CSc 28 Data representation. CSc 28 Fall

Size: px
Start display at page:

Download "CSc 28 Data representation. CSc 28 Fall"

Transcription

1 CSc 28 Data representation 1

2 Binary numbers Binary number is simply a number comprised of only 0's and 1's. Computers use binary numbers because it's easy for them to communicate using electrical current -- 0 is off, 1 is on. You can express any base 10 (our number system -- where each digit is between 0 and 9) with binary numbers. The need to translate decimal number to binary and binary to decimal. There are many ways in representing decimal number in binary numbers. 2

3 How does the binary system work? It is just like any other system In decimal system the base is 10 We have 10 possible values 0-9 In binary system the base is 2 We have only two possible values 0 or 1. The same as in any base, 0 digit has non contribution, where 1 s has contribution which depends at there position. 3

4 Example = = 3* * * = =1*2 4 +1*2 2 +1*2 0 4

5 Examples: decimal -- binary Find the binary representation of Find the decimal value represented by the following binary representations:

6 Examples: Representing fractional numbers Find the binary representations of: = = 0.11 Using only 8 binary digits find the binary representations of:

7 Number representation Representing whole numbers Representing fractional numbers 7

8 Integer Representations Unsigned notation Signed magnitude notion Excess notation Two s complement notation 8

9 Unsigned Representation Represents positive integers. Unsigned representation of 157 position Bit pattern contribution Addition is simple: =

10 Advantages: Advantages and disadvantages of unsigned notation One representation of zero Simple addition Disadvantages: Negative numbers can not be represented. The need of different notation to represent negative numbers 10

11 Representation of negative numbers Is a representation of negative numbers possible? Unfortunately: you can not just stick a negative sign in front of a binary number. (it does not work like that) There are three methods used to represent negative numbers. Signed magnitude notation Excess notation Two s complement notation 11

12 Signed Magnitude Representation Unsigned: - and + are the same. In signed magnitude the left-most bit represents the sign of the integer. 0 for positive numbers. 1 for negative numbers. The remaining bits represent to magnitude of the numbers. 12

13 Example Suppose is a signed magnitude representation. The sign bit is 1, then the number represented is negative position Bit pattern contribution The magnitude is with a value = 29 Then the number represented by is 29 13

14 Exercise has in signed magnitude notation. Find the signed magnitude of 37 10? 2. Using the signed magnitude notation find the 8-bit binary representation of the decimal value and Find the signed magnitude of 63 using 8-bit binary sequence? 14

15 Disadvantage of Signed Magnitude Addition and subtractions are difficult. Signs and magnitude, both have to carry out the required operation. They are two representations of = = To test if a number is 0 or not, the CPU will need to see whether it is or

16 Signed-Summary In signed magnitude notation, The most significant bit is used to represent the sign. 1 represents negative numbers 0 represents positive numbers. The unsigned value of the remaining bits represent The magnitude. Advantages: Represents positive and negative numbers Disadvantages: two representations of zero, Arithmetic operations are difficult. 16

17 Excess Notation In excess notation: The value represented is the unsigned value with a fixed value subtracted from it. For n - bit binary sequences the value subtracted fixed value is 2 (n-1) Most significant bit: 0 for negative numbers 1 for positive numbers 17

18 Excess Notation with n bits represent 2 n-1 is the decimal value in unsigned notation. Decimal value In unsigned notation - 2 n-1 = Decimal value In excess notation Therefore, in excess notation: will represent 0. 18

19 Example (1) - excess to decimal Find the decimal number represented by in excess notation. Unsigned value = = = Excess value: excess value = = =

20 Example (2) - decimal to excess Represent the decimal value 24 in 8-bit excess notation. We first add, 2 8-1, the fixed value = = 152 Then, find the unsigned value of = (unsigned notation) = (excess notation) 20

21 Example (3) Represent the decimal value -24 in 8-bit excess notation. We first add, 2 8-1, the fixed value = = 104 then, find the unsigned value of = (unsigned notation) = (excess notation) 21

22 Example (4) Unsigned = = The value represented in unsigned notation is 21 Sign Magnitude The sign bit is 1, so the sign is negative The magnitude is the unsigned value = 5 10 So the value represented in signed magnitude is Excess notation As an unsigned binary integer = subtracting = 2 4 = 16, we get = 5 10 So the value represented in excess notation is

