Upper left: typical dark blue fecal coliform colonies on a membrane filter after incubation on M-FC agar. Lower center (purple): M-FC agar before

Size: px
Start display at page:

Download "Upper left: typical dark blue fecal coliform colonies on a membrane filter after incubation on M-FC agar. Lower center (purple): M-FC agar before"

Transcription

1 KIMIA ANALISA 3 SKS Prof. Dr. Heru Setyawan Jurusan Teknik Kimia FTI ITS

2 The Language of Analytical Chemistry

3 Analysis, Determination, and Measurement Analysis: A process that provides chemical or physical information about the constituents in the sample or the sample itself. Analytes: The constituents of interest in a sample. Matrix: All other constituents in a sample except for the analytes. Determination: An analysis of a sample to find the identity, concentration, or properties of the analyte. Measurement: An experimental determination of an analyte s chemical or physical properties.

4 Analysis, Determination, and Measurement In 1974, the federal government enacted the Safe Drinking Water Act to ensure the safety of public drinking water supplies. To comply this act municipalities regularly monitor their drinking water supply for substantially harmful substances. One such substance is coliform bacteria. Municipal water departments collect and analyze samples from their water supply. To determine the concentration of coliform bacteria, a portion of water is passed through a membrane filter. The filter is placed in a dish containing a nutrient broth and incubated. At the end of the incubation period the number of coliform bacterial colonies is measured by counting (see figure). Thus, municipal water departments analyze samples of water to determine the concentration of coliform bacteria by measuring the number of bacterial colonies that form during a specified period of incubation. Upper left: typical dark blue fecal coliform colonies on a membrane filter after incubation on M-FC agar. Lower center (purple): M-FC agar before use. Upper right (blue): a control plate streaked with an E.coli culture.

5 Techniques, Methods, Procedures, and Protocols Technique: A chemical or physical principle that can be used to analyze a sample. Method: A means for analyzing a sample for a specific analyte in a specific matrix. Procedure: Written directions outlining how to analyze a sample. Protocol: A set of written guidelines for analyzing a sample specified by an agency.

6 Techniques Graphite furnace atomic absorption spectroscopy Methods Pb in Water Pb in Soil Pb in Blood Procedures APHA ASTM Protocols EPA Chart showing hierarchical relationship among a technique, methods using that technique, and procedures and protocols for one method. Abbreviations: APHA = American Public Health Association ASTM = American Society for Testing Materials EPA = Environmental Protection Agency

7 Classifying Analytical Techniques If a technique responds to the absolute amount of analyte in the sample, the signal due to the analyte S A S A = kn A Since cylinder 2 contains twice as many moles of Cu 2+ as cylinder 1, analyzing the contents of cylinder 2 gives signal that is twice that of cylinder 1. If a technique responds to the relative amount of analyte in the sample, the signal Graduated cylinders containing 0.01 M Cu(NO 3 ) 2. (a) Cylinder 1 contains 10 ml, or mol, of Cu 2+. (b) Cylinder 2 contains 20 ml, or mol, of Cu 2+. due to the analyte S A S A = kc A Since the solutions in both cylinders have the same concentration of Cu 2+, their analysis yields identical signals.

8 Classifying Analytical Techniques Total analysis techniques A technique in which the signal is proportional to the absolute amount of analyte; also called classical techniques. Mass, volume, and charge are the most common signals for total analysis techniques, and the responding techniques are gravimetry, titrimetry, and coulometry. Concentration techniques A technique in which the signal is proportional to the analyte s concentration; also called instrumental technique, e.g., spectroscopy, potentiometry, and voltammetry. The relationship between the signal and the analyte is a theoretical function that depends on experimental conditions and the instrumentation used to measure the signal, so the value of k must be determined experimentally.

9 Validation involves determining: selectivity linearity accuracy precision sensitivity range limit of detection limit of quantitation ruggedness/robustness Standard reference materials (SRMs) best for determining accuracy. General process for evaluation/validation of methodology.

10 Selecting an Analytical Method Accuracy A measure of the agreement between an experimental result and its expected value. obtained result expected result % Error = 100 expected result Analytical methods may be divided into three groups based on the magnitude of their relative errors: < 1% : highly accuracy Between 1% and 5% : moderately accuratcy > 5% : low accuracy In general, total analysis methods produce results of high accuracy, and concentration methods range from high to low accuracy. Precision An indication of the reproducibility of a measurement or result. Depends on those factors affecting the relationship between the signal and the analyte. Of particular importance are the uncertainty in measuring the signal and the ease of handling sampling reproducibly.

11 Selecting an Analytical Method (a) (b) Two determinations of the concentration of K + in serum, showing the effect of precision. The data in (a) are less scattered and, therefore, more precise than the data in (b).

12 Selecting an Analytical Method Sensitivity A measure of a method s ability to distinguish between two samples; reported as the change in signal per unit change in the amount of analyte (k). If S A is the smallest increment in signal that can be measured, then the smallest difference in the amount of analyte that can be detected is n C Detection limit A A = = S k S k A A (total analysis method) (concentration analysis method) A statistical statement about the smallest amount of analyte that can be determined with confidence.

