1411 Chapter 5 Homework Answers 1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of

More information

MOLES, MOLECULES, FORMULAS. Part I: What Is a Mole And Why Are Chemists Interested in It?

MOLES, MOLECULES, FORMULAS. Part I: What Is a Mole And Why Are Chemists Interested in It? NAME PARTNERS SECTION DATE_ MOLES, MOLECULES, FORMULAS This activity is designed to introduce a convenient unit used by chemists and to illustrate uses of the unit. Part I: What Is a Mole And Why Are Chemists

More information

Trace Gas Exchange Measurements with Standard Infrared Analyzers

Trace Gas Exchange Measurements with Standard Infrared Analyzers Practical Environmental Measurement Methods Trace Gas Exchange Measurements with Standard Infrared Analyzers Last change of document: February 23, 2007 Supervisor: Charles Robert Room no: S 4381 ph: 4352

More information

Chapter 2: The Chemical Context of Life

Chapter 2: The Chemical Context of Life Chapter 2: The Chemical Context of Life Name Period This chapter covers the basics that you may have learned in your chemistry class. Whether your teacher goes over this chapter, or assigns it for you

More information

Preliminary Concepts. Preliminary Concepts. Class 8.3 Oxidation/Reduction Reactions and Electrochemistry I. Friday, October 15 Chem 462 T.

Preliminary Concepts. Preliminary Concepts. Class 8.3 Oxidation/Reduction Reactions and Electrochemistry I. Friday, October 15 Chem 462 T. Class 8.3 Oxidation/Reduction Reactions and Electrochemistry I Friday, October 15 Chem 462 T. Hughbanks Preliminary Concepts Electrochemistry: the electrical generation of, or electrical exploitation of

More information

All answers must use the correct number of significant figures, and must show units!

All answers must use the correct number of significant figures, and must show units! CHEM 10113, Quiz 2 September 7, 2011 Name (please print) All answers must use the correct number of significant figures, and must show units! IA Periodic Table of the Elements VIIIA (1) (18) 1 2 1 H IIA

More information

Sustainable energy products Simulation based design for recycling

Sustainable energy products Simulation based design for recycling Sustainable energy products Simulation based design for recycling Markus A. Reuter (Prof. Dr. Dr. hc) Director: Technology Management, Outotec Oyj Aalto University (Finland), Central South University (China),

More information

An example: helium isotopes. An example: helium isotopes. Limits to Detection/Measurement. Lecture 14 Measurements II: Mass spectrometry

An example: helium isotopes. An example: helium isotopes. Limits to Detection/Measurement. Lecture 14 Measurements II: Mass spectrometry Limits to Detection/Measurement Ionization is fundamentally a Probabilistic Process Just like radioactive decay So is transmission through the analyzer There is an intrinsic statistical uncertainty Proportional

More information

Chemical Calculations: Formula Masses, Moles, and Chemical Equations

Chemical Calculations: Formula Masses, Moles, and Chemical Equations Chemical Calculations: Formula Masses, Moles, and Chemical Equations Atomic Mass & Formula Mass Recall from Chapter Three that the average mass of an atom of a given element can be found on the periodic

More information

2. ATOMIC, MOLECULAR AND EQUIVALENT MASSES

2. ATOMIC, MOLECULAR AND EQUIVALENT MASSES 2. ATOMIC, MOLECULAR AND EQUIVALENT MASSES INTRODUCTION: EQUIVALENT WEIGHT Since hydrogen is the lightest of all elements, it was chosen as a standard for determination of equivalent weights. On this basis,

More information

The Mole. Chapter 2. Solutions for Practice Problems

The Mole. Chapter 2. Solutions for Practice Problems Chapter 2 The Mole Note to teacher: You will notice that there are two different formats for the Sample Problems in the student textbook. Where appropriate, the Sample Problem contains the full set of

More information

IDEAL AND NON-IDEAL GASES

IDEAL AND NON-IDEAL GASES 2/2016 ideal gas 1/8 IDEAL AND NON-IDEAL GASES PURPOSE: To measure how the pressure of a low-density gas varies with temperature, to determine the absolute zero of temperature by making a linear fit to

More information

Unit 10A Stoichiometry Notes

Unit 10A Stoichiometry Notes Unit 10A Stoichiometry Notes Stoichiometry is a big word for a process that chemist s use to calculate amounts in reactions. It makes use of the coefficient ratio set up by balanced reaction equations

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 26.1 5.111 Lecture

More information

MOLES AND MOLE CALCULATIONS

MOLES AND MOLE CALCULATIONS 35 MOLES ND MOLE CLCULTIONS INTRODUCTION The purpose of this section is to present some methods for calculating both how much of each reactant is used in a chemical reaction, and how much of each product