23 Advantages of Excess Notation It can represent positive and negative integers. There is only one representation for 0. It is easy to compare two numbers. When comparing the bits can be treated as unsigned integers. Excess notation is not normally used to represent integers. It is mainly used in floating point representation for representing fractions (later floating point rep.) 23

24 Your turn 1. Find is an 8-bit binary sequence. Find the decimal value it represents if it was in unsigned and signed magnitude Suppose this representation is excess notation, find the decimal value it represents? 2. Using 8-bit binary sequence notation, find the unsigned, signed magnitude and excess notation of the decimal value 11 10? 24

25 Excess notation - Summary In excess notation, the value represented is the unsigned value with a fixed value subtracted from it For n-bit binary sequences the value subtracted is 2 (n-1) Most significant bit: 0 for negative numbers 1 positive numbers Advantages: Only one representation of zero Easy for comparison 25

26 Two s Complement Notation The most used representation for integers. All positive numbers begin with 0. All negative numbers begin with 1. One representation of zero 0 is represented as 0000 using 4-bit binary sequence 26

27 Two s Complement Notation with 4-bits Binary pattern Value in 2 s complement

28 Properties of Two s Complement Notation Positive numbers begin with 0 Negative numbers begin with 1 Only one representation of 0, i.e Relationship between +n and n

29 Advantages of Two s Complement Notation It is easy to add two numbers Subtraction can be easily performed. Multiplication is just a repeated addition. Division is just a repeated subtraction Two s complement is widely used in ALU (Arithmetic Logic Unit) 29

30 Evaluating numbers in two s complement notation Sign bit = 0, the number is positive. The value is determined in the usual way Sign bit = 1, the number is negative Three methods can be used: Method 1 decimal value of (n-1) bits, then subtract 2 n-1 Method 2 Method 3-2 n-1 is the contribution of the sign bit. Binary rep. of the corresponding positive number. Let V be its decimal value. - V is the required value. 30

31 Example in Two s Complement The most significant bit is 1, indicating a negative number Method = +5 ( = = 5-16 = -11) Method = -11 Method 3 Corresponding + number is = = 11 the result is then

32 Two s complement-summary In two s complement the most significant for an n-bit number has a contribution of 2 (n-1) One representation of zero All arithmetic operations can be performed by using addition and inversion. The most significant bit: 0 for positive and 1 for negative. Three methods can the decimal value of a negative number: Method 1 decimal value of (n-1) bits, then subtract 2 n-1 Method 2 Method 3-2 n-1 is the contribution of the sign bit. Binary rep. of the corresponding positive number. Let V be its decimal value. - V is the required value. 32

33 Exercise Determine the decimal value represented by in each of the following four systems. 1. Unsigned notation? 2. Signed magnitude notation? 3. Excess notation? 4. Two s complements? 33

34 Fraction Representation To represent fraction we need other representations: Fixed point representation Floating point representation 34

35 Fixed-Point Representation old position New position Bit pattern Contribution = Radix-point 35

36 Limitation of Fixed-Point Representation To represent large numbers or very small numbers we need a very long sequences of bits. This is because we have to give bits to both the integer part and the fraction part. 36

37 Floating Point Representation In decimal notation we can get around this problem using scientific notation or floating point notation Number Scientific notation Floating-point notation 1,245,000,000,

38 Floating Point could be represented as Sign Mantissa Base * * * A calculator might display 159 E14 Exponent 38

39 Floating point format M B E Sign mantissa or base exponent significand Sign Exponent Mantissa 39

40 Floating Point Representation format Sign Exponent Mantissa The exponent is biased by a fixed value b, called the bias The mantissa should be normalised, e.g. if the real mantissa is of the form 1.f then the normalised mantissa should be f, where f is a binary sequence 40

41 IEEE 745 Single Precision The number will occupy 32 bits The first bit represents the sign of the number; 1= negative 0= positive The next 8 bits will specify the exponent stored in biased 127 form The remaining 23 bits will carry the mantissa normalised to be between 1 and 2. i.e. 1<= mantissa < 2 41

42 Representation in IEEE 754 single precision Sign bit: 0 for positive and, 1 for negative numbers 8 biased exponent by bit normalised mantissa Sign Exponent Mantissa 42

43 Basic Conversion Converting a decimal number to a floating point number Steps: 1. Take the integer part of the number and generate the binary equivalent. 2. Take the fractional part and generate a binary fraction 3. Then place the two parts together and normalise 43