13 Selecting an Analytical Method Selectivity A measure of a method s freedom from interferences as defined by the method s selectivity coefficient. S samp = S A + S I = k A n A + k I n I S samp = S A + S I = k A C A + k I n I Selectivity coefficient (total analysis method) (concentration analysis method) A measure of a method s sensitivity for an interferent relative to that for the analyte (K A,I ) K = A,I k k I A

14 Selecting an Analytical Method 1. A method for the analysis of Ca 2+ in water suffers from an interference in the presence of Zn 2+. When the concentration of Ca 2+ is 100 times greater than that of Zn 2+, an analysis for Ca 2+ gives a relative error +0.5%. What is the selectivity coefficient for this method? 2. Barnett and colleagues developed a new method for determining the concentration of codeine during its extraction from poppy plants. As part of their study they determined the method s response to codeine relative to that for several potential interferents. For example, the authors found that the method s signal for 6- methoxycodeine was 6 (arbitrary units) when that for an equimolar solution of codeine was 40. a) What is the value for the selectivity coefficient K A,I when 6- methoxycodeine is the interferent and codeine is the analyte? b) If the concentration of codeine is to be determined with an accuracy of ±0.50%, what is the maximum relative concentration of 6-methoxycodeine (i.e., [6-methoxycodeine]/[codeine]) that can be present?

15 Selecting an Analytical Method Robust A method that can be applied to analytes in a wide variety of matrices is considered robust. Rugged A method that is insensitive to changes in experimental conditions is considered rugged.

16 Selecting an Analytical Method Scale of Operation Three limitations of particular importance: The amount of sample available for the analysis. The concentration of analyte in the sample. The absolute amount of analyte needed to obtain a measurable signal.

17 Selecting an Analytical Method -log(% analyte as %w/w) Ultratrace Trace Minor Major Scale of operation for analytical methods % 10-9 % 10-8 % 10-7 % 10-6 % 10-5 % 10-4 % 10-3 % 10-2 % 0.1% 1% 10% 100% 1 g sample, 1% analyte 0.1 g sample, 10% analyte 0.01 g sample, 100% analyte Macro Meso Micro Ultramicro -log(weight of sample) g mg µg ng

18 Selecting an Analytical Method Equipment, Time, and Cost Analytical methods can be compared in terms of their need for equipment the time required to complete an analysis the cost per sample. Methods relying on instrumentation are equipment-intensive intensive and may require significant operator training. The graphite furnace atomic absorption spectroscopic method for determining lead levels in water requires a significant capital investment in the instrument and experienced operator to obtain reliable results. Other methods such as titrimetry, require only simple equipment and reagents and can be learned quickly. The time needed to complete an analysis for a single sample is often fairly similar from method to method. This is somewhat misleading because much of this time is spent preparing the solutions and equipment needed for the analysis. Once the solutions and equipment are in place, the number of samples that can be analyzed per hour differs substantially from method to method. The cost of an analysis is determined by many factors, including the cost of necessary equipment and reagents, the cost of hiring analysts, and the number of samples that can be processed per hour. In general, methods relying on instruments cost more per sample than other methods.

19 Calibration and Standardization Calibration The process of ensuring that the signal measured by a piece of equipment or an instrument is correct. For example: balances are calibrated using a standard weight whose mass can be traced to the internationally accepted platinum-iridium iridium prototype kilogram. Standardization The process of establishing the relationship between the amount of analyte and a method s signal. For a total analysis method, standardization is usually defined by the stoichiometry of the chemical reactions responsible for the signal. For a concentration method, the relationship between the signal and the analyte s concentration is a theoretical function that cannot be calculated without experimental measurements. To standardize method, the value of k is determined by measuring the signal for one or more standards, each containing a known concentration of analyte. When several standards with different concentrations of analyte are used, the result is best viewed visually by plotting S meas versus the concentration of analyte in the standards. Such plot is known as a calibration curve.

20 Problems 1. When working with a solid sample, it often is necessary to bring the analyte into solution by dissolving the sample in a suitable solvent. Any solid impurities that remain are removed by filtration before continuing with the analysis. In a typical total analysis method, the procedure might read After dissolving the sample in a beaker, remove any solid impurities by passing the solution containing the analyte through filter paper, collecting the solution in a clean Erlenmeyer flask. Rinse the beaker with several small portions of solvent, passing these rinsings through the filter paper, and collecting them in the same Erlenmeyer flask. Finally, rinse the filter paper with several portions of solvent, collecting the rinsings in the same Erlenmeyer flask. For a typical concentration method, however, the procedure might state After dissolving the sample in a beaker, remove any solid impurities by filtering a portion of the solution containing the analyte. Collect and discard the first several milliliters of solution before collecting a sample of approximately 5 ml for further analysis. Explain why these two procedures are different.

21 Problems 2. A certain concentration method works best when the analyte s concentration is approximately 10 ppb. a. If the sampling volume for the method is 0.5 ml, about what mass of analyte is being measured? b. If the analyte is present at 10% w/v, how would you prepare the sample for analysis? c. Repeat for the case in which the analyte is present at 10% w/w. d. Based on your results, comment on the suitability of this method for the analysis of a major analyte. 3. An analyst needs to evaluate the potential effect of an interferent, I, on the quantitative analysis for an analyte, A. She begins by measuring the signal for a sample in which the interferent is absent and the analyte is present with a concentration of 15 ppm, obtaining an average signal of 23.3 (arbitrary units). When analyzing a sample in which the analyte is absent and the interferent is present with a concentration of 25 ppm, she obtains an average signal of a. What is the analyte s sensitivity? b. What is the interferent s sensitivity? c. What is the value of the selectivity coefficient? d. Is the method more selective for the analyte or the interferent? e. What is the maximum concentration of interferent relative to that of the analyte (i.e., [interferent]/[analyte]), if the error in the analysis is to be less than 1%?