More information

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 Standard Enthalpy Change Standard Enthalpy Change for a reaction, symbolized as H 0 298, is defined as The enthalpy change when the molar quantities of reactants

More information

Experimental Study on Super-heated Steam Drying of Lignite

Experimental Study on Super-heated Steam Drying of Lignite Advanced Materials Research Vols. 347-353 (2012) pp 3077-3082 Online available since 2011/Oct/07 at www.scientific.net (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.347-353.3077

More information

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:)

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:) Chemistry CP Unit 2 Atomic Structure and Electron Learning Targets (Your exam at the end of Unit 2 will assess the following:) 2. Atomic Structure and Electron 2-1. Give the one main contribution to the

More information

Nanoparticle Deposition on Packaging Materials by the Liquid Flame Spray

Nanoparticle Deposition on Packaging Materials by the Liquid Flame Spray Nanoparticle Deposition on Packaging Materials by the Liquid Flame Spray Hannu Teisala a, Mikko Tuominen a, Mikko Aromaa b, Jyrki M. Mäkelä b, Milena Stepien c, Jarkko J. Saarinen c, Martti Toivakka c

More information

Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102.

Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102. Thermodynamics 2: Gibbs Free Energy and Equilibrium Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102. Key Concepts and skills: definitions

More information

GALVANIC MODEL FOR LOCALIZED CO2 CORROSION

GALVANIC MODEL FOR LOCALIZED CO2 CORROSION Paper No. 687 GALVANIC MODEL FOR LOCALIZED CO CORROSION Jiabin Han, Srdjan Nešić and Bruce N. Brown Institute for Corrosion and Multiphase Technology Department of Chemical and Biomolecular Engineering

More information

CATALOGUE REFERENCE MATERIALS

CATALOGUE REFERENCE MATERIALS IPT Institute for Technological Research CATALOGUE REFERENCE MATERIALS 2014 Laboratory of Metrological References IPT s Reference Materials www.ipt.br/nmr.htm Av. Prof. Almeida Prado n0 532 Predio 31 Cidade

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

Answer Key Chemistry If8766 Moles And Mass

Answer Key Chemistry If8766 Moles And Mass If8766 Moles And Mass Free PDF ebook Download: If8766 Moles And Mass Download or Read Online ebook answer key chemistry if8766 moles and mass in PDF Format From The Best User Guide Database Moles and Mass.

More information

Enhanced Organic Precursor Removals Using Aged Filter Media Page 1. Enhanced Organic Precursor Removals Using Aged Filter Media

Enhanced Organic Precursor Removals Using Aged Filter Media Page 1. Enhanced Organic Precursor Removals Using Aged Filter Media Enhanced Organic Precursor Removals Using Aged Media Page 1 Enhanced Organic Precursor Removals Using Aged Media O b j e c t i v e s The main goals of this project was to evaluate the dissolved organic

More information

Chapter 3. Table E-1. Equilibrium data for SO 2 at 1 atm and 20 o C. x 0.000564.000842.001403.001965.00279.00420 y 0.0112.01855.0342.0513.0775.

Chapter 3. Table E-1. Equilibrium data for SO 2 at 1 atm and 20 o C. x 0.000564.000842.001403.001965.00279.00420 y 0.0112.01855.0342.0513.0775. Chapter 3 Example 3.2-5. ---------------------------------------------------------------------------------- Sulfur dioxide produced by the combustion of sulfur in air is absorbed in water. Pure SO 2 is

More information

FACTORS AFFECTING THE REDUCIBILITY OF SINTERED CHROMITE PELLETS AND CHROMITE LUMPY ORE

FACTORS AFFECTING THE REDUCIBILITY OF SINTERED CHROMITE PELLETS AND CHROMITE LUMPY ORE FACTORS AFFECTING THE REDUCIBILITY OF SINTERED CHROMITE PELLETS AND CHROMITE LUMPY ORE T. Lintumaa, H. Krogerus and P. Jokinen 1 Outokumpu Technology, Research Center, Pori, Outokumpu Research Oy Kuparitie

More information

ME 315 - Heat Transfer Laboratory. Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS

ME 315 - Heat Transfer Laboratory. Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS ME 315 - Heat Transfer Laboratory Nomenclature Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS A heat exchange area, m 2 C max maximum specific heat rate, J/(s

More information

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus,

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus, 5.3 (a) Compare interstitial and vacancy atomic mechanisms for diffusion. (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. Solution (a) With vacancy diffusion,

More information