44 IEEE Example 1 Convert 6.75 to 32 bit IEEE format. 1. The Mantissa. The Integer first. 6 / 2 = 3 r 0 = / 2 = 1 r 1 1 / 2 = 0 r 1 2. Fraction next..75 * 2 = * 2 = 1.0 = put the two parts together Now normalise *

45 IEEE Example 1 Convert 6.75 to 32 bit IEEE format. 1. The Mantissa. The Integer first. 6 / 2 = 3 r 0 = / 2 = 1 r 1 1 / 2 = 0 r 1 2. Fraction next..75 * 2 = * 2 = 1.0 = put the two parts together Now normalise *

46 IEEE Example 1 Convert 6.75 to 32 bit IEEE format. 1. The Mantissa. The Integer first. 6 / 2 = 3 r 0 3 / 2 = 1 r 1 1 / 2 = 0 r 1 2. Fraction next..75 * 2 = * 2 = 1.0 = = Put the two parts together = Now normalise *

47 IEEE Biased 127 Exponent To generate a biased 127 exponent Take the value of the signed exponent and add 127 Example 2 16 then = value for the exponent would be 143 = So it is simply now an unsigned value 47

48 Possible Representations of an Exponent Binary Sign Magnitude 2's Complement Biased 127 Exponent {reserved} {reserved} 48

49 Why Biased? The smallest exponent Only one exponent zero The highest exponent is To increase the exponent by one simply add 1 to the present pattern. 49

50 Back to the example Our original example revisited * 2 2 Exponent is =129 or in binary NOTE: Mantissa always ends up with a value of 1 before the Dot. This is a waste of storage therefore it is implied but not actually stored is stored as in 32 bit floating point IEEE representation: sign(1) exponent(8) mantissa(23) 50

51 Representation in IEEE 754 single precision Sign bit: 0 for positive and, 1 for negative numbers 8 biased exponent by bit normalised mantissa Sign Exponent Mantissa 51

52 Example (2) Which number does the following IEEE single precision notation represent? The sign bit is 1, hence it is a negative number. The exponent is = It is biased by 127, hence the real exponent is = 1. The mantissa: It is normalised, hence the true mantissa is 1.01 = Finally, the number represented is: x 2 1 =

53 Single Precision Format The exponent is formatted using excess notation, with an implied base of 2 Example: Exponent: Representation: = 8 The stored values 0 and 255 of the exponent are used to indicate special values, the exponential range is restricted to to The number 0.0 is defined by a mantissa of 0 together with the special exponential value 0 The standard allows also values +/- (represented as mantissa +/-0 and exponent 255 Allows various other special conditions 53

54 In comparison The smallest and largest possible 32-bit integers in two s complement are only and

55 Range of numbers Normalized (positive range; negative is symmetric) smallest largest (1+0) = ( ) ( ) Positive underflow Positive overflow

56 Representation in IEEE 754 double precision format It uses 64 bits 1 bit sign 11 bit biased exponent 52 bit mantissa Sign Exponent Mantissa 56

57 IEEE 754 double precision Biased = bit exponent with an excess of 1023 For example: If the exponent is -1 Add 1023 to it = 1022 Find the binary representation of 1022 which is The exponent field will now hold Represent -1 with an excess of

58 IEEE 754 Encoding Single Precision Double Precision Represented Object Exponent Fraction Exponent Fraction non-zero 0 non-zero 1~254 anything 1~2046 anything +/- denormalized number +/- floating-point numbers /- infinity 255 non-zero 2047 non-zero NaN (Not a Number) 58

59 Floating Point Representation format (summary) Sign Exponent Mantissa Sign bit 0 for positive numbers 1 for negative numbers The exponent is biased by a fixed value B, called the Bias The mantissa should be normalised, e.g. if the real mantissa is of the form 1.M then the normalised mantissa should be M where M is a binary sequence 59

60 Character representation- ASCII ASCII (American Standard Code for Information Interchange) It is the scheme used to represent characters Each character is represented using 7-bit binary code If 8-bits are used, the first bit is always set to 0 Character representation in ASCII 60

61 ASCII example Symbol decimal Binary : ; < = > ? A B C

62 Character strings How to represent character strings? A collection of adjacent words (bit-string units) can store a sequence of letters 'H' 'e' 'l' 'l' o' ' ' 'W' 'o' 'r' 'l' 'd' '\0' Notation: enclose strings in double quotes "Hello world" Representation convention: null character defines end of string Null is sometimes written as '\0' Its binary representation is the number 0 62