22 Problems 4. A sample was analyzed to determine the concentration of an analyte. Under the conditions of the analysis, the sensitivity is 17.2 ppm -1. What is the analyte s concentration if S meas is 35.2 and S reag is 0.6? 5. A method for the analysis of Ca2+ in water suffers from an interference in the presence of Zn2+. When the concentration of Ca2+ is 50 times greater than that of Zn2+, an analysis for Ca2+ gives a relative error of -2.0%. What is the value of the selectivity coefficient for this method? 6. The quantitative analysis for reduced glutathione in blood is complicated by the presence of many potential interferents. In one study, when analyzing a solution of 10-ppb glutathione and 1.5-ppb ascorbic acid, the signal was 5.43 times greater than that obtained for the analysis of 10-ppb glutathione. What is the selectivity coefficient for this analysis? The same study found that when analyzing a solution of 350-ppb methionine and 10-ppb glutathione the signal was times less than that obtained for the analysis of 10 ppb- glutathione. What is the selectivity coefficient for this analysis? In what way do these interferents behave differently? 7. Oungpipat and Alexander described a new method for determining the concentration of glycolic acid (GA) in a variety of samples, including physiological fluids such as urine. In the presence of only GA, the signal is given as S samp,1 = k GA C GA and in the presence of both glycolic acid and ascorbic acid (AA), the signal is S samp,2 = k GA C GA + k AA C AA

23 Problems When the concentration of glycolic acid is M and the concentration of ascorbic acid is M, the ratio of the signals was found to be S samp,2 /S samp,1 = 1.44 a. Using the ratio of the two signals, determine the value of the selectivity ratio K GA,AA = k AA /k GA b. Is the method more selective toward glycolic acid or ascorbic acid? c. If the concentration of ascorbic acid is M, what is the smallest concentration of glycolic acid that can be determined such that the error introduced by failing to account for the signal from ascorbic acid is less than 1%?

The Vocabulary of Analytical Chemistry

The Vocabulary of Analytical Chemistry Chapter 3 The Vocabulary of Analytical Chemistry Chapter Overview 3A Analysis, Determination, and Measurement 3B Techniques, Methods, Procedures, and Protocols 3C Classifying Analytical Techniques 3D Selecting

More information

ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS

ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS 1 ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS Buck Scientific Atomic Absorption Spectrophotometer, Model 200 Atomic absorption spectroscopy (AAS) has for many years

More information

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare

More information

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT -----------------------------------------------------------------------------------------------------------------------------

More information

4.2 Bias, Standards and Standardization

4.2 Bias, Standards and Standardization 4.2 Bias, Standards and Standardization bias and accuracy, estimation of bias origin of bias and the uncertainty in reference values quantifying by mass, chemical reactions, and physical methods standard

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride.

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride. PRINCIPLES: Once the Rate Law for a reaction has been experimentally established the next step is its explanation in terms

More information

Chapter 4. Evaluating Analytical Data. When using an analytical method we make three separate evaluations of experimental error.

Chapter 4. Evaluating Analytical Data. When using an analytical method we make three separate evaluations of experimental error. Chapter 4 Evaluating Analytical Data Chapter Overview 4A Characterizing Measurements and Results 4B Characterizing Experimental Errors 4C Propagation of Uncertainty 4D The Distribution of Measurements

More information

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT --------------------------------------------------------------------------------------------------------------------------------------------

More information

Determination of Citric Acid in Powdered Drink Mixes

Determination of Citric Acid in Powdered Drink Mixes Determination of Citric Acid in Powdered Drink Mixes Citric acid and its salts (sodium citrate and potassium citrate) are found in many foods, drinks, pharmaceuticals, shampoos, and cosmetics. The tartness

More information

Graphite Furnace AA, Page 1 DETERMINATION OF METALS IN FOOD SAMPLES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY (VERSION 1.

Graphite Furnace AA, Page 1 DETERMINATION OF METALS IN FOOD SAMPLES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY (VERSION 1. Graphite Furnace AA, Page 1 DETERMINATION OF METALS IN FOOD SAMPLES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY I. BACKGROUND (VERSION 1.0) Atomic absorption spectroscopy (AAS) is a widely used

More information

Flow Injection Analysis

Flow Injection Analysis Flow Injection Analysis Almost all reagent based assays can be downscaled and automated by Flow Injection Analysis. FIA was first described in a patent filed in Denmark by Ruzicka and Hansen in 1974. Since

More information

Environmental Water Testing: Surface Water, Groundwater, Hard Water, Wastewater, & Seawater

Environmental Water Testing: Surface Water, Groundwater, Hard Water, Wastewater, & Seawater Document: AND Sol Env 08 2013 Environmental Water Testing: Surface Water, Groundwater, Hard Water, Wastewater, & Seawater Matrix specific sample preparation and testing methods for environmental waters

More information

Organic Chemistry Calculations

Organic Chemistry Calculations Organic Chemistry Calculations There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations

More information

HS 1003 Part 2 HS 1003 Heavy Metals Test

HS 1003 Part 2 HS 1003 Heavy Metals Test HS 1003 Heavy Metals Test 1. Purpose This test method is used to analyse the heavy metal content in an aliquot portion of stabilised hot acetic acid extract by Atomic Absorption Spectroscopy (AAS). Note:

More information

Solutions and Dilutions

Solutions and Dilutions Learning Objectives Students should be able to: Content Design a procedure for making a particular solution and assess the advantages of different approaches. Choose the appropriate glassware to ensure

More information

Validation and Calibration. Definitions and Terminology

Validation and Calibration. Definitions and Terminology Validation and Calibration Definitions and Terminology ACCEPTANCE CRITERIA: The specifications and acceptance/rejection criteria, such as acceptable quality level and unacceptable quality level, with an

More information

KINETIC DETERMINATION OF SELENIUM BY VISIBLE SPECTROSCOPY (VERSION 1.8)

KINETIC DETERMINATION OF SELENIUM BY VISIBLE SPECTROSCOPY (VERSION 1.8) Selenium Determination, Page 1 KINETIC DETERMINATION OF SELENIUM BY VISIBLE SPECTROSCOPY I. BACKGROUND. (VERSION 1.8) The majority of reactions used in analytical chemistry possess the following characteristics:

More information

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4) Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical

More information

39. The determination of copper in brass

39. The determination of copper in brass Microscale Chemistry 163 39. The determination of copper in brass Topic Level Timing Description Metals chemical analysis. Post-16. 25 min. Apparatus (per group) In this experiment students dissolve some

More information

Performing Calculatons

Performing Calculatons Performing Calculatons There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations of them,

More information

Microbiology BIOL 275 DILUTIONS

Microbiology BIOL 275 DILUTIONS DILUTIONS Occasionally a solution is too concentrated to be used as is. For example, when one is performing manual blood counts, the blood contains too many cells to be counted as such. Or when performing

More information

Unit 2: Quantities in Chemistry

Unit 2: Quantities in Chemistry Mass, Moles, & Molar Mass Relative quantities of isotopes in a natural occurring element (%) E.g. Carbon has 2 isotopes C-12 and C-13. Of Carbon s two isotopes, there is 98.9% C-12 and 11.1% C-13. Find

More information

Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography

Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography INTRODUCTION The analysis of soft drinks for caffeine was able to be performed using UV-Vis. The complex sample

More information

UNITED STATES CONSUMER PRODUCT SAFETY COMMISSION DIRECTORATE FOR LABORATORY SCIENCES DIVISION OF CHEMISTRY 5 RESEARCH PLACE ROCKVILLE, MD 20850

UNITED STATES CONSUMER PRODUCT SAFETY COMMISSION DIRECTORATE FOR LABORATORY SCIENCES DIVISION OF CHEMISTRY 5 RESEARCH PLACE ROCKVILLE, MD 20850 UNITED STATES CONSUMER PRODUCT SAFETY COMMISSION DIRECTORATE FOR LABORATORY SCIENCES DIVISION OF CHEMISTRY 5 RESEARCH PLACE ROCKVILLE, MD 20850 Test Method: CPSC-CH-E1001-08.2 Standard Operating Procedure

More information

4.0 EXPERIMENT ON DETERMINATION OF CHLORIDES

4.0 EXPERIMENT ON DETERMINATION OF CHLORIDES 4.0 EXPERIMENT ON DETERMINATION OF CHLORIDES Sl. No. Contents Preamble 4.1 Aim 4.2 Introduction 4.2.1 Environmental Significance 4.3 Principle 4.4 Materials Required 4.4.1 Apparatus Required 4.4.2 Chemicals

More information

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND #3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric

More information

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14 STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14 OBJECTIVE The objective of this experiment will be the standardization of sodium hydroxide using potassium hydrogen phthalate by the titration

More information

Sample Analysis Design Step 2 Calibration/Standard Preparation Choice of calibration method dependent upon several factors:

Sample Analysis Design Step 2 Calibration/Standard Preparation Choice of calibration method dependent upon several factors: Step 2 Calibration/Standard Preparation Choice of calibration method dependent upon several factors: 1. potential matrix effects 2. number of samples 3. consistency of matrix across samples Step 2 Calibration/Standard

More information

Microbiological Testing of the Sawyer Mini Filter. 16 December 2013. Summary

Microbiological Testing of the Sawyer Mini Filter. 16 December 2013. Summary Microbiological Testing of the Sawyer Mini Filter 16 December 2013 Summary The Sawyer Mini Filter was tested for its ability to remove three microorganisms Raoultella terrigena, Bacillus subtilis, and

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

More information

Colorimetric Determination of Iron in Vitamin Tablets

Colorimetric Determination of Iron in Vitamin Tablets Cautions: 6 M hydrochloric acid is corrosive. Purpose: To colorimetrically determine the mass of iron present in commercial vitamin tablets using a prepared calibration curve. Introduction: Iron is considered

More information

COMMON LABORATORY APPARATUS

COMMON LABORATORY APPARATUS COMMON LABORATORY APPARATUS Beakers are useful as a reaction container or to hold liquid or solid samples. They are also used to catch liquids from titrations and filtrates from filtering operations. Bunsen

More information

Calcium Analysis by EDTA Titration

Calcium Analysis by EDTA Titration Calcium Analysis by EDTA Titration ne of the factors that establish the quality of a water supply is its degree of hardness. The hardness of water is defined in terms of its content of calcium and magnesium

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

Solubility Product Constants

Solubility Product Constants Solubility Product Constants PURPOSE To measure the solubility product constant (K sp ) of copper (II) iodate, Cu(IO 3 ) 2. GOALS 1 To measure the molar solubility of a sparingly soluble salt in water.