63 Layered View of Representation Text string Information Information Sequence of characters Character Data Information Data Information Bit string Data Data 63

64 Working With A Layered View of Representation Represent SI at the two layers shown on the previous slide Representation schemes: Top layer - Character string to character sequence: Write each letter separately, enclosed in quotes. End string with \0 Bottom layer - Character to bit-string: Represent a character using the binary equivalent according to the ASCII table provided 64

65 Solution SI S I \ The colors are intended to help you read it; computers don t care that all the bits run together 65

66 Your turn Use the ASCII table to write the ASCII code for the following: CIS110 6 = 2*3 (1 space before and after the =) 66

67 Unicode - representation ASCII code can represent only 128 = 2 7 characters. It only represents the English Alphabet plus some control characters. Unicode is designed to represent the worldwide interchange. It uses 16 bits and can represents 32,768 characters. For compatibility, the first 128 Unicode are the same as the one of the ASCII. 67

68 Color representation Colours can represented using a sequence of bits. 256 colors how many bits? Hint for calculating To figure out how many bits are needed to represent a range of values, figure out the smallest power of 2 that is equal to or bigger than the size of the range. That is, find x for 2 x => bit color how many possible colors can be represented? Hints 16 million possible colors (why 16 millions?) 68

69 24-bits -- the True colour 24-bit color is often referred to as the true color. Any real-life shade, detected by the naked eye, will be among the 16 million possible colors. 69

70 Example: 2-bit per pixel = (white) 4=2 2 choices (off, off)=white 01 (off, on)=light grey 0 1 = (light grey) 10 (on, off)=dark grey = (dark grey) 11 (on, on)=black 1 0 = (black)

71 Image representation An image can be divided into many tiny squares, called pixels Each pixel has a particular colour The quality of the picture depends on two factors: the density of pixels The length of the word representing colours The resolution of an image is the density of pixels The higher the resolution the more information the image contains 71

72 Bitmap Images Each individual pixel (pi(x)cture element) in a graphic stored as a binary number Pixel: A small area with associated coordinate location Example: each point below is represented by a 4-bit code corresponding to 1 of 16 shades of gray 72

73 Representing Sound Graphically X axis: time Y axis: pressure A: amplitude (volume) : wavelength (inverse of frequency = 1/ ) 73

74 Sampling Sampling is a method used to digitise sound waves. A sample is the measurement of the amplitude at a point in time. The quality of the sound depends on: The sampling rate, the faster the better The size of the word used to represent a sample. 74

75 Digitizing Sound Capture amplitude at these points Lose all variation between data points Zoomed Low Frequency Signal 75

76 Summary Integer representation Unsigned, Signed, Excess notation, and Two s complement. Fraction representation Floating point (IEEE 754 format ) Single and double precision Character representation Colour representation Sound representation 76

77 Exercise 1. Represent +0.8 in the following floating-point representation: 1-bit sign 4-bit exponent 6-bit normalised mantissa (significand). 2. Convert the value represented back to decimal. 3. Calculate the relative error of the representation. 77

Data Storage 3.1. Foundations of Computer Science Cengage Learning

Data Storage 3.1. Foundations of Computer Science Cengage Learning 3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how

More information

Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:

Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to: Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how

More information

The string of digits 101101 in the binary number system represents the quantity

The string of digits 101101 in the binary number system represents the quantity Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for

More information

Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit

Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit Decimal Division Remember 4th grade long division? 43 // quotient 12 521 // divisor dividend -480 41-36 5 // remainder Shift divisor left (multiply by 10) until MSB lines up with dividend s Repeat until

More information

Solution for Homework 2

Solution for Homework 2 Solution for Homework 2 Problem 1 a. What is the minimum number of bits that are required to uniquely represent the characters of English alphabet? (Consider upper case characters alone) The number of

More information

Number Representation

Number Representation Number Representation CS10001: Programming & Data Structures Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Topics to be Discussed How are numeric data

More information

This Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers

This Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers This Unit: Floating Point Arithmetic CIS 371 Computer Organization and Design Unit 7: Floating Point App App App System software Mem CPU I/O Formats Precision and range IEEE 754 standard Operations Addition

More information

ECE 0142 Computer Organization. Lecture 3 Floating Point Representations

ECE 0142 Computer Organization. Lecture 3 Floating Point Representations ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,