More information

Vitamin C Content of Fruit Juice

Vitamin C Content of Fruit Juice 1 Vitamin C Content of Fruit Juice Introduction Vitamin C Vitamins are organic compounds that have important biological functions. For instance, in humans they enable a variety of enzymes in the body to

More information

EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT

EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT PURPOSE: 1. To determine experimentally the molar solubility of potassium acid tartrate in water and in a solution of potassium nitrate. 2. To examine the effect of a common ion on the solubility of slightly

More information

Additional Lecture: TITRATION BASICS

Additional Lecture: TITRATION BASICS Additional Lecture: TITRATION BASICS 1 Definition and Applications Titration is the incremental addition of a reagent solution (called titrant) to the analyte until the reaction is complete Common applications:

More information

Analysis of Vitamin C Using Iodine. Introduction

Analysis of Vitamin C Using Iodine. Introduction Analysis of Vitamin C Using Iodine Introduction Vitamin C (ascorbic acid) is oxidized to dehydroascorbic acid using a mild oxidizing agent such as iodine. The oxidation is a two- electron process, following

More information

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation Chapter 3 Chemical Reactions and Reaction James F. Kirby Quinnipiac University Hamden, CT The study of the mass relationships in chemistry Based on the Law of Conservation of Mass

More information

EDXRF of Used Automotive Catalytic Converters

EDXRF of Used Automotive Catalytic Converters EDXRF of Used Automotive Catalytic Converters Energy Dispersive X-Ray Fluorescence (EDXRF) is a very powerful technique for measuring the concentration of elements in a sample. It is fast, nondestructive,

More information

Experiment 3 Limiting Reactants

Experiment 3 Limiting Reactants 3-1 Experiment 3 Limiting Reactants Introduction: Most chemical reactions require two or more reactants. Typically, one of the reactants is used up before the other, at which time the reaction stops. The

More information

Lab 5: Quantitative Analysis- Phosphates in Water By: A Generous Student. LBS 171L Section 9 TA: Dana October 27, 2005

Lab 5: Quantitative Analysis- Phosphates in Water By: A Generous Student. LBS 171L Section 9 TA: Dana October 27, 2005 How uch Phosphate is the Body Being Exposed to During a Lifetime by Showering? Lab 5: Quantitative Analysis- Phosphates in Water By: A Generous Student LBS 171L Section 9 TA: Dana October 7, 005 [Note:

More information

TITRIMETRIC ANALYSIS OF CHLORIDE

TITRIMETRIC ANALYSIS OF CHLORIDE TITRIMETRIC ANALYSIS OF CHLORIDE Introduction The purpose of this experiment is to compare two titrimetric methods for the analysis of chloride in a water-soluble solid. The two methods are: a weight titration

More information

Vitamin C quantification using reversed-phase ion-pairing HPLC

Vitamin C quantification using reversed-phase ion-pairing HPLC Vitamin C quantification using reversed-phase ion-pairing HPLC Thomas Grindberg and Kristy Williams Department of Chemistry, Concordia College, 901 8 th St S, Moorhead, MN 56562 Abstract Vitamin C, an

More information

OLIVÉR BÁNHIDI 1. Introduction

OLIVÉR BÁNHIDI 1. Introduction Materials Science and Engineering, Volume 39, No. 1 (2014), pp. 5 13. DETERMINATION OF THE ANTIMONY- AND STRONTIUM- CONTENT OF ALUMINIUM ALLOYS BY INDUCTIVELY COUPLED PLASMA ATOM EMISSION SPECTROMETRY

More information

(1) Hydrochloric acid reacts with sodium hypochlorite to form hypochlorous acid: NaOCl(aq) + HCl(aq) HOCl(aq) + NaCl(aq) hypochlorous acid

(1) Hydrochloric acid reacts with sodium hypochlorite to form hypochlorous acid: NaOCl(aq) + HCl(aq) HOCl(aq) + NaCl(aq) hypochlorous acid The Determination of Hypochlorite in Bleach Reading assignment: Chang, Chemistry 10 th edition, pages 156-159. We will study an example of a redox titration in order to determine the concentration of sodium

More information

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration. 81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum

More information

Acid Base Titrations

Acid Base Titrations Acid Base Titrations Introduction A common question chemists have to answer is how much of something is present in a sample or a product. If the product contains an acid or base, this question is usually

More information

Sample Problem: STOICHIOMETRY and percent yield calculations. How much H 2 O will be formed if 454 g of. decomposes? NH 4 NO 3 N 2 O + 2 H 2 O

Sample Problem: STOICHIOMETRY and percent yield calculations. How much H 2 O will be formed if 454 g of. decomposes? NH 4 NO 3 N 2 O + 2 H 2 O STOICHIOMETRY and percent yield calculations 1 Steps for solving Stoichiometric Problems 2 Step 1 Write the balanced equation for the reaction. Step 2 Identify your known and unknown quantities. Step 3