More information

Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1

Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1 Divide: Paper & Pencil Computer Architecture ALU Design : Division and Floating Point 1001 Quotient Divisor 1000 1001010 Dividend 1000 10 101 1010 1000 10 (or Modulo result) See how big a number can be

More information

HOMEWORK # 2 SOLUTIO

HOMEWORK # 2 SOLUTIO HOMEWORK # 2 SOLUTIO Problem 1 (2 points) a. There are 313 characters in the Tamil language. If every character is to be encoded into a unique bit pattern, what is the minimum number of bits required to

More information

LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (0-9) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 10-1 10-2 10-3

More information

To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic:

To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic: Binary Numbers In computer science we deal almost exclusively with binary numbers. it will be very helpful to memorize some binary constants and their decimal and English equivalents. By English equivalents

More information

This 3-digit ASCII string could also be calculated as n = (Data[2]-0x30) +10*((Data[1]-0x30)+10*(Data[0]-0x30));

This 3-digit ASCII string could also be calculated as n = (Data[2]-0x30) +10*((Data[1]-0x30)+10*(Data[0]-0x30)); Introduction to Embedded Microcomputer Systems Lecture 5.1 2.9. Conversions ASCII to binary n = 100*(Data[0]-0x30) + 10*(Data[1]-0x30) + (Data[2]-0x30); This 3-digit ASCII string could also be calculated

More information

Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer

Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer Computers CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 3, 2009 A computer performs 2 basic functions: 1.

More information

Chapter 4: Computer Codes

Chapter 4: Computer Codes Slide 1/30 Learning Objectives In this chapter you will learn about: Computer data Computer codes: representation of data in binary Most commonly used computer codes Collating sequence 36 Slide 2/30 Data

More information

Computer Science 281 Binary and Hexadecimal Review

Computer Science 281 Binary and Hexadecimal Review Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two

More information

Binary Representation. Number Systems. Base 10, Base 2, Base 16. Positional Notation. Conversion of Any Base to Decimal.

Binary Representation. Number Systems. Base 10, Base 2, Base 16. Positional Notation. Conversion of Any Base to Decimal. Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must be able to handle more than just values for real world problems

More information

Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1

Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1 Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1

More information

CHAPTER 5 Round-off errors

CHAPTER 5 Round-off errors CHAPTER 5 Round-off errors In the two previous chapters we have seen how numbers can be represented in the binary numeral system and how this is the basis for representing numbers in computers. Since any

More information

Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC

Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n

More information

1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal:

1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: Exercises 1 - number representations Questions 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: (a) 3012 (b) - 435 2. For each of

More information

Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML. By Prashanth Tilleti

Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML. By Prashanth Tilleti Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML By Prashanth Tilleti Advisor Dr. Matthew Fluet Department of Computer Science B. Thomas Golisano

More information

Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8

Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8 ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: Computer Organization and Architecture Lecture 2: Number Systems and Arithmetic Number Systems - Base The number system that we use is base : 734 = + 7 + 3 + 4 = x + 7x + 3x + 4x = x 3 + 7x

More information

Numbering Systems. InThisAppendix...

Numbering Systems. InThisAppendix... G InThisAppendix... Introduction Binary Numbering System Hexadecimal Numbering System Octal Numbering System Binary Coded Decimal (BCD) Numbering System Real (Floating Point) Numbering System BCD/Binary/Decimal/Hex/Octal

More information

Binary Numbering Systems

Binary Numbering Systems Binary Numbering Systems April 1997, ver. 1 Application Note 83 Introduction Binary numbering systems are used in virtually all digital systems, including digital signal processing (DSP), networking, and

More information

2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal

2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal 2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base-2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal

More information

Attention: This material is copyright 1995-1997 Chris Hecker. All rights reserved.

Attention: This material is copyright 1995-1997 Chris Hecker. All rights reserved. Attention: This material is copyright 1995-1997 Chris Hecker. All rights reserved. You have permission to read this article for your own education. You do not have permission to put it on your website

More information

Lecture 2. Binary and Hexadecimal Numbers

Lecture 2. Binary and Hexadecimal Numbers Lecture 2 Binary and Hexadecimal Numbers Purpose: Review binary and hexadecimal number representations Convert directly from one base to another base Review addition and subtraction in binary representations

More information

Bachelors of Computer Application Programming Principle & Algorithm (BCA-S102T)