More information

Determination of the Sensitivity Range of Biuret Test for Undergraduate Biochemistry Experiments

Determination of the Sensitivity Range of Biuret Test for Undergraduate Biochemistry Experiments 77 Determination of the Sensitivity Range of Biuret Test for Undergraduate Biochemistry Experiments Gerardo Janairo * ; Marianne Linley Sy; Leonisa Yap; Nancy Llanos-Lazaro; Julita Robles Chemistry Department

More information

TITRATION OF VITAMIN C

TITRATION OF VITAMIN C TITRATION OF VITAMIN C Introduction: In this lab, we will be performing two different types of titrations on ascorbic acid, more commonly known as Vitamin C. The first will be an acid-base titration in

More information

Electrochemical Half Cells and Reactions

Electrochemical Half Cells and Reactions Suggested reading: Chang text pages 81 89 Cautions Heavy metals, such as lead, and solutions of heavy metals may be toxic and an irritant. Purpose To determine the cell potential (E cell ) for various

More information

Chapter Test B. Chapter: Measurements and Calculations

Chapter Test B. Chapter: Measurements and Calculations Assessment Chapter Test B Chapter: Measurements and Calculations PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.

More information

Lab 2 Biochemistry. Learning Objectives. Introduction. Lipid Structure and Role in Food. The lab has the following learning objectives.

Lab 2 Biochemistry. Learning Objectives. Introduction. Lipid Structure and Role in Food. The lab has the following learning objectives. 1 Lab 2 Biochemistry Learning Objectives The lab has the following learning objectives. Investigate the role of double bonding in fatty acids, through models. Developing a calibration curve for a Benedict

More information

ph: Measurement and Uses

ph: Measurement and Uses ph: Measurement and Uses One of the most important properties of aqueous solutions is the concentration of hydrogen ion. The concentration of H + (or H 3 O + ) affects the solubility of inorganic and organic

More information

Chemistry 4631. Instrumental Analysis Lecture 1. Chem 4631

Chemistry 4631. Instrumental Analysis Lecture 1. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 1 Syllabus Chemistry 4631 Spring 2016 Lecture: MWF 9:00 9:50 a.m. Chem 352 Attendance is expected. Instructor: Dr. Teresa D. Golden Chem 279, 565-2888, tgolden@unt.edu.

More information

GUIDELINES FOR THE VALIDATION OF ANALYTICAL METHODS FOR ACTIVE CONSTITUENT, AGRICULTURAL AND VETERINARY CHEMICAL PRODUCTS.

GUIDELINES FOR THE VALIDATION OF ANALYTICAL METHODS FOR ACTIVE CONSTITUENT, AGRICULTURAL AND VETERINARY CHEMICAL PRODUCTS. GUIDELINES FOR THE VALIDATION OF ANALYTICAL METHODS FOR ACTIVE CONSTITUENT, AGRICULTURAL AND VETERINARY CHEMICAL PRODUCTS October 2004 APVMA PO Box E240 KINGSTON 2604 AUSTRALIA http://www.apvma.gov.au

More information

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer Titration of a Diprotic Acid: Identifying an Unknown Computer 25 A diprotic acid is an acid that yields two H + ions per acid molecule. Examples of diprotic acids are sulfuric acid, H 2 SO 4, and carbonic

More information

Coordination Compounds with Copper (II) Prelab (Week 2)

Coordination Compounds with Copper (II) Prelab (Week 2) Coordination Compounds with Copper (II) Prelab (Week 2) Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Write the generic chemical formula for the coordination

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information

Determination of the Amount of Acid Neutralized by an Antacid Tablet Using Back Titration

Determination of the Amount of Acid Neutralized by an Antacid Tablet Using Back Titration Determination of the Amount of Acid Neutralized by an Antacid Tablet Using Back Titration GOAL AND OVERVIEW Antacids are bases that react stoichiometrically with acid. The number of moles of acid that

More information

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid Purpose: a) To purify samples of organic compounds that are solids at room temperature b) To dissociate the impure sample in the minimum

More information

Lead Testing and On Site Calibration for Water Testing Detection Range: 2 100ppb

Lead Testing and On Site Calibration for Water Testing Detection Range: 2 100ppb Document: AND Lead 100 7 2013 Lead Testing and On Site Calibration for Water Testing Detection Range: 2 100ppb July, 2013 Edition 1 ANDalyze, Inc., 2012. All rights reserved. Printed in USA. Table of Contents

More information

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

More information

Total Water Hardness

Total Water Hardness Test 14 INTRODUCTION When water passes through or over deposits such as limestone, the levels of Ca 2+, Mg 2+, and HCO Ð 3 ions present in the water can greatly increase and Hard-Water Cations cause the

More information

Mass of thoroughly dried filter paper. Mass of filter paper + precipitate after third drying. Mass of filter paper + precipitate after second drying

Mass of thoroughly dried filter paper. Mass of filter paper + precipitate after third drying. Mass of filter paper + precipitate after second drying Mass of KI tablet Mass of thoroughly dried filter paper Mass of filter paper + precipitate after first drying Mass of filter paper + precipitate after second drying Mass of filter paper + precipitate after