Bachelors of Computer Application Programming Principle & Algorithm (BCA-S102T) Unit- I Introduction to c Language: C is a general-purpose computer programming language developed between 1969 and 1973 by Dennis Ritchie at the Bell Telephone Laboratories for use with the Unix operating

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS3 Introduction to Numerical Methods Lecture Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506-0633 August 7, 05 Number in

More information

DNA Data and Program Representation. Alexandre David 1.2.05 adavid@cs.aau.dk

DNA Data and Program Representation. Alexandre David 1.2.05 adavid@cs.aau.dk DNA Data and Program Representation Alexandre David 1.2.05 adavid@cs.aau.dk Introduction Very important to understand how data is represented. operations limits precision Digital logic built on 2-valued

More information

plc numbers - 13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums

plc numbers - 13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums plc numbers - 3. Topics: Number bases; binary, octal, decimal, hexadecimal Binary calculations; s compliments, addition, subtraction and Boolean operations Encoded values; BCD and ASCII Error detection;

More information

Section 1.4 Place Value Systems of Numeration in Other Bases

Section 1.4 Place Value Systems of Numeration in Other Bases Section.4 Place Value Systems of Numeration in Other Bases Other Bases The Hindu-Arabic system that is used in most of the world today is a positional value system with a base of ten. The simplest reason

More information

2011, The McGraw-Hill Companies, Inc. Chapter 3

2011, The McGraw-Hill Companies, Inc. Chapter 3 Chapter 3 3.1 Decimal System The radix or base of a number system determines the total number of different symbols or digits used by that system. The decimal system has a base of 10 with the digits 0 through

More information

Arithmetic in MIPS. Objectives. Instruction. Integer arithmetic. After completing this lab you will:

Arithmetic in MIPS. Objectives. Instruction. Integer arithmetic. After completing this lab you will: 6 Objectives After completing this lab you will: know how to do integer arithmetic in MIPS know how to do floating point arithmetic in MIPS know about conversion from integer to floating point and from

More information

Today. Binary addition Representing negative numbers. Andrew H. Fagg: Embedded Real- Time Systems: Binary Arithmetic

Today. Binary addition Representing negative numbers. Andrew H. Fagg: Embedded Real- Time Systems: Binary Arithmetic Today Binary addition Representing negative numbers 2 Binary Addition Consider the following binary numbers: 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 How do we add these numbers? 3 Binary Addition 0 0 1 0 0 1 1

More information

Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 04 Digital Logic II May, I before starting the today s lecture

More information

Numerical Matrix Analysis

Numerical Matrix Analysis Numerical Matrix Analysis Lecture Notes #10 Conditioning and / Peter Blomgren, blomgren.peter@gmail.com Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research

More information

EE 261 Introduction to Logic Circuits. Module #2 Number Systems

EE 261 Introduction to Logic Circuits. Module #2 Number Systems EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook

More information

2.2 Scientific Notation: Writing Large and Small Numbers

2.2 Scientific Notation: Writing Large and Small Numbers 2.2 Scientific Notation: Writing Large and Small Numbers A number written in scientific notation has two parts. A decimal part: a number that is between 1 and 10. An exponential part: 10 raised to an exponent,

More information

Basic Use of the TI-84 Plus

Basic Use of the TI-84 Plus Basic Use of the TI-84 Plus Topics: Key Board Sections Key Functions Screen Contrast Numerical Calculations Order of Operations Built-In Templates MATH menu Scientific Notation The key VS the (-) Key Navigation

More information

26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order 26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

More information

Binary Adders: Half Adders and Full Adders

Binary Adders: Half Adders and Full Adders Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order

More information

Monday January 19th 2015 Title: "Transmathematics - a survey of recent results on division by zero" Facilitator: TheNumberNullity / James Anderson, UK

Monday January 19th 2015 Title: Transmathematics - a survey of recent results on division by zero Facilitator: TheNumberNullity / James Anderson, UK Monday January 19th 2015 Title: "Transmathematics - a survey of recent results on division by zero" Facilitator: TheNumberNullity / James Anderson, UK It has been my pleasure to give two presentations

More information

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Data Representation Binary Codes Why 6-3-1-1 and Excess-3? Data Representation (1/2) Each numbering

More information

ASCII Characters. 146 CHAPTER 3 Information Representation. The sign bit is 1, so the number is negative. Converting to decimal gives

ASCII Characters. 146 CHAPTER 3 Information Representation. The sign bit is 1, so the number is negative. Converting to decimal gives 146 CHAPTER 3 Information Representation The sign bit is 1, so the number is negative. Converting to decimal gives 37A (hex) = 134 (dec) Notice that the hexadecimal number is not written with a negative

More information

Review of Scientific Notation and Significant Figures

Review of Scientific Notation and Significant Figures II-1 Scientific Notation Review of Scientific Notation and Significant Figures Frequently numbers that occur in physics and other sciences are either very large or very small. For example, the speed of

More information

CSI 333 Lecture 1 Number Systems

CSI 333 Lecture 1 Number Systems CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...