More information

Exp 13 Volumetric Analysis: Acid-Base titration

Exp 13 Volumetric Analysis: Acid-Base titration Exp 13 Volumetric Analysis: Acid-Base titration Exp. 13 video (time: 47:17 minutes) Titration - is the measurement of the volume of a standard solution required to completely react with a measured volume

More information

Building Electrochemical Cells

Building Electrochemical Cells Cautions Heavy metals, such as lead, and solutions of heavy metals may be toxic and an irritant. Purpose To determine the cell potential (E cell ) for various voltaic cells and compare the data with the

More information

Extraction of Caffeine from Energy Drinks

Extraction of Caffeine from Energy Drinks Boston University OpenBU Chemistry http://open.bu.edu Organic Chemistry Laboratory Experiments 2011-07-14 Extraction of Caffeine from Energy Drinks Mulcahy, Seann P. http://hdl.handle.net/2144/1418 Boston

More information

Determination of Ascorbic Acid in Vitamin C Tablets by Redox and Acid/Base Titrations

Determination of Ascorbic Acid in Vitamin C Tablets by Redox and Acid/Base Titrations hemistry 211 Spring 2011 Purpose: Determination of Ascorbic Acid in Vitamin Tablets by Redox and Acid/Base Titrations To determine the quantity of Vitamin (ascorbic acid) found in commercially available

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

Determination of the Mass Percentage of Copper in a Penny. Introduction

Determination of the Mass Percentage of Copper in a Penny. Introduction Determination of the Mass Percentage of Copper in a Penny Introduction This experiment will cost you one penny ($0.01). The penny must be minted after 1983. Any penny will do; for best results the penny

More information

USEPA 1 FerroVer Method 2 Method 8008 0.02 to 3.00 mg/l Fe Powder Pillows or AccuVac Ampuls

USEPA 1 FerroVer Method 2 Method 8008 0.02 to 3.00 mg/l Fe Powder Pillows or AccuVac Ampuls Iron, Total DOC316.53.01053 USEPA 1 FerroVer Method 2 Method 8008 0.02 to 3.00 mg/l Fe Powder Pillows or AccuVac Ampuls Scope and application: For water, wastewater and seawater; digestion is required

More information

Chemistry 2351: Inorganic Chemistry I Laboratory Manual

Chemistry 2351: Inorganic Chemistry I Laboratory Manual Spectroscopic Determination of a Complex Ion's Stoichiometry by Job's Method ABSTRACT This experiment is adapted from Angelici's classic experiment, but uses Fe(H 2 O) 6-n (SCN) n 3-n as the complex ion.

More information

VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY Q2(R1)

VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY Q2(R1) INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE ICH HARMONISED TRIPARTITE GUIDELINE VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY

More information

2C: One in a Million. Part 1: Making solutions. Name: Section: Date: Materials

2C: One in a Million. Part 1: Making solutions. Name: Section: Date: Materials Name: Section: Date: 2C: One in a Million Drinking water can contain up to 1.3 parts per million (ppm) of copper and still be considered safe. What does parts per million mean? Both living things and the

More information

Positive Test for Vitamin C. When a liquid containing Vitamin C is added to Indophenol Solution, the colour changes from Blue to Clear.

Positive Test for Vitamin C. When a liquid containing Vitamin C is added to Indophenol Solution, the colour changes from Blue to Clear. Sc ienc e 9-Biology Ex perim ent 6-4 Test ing for Vit am in C Name Due Date 10 Show Me Hand In Correct and Hand In Again By Purpose: To test some foods for the presence Vitamin C Materials: Small dropper

More information

CHEM 101/105 Numbers and mass / Counting and weighing Lect-03

CHEM 101/105 Numbers and mass / Counting and weighing Lect-03 CHEM 101/105 Numbers and mass / Counting and weighing Lect-03 Interpretation of Elemental Chemical Symbols, Chemical Formulas, and Chemical Equations Interpretation of an element's chemical symbol depends

More information

Precipitation Titration: Determination of Chloride by the Mohr Method by Dr. Deniz Korkmaz

Precipitation Titration: Determination of Chloride by the Mohr Method by Dr. Deniz Korkmaz Precipitation Titration: Determination of Chloride by the Mohr Method by Dr. Deniz Korkmaz Introduction Titration is a process by which the concentration of an unknown substance in solution is determined

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

NUTC R304. Use of Absorption Mechanisms to Decrease Heavy Metal Mobility

NUTC R304. Use of Absorption Mechanisms to Decrease Heavy Metal Mobility Use of Absorption Mechanisms to Decrease Heavy Metal Mobility by Jianmin Wang Honglan Shi Joe G. Burken NUTC R304 A National University Transportation Center at Missouri University of Science and Technology

More information

SPIKE RECOVERY AND DETERMINING A METHOD DETECTION LIMIT Pamela Doolittle, University of Wisconsin Madison, pssemrad@wisc.edu 2014

SPIKE RECOVERY AND DETERMINING A METHOD DETECTION LIMIT Pamela Doolittle, University of Wisconsin Madison, pssemrad@wisc.edu 2014 SPIKE RECOVERY AND DETERMINING A METHOD DETECTION LIMIT Pamela Doolittle, University of Wisconsin Madison, pssemrad@wisc.edu 2014 This experiment explores quality assurance practices which are commonly

More information

MILESTONE H E L P I N G C H E M I S T S

MILESTONE H E L P I N G C H E M I S T S MILESTONE H E L P I N G C H E M I S T S 8 good reasons to choose the Milestone DMA-80 1. No sample preparation The DMA-80 does not require any sample preparation or other wet chemistry prior the analysis.

More information

Calibration of Volumetric Glassware

Calibration of Volumetric Glassware CHEM 311L Quantitative Analysis Laboratory Revision 2.3 Calibration of Volumetric Glassware In this laboratory exercise, we will calibrate the three types of glassware typically used by an analytical chemist;

More information

Ecology Quality Assurance Glossary

Ecology Quality Assurance Glossary Ecology Quality Assurance Glossary Edited by William Kammin, Ecology Quality Assurance Officer Accreditation - A certification process for laboratories, designed to evaluate and document a lab s ability

More information

Properties of Acids and Bases

Properties of Acids and Bases Lab 22 Properties of Acids and Bases TN Standard 4.2: The student will investigate the characteristics of acids and bases. Have you ever brushed your teeth and then drank a glass of orange juice? What

More information

LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research

LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research J. Jones, J. Denbigh, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 20581 Key Words SPE, SOLA,

More information

Chemistry 119: Experiment 7. Potentiometric Titration of Ascorbic Acid in Vitamin C Tablets

Chemistry 119: Experiment 7. Potentiometric Titration of Ascorbic Acid in Vitamin C Tablets Chemistry 119: Experiment 7 Potentiometric Titration of Ascorbic Acid in Vitamin C Tablets Vitamin C is another name for ascorbic acid (C 6 H 8 O 6, see below ), a weak acid that can be determined by titration

More information

Molar Mass of Polyvinyl Alcohol by Viscosity

Molar Mass of Polyvinyl Alcohol by Viscosity Molar Mass of Polyvinyl Alcohol by Viscosity Introduction Polyvinyl Alcohol (PVOH) is a linear polymer (i. e., it has little branching) of Ethanol monomer units: -CH 2 -CHOH- Unlike most high molar mass

More information

Understanding Analytical Chemistry (Weighing, Mixing, Measuring and Evaluating)

Understanding Analytical Chemistry (Weighing, Mixing, Measuring and Evaluating) Name: Date: Understanding Analytical Chemistry (Weighing, Mixing, Measuring and Evaluating) High School Environmental Science AP Module 1 Environmental Lab NGSSS Big Ideas: This module is a laboratory-based

More information

Four common concentration units 1. Molarity 2. Weight Percent (Wt %), ppm, ppb 3. Molality 4. Mole Fraction. Molarity, M =

Four common concentration units 1. Molarity 2. Weight Percent (Wt %), ppm, ppb 3. Molality 4. Mole Fraction. Molarity, M = Four common concentration units 1. Molarity 2. Weight Percent (Wt %), ppm, ppb 3. Molality 4. Mole Fraction Molarity, M tells you how many s of solute are present in every liter of solution (solute-to-solution)

More information

BACTERIAL ENUMERATION

BACTERIAL ENUMERATION BACTERIAL ENUMERATION In the study of microbiology, there are numerous occasions when it is necessary to either estimate or determine the number of bacterial cells in a broth culture or liquid medium.

More information

Measurement and Calibration

Measurement and Calibration Adapted from: H. A. Neidig and J. N. Spencer Modular Laboratory Program in Chemistry Thompson Learning;, University of Pittsburgh Chemistry 0110 Laboratory Manual, 1998. Purpose To gain an understanding

More information

Calculation of Molar Masses. Molar Mass. Solutions. Solutions

Calculation of Molar Masses. Molar Mass. Solutions. Solutions Molar Mass Molar mass = Mass in grams of one mole of any element, numerically equal to its atomic weight Molar mass of molecules can be determined from the chemical formula and molar masses of elements

More information

Apparatus error for each piece of equipment = 100 x margin of error quantity measured

Apparatus error for each piece of equipment = 100 x margin of error quantity measured 1) Error Analysis Apparatus Errors (uncertainty) Every time you make a measurement with a piece of apparatus, there is a small margin of error (i.e. uncertainty) in that measurement due to the apparatus

More information

FOOD FOR THOUGHT Topical Insights from our Subject Matter Experts UNDERSTANDING WHAT IS NEEDED TO PRODUCE QUALITY DATA

FOOD FOR THOUGHT Topical Insights from our Subject Matter Experts UNDERSTANDING WHAT IS NEEDED TO PRODUCE QUALITY DATA FOOD FOR THOUGHT Topical Insights from our Subject Matter Experts UNDERSTANDING WHAT IS NEEDED TO PRODUCE QUALITY DATA The NFL White Paper Series Volume 7, January 2013 Overview and a Scenario With so

More information

Density Determinations

Density Determinations CHEM 121L General Chemistry Laboratory Revision 3.1 Density Determinations To learn about intensive physical properties. To learn how to measure the density of substances. To learn how to characterize

More information

Sample Analysis Design Isotope Dilution

Sample Analysis Design Isotope Dilution Isotope Dilution Most accurate and precise calibration method available Requires analyte with two stable isotopes Monoisotopic elements cannot be determined via isotope dilution Spike natural sample with

More information