More information

Digital Design. Assoc. Prof. Dr. Berna Örs Yalçın

Digital Design. Assoc. Prof. Dr. Berna Örs Yalçın Digital Design Assoc. Prof. Dr. Berna Örs Yalçın Istanbul Technical University Faculty of Electrical and Electronics Engineering Office Number: 2318 E-mail: siddika.ors@itu.edu.tr Grading 1st Midterm -

More information

Digital Logic Design. Introduction

Digital Logic Design. Introduction Digital Logic Design Introduction A digital computer stores data in terms of digits (numbers) and proceeds in discrete steps from one state to the next. The states of a digital computer typically involve

More information

Chapter 1. Binary, octal and hexadecimal numbers

Chapter 1. Binary, octal and hexadecimal numbers Chapter 1. Binary, octal and hexadecimal numbers This material is covered in the books: Nelson Magor Cooke et al, Basic mathematics for electronics (7th edition), Glencoe, Lake Forest, Ill., 1992. [Hamilton

More information

Chapter 1: Digital Systems and Binary Numbers

Chapter 1: Digital Systems and Binary Numbers Chapter 1: Digital Systems and Binary Numbers Digital age and information age Digital computers general purposes many scientific, industrial and commercial applications Digital systems telephone switching

More information

Binary Numbers. Binary Octal Hexadecimal

Binary Numbers. Binary Octal Hexadecimal Binary Numbers Binary Octal Hexadecimal Binary Numbers COUNTING SYSTEMS UNLIMITED... Since you have been using the 10 different digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 all your life, you may wonder how

More information

1. Convert the following base 10 numbers into 8-bit 2 s complement notation 0, -1, -12

1. Convert the following base 10 numbers into 8-bit 2 s complement notation 0, -1, -12 C5 Solutions 1. Convert the following base 10 numbers into 8-bit 2 s complement notation 0, -1, -12 To Compute 0 0 = 00000000 To Compute 1 Step 1. Convert 1 to binary 00000001 Step 2. Flip the bits 11111110

More information

Binary Representation

Binary Representation Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must tbe able to handle more than just values for real world problems

More information

Encoding Text with a Small Alphabet

Encoding Text with a Small Alphabet Chapter 2 Encoding Text with a Small Alphabet Given the nature of the Internet, we can break the process of understanding how information is transmitted into two components. First, we have to figure out

More information

Today s topics. Digital Computers. More on binary. Binary Digits (Bits)

Today s topics. Digital Computers. More on binary. Binary Digits (Bits) Today s topics! Binary Numbers! Brookshear.-.! Slides from Prof. Marti Hearst of UC Berkeley SIMS! Upcoming! Networks Interactive Introduction to Graph Theory http://www.utm.edu/cgi-bin/caldwell/tutor/departments/math/graph/intro

More information

Useful Number Systems

Useful Number Systems Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2

More information

Chapter 5. Binary, octal and hexadecimal numbers

Chapter 5. Binary, octal and hexadecimal numbers Chapter 5. Binary, octal and hexadecimal numbers A place to look for some of this material is the Wikipedia page http://en.wikipedia.org/wiki/binary_numeral_system#counting_in_binary Another place that

More information

Measures of Error: for exact x and approximation x Absolute error e = x x. Relative error r = (x x )/x.

Measures of Error: for exact x and approximation x Absolute error e = x x. Relative error r = (x x )/x. ERRORS and COMPUTER ARITHMETIC Types of Error in Numerical Calculations Initial Data Errors: from experiment, modeling, computer representation; problem dependent but need to know at beginning of calculation.

More information

NUMBER SYSTEMS. William Stallings

NUMBER SYSTEMS. William Stallings NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html

More information

MACHINE INSTRUCTIONS AND PROGRAMS

MACHINE INSTRUCTIONS AND PROGRAMS CHAPTER 2 MACHINE INSTRUCTIONS AND PROGRAMS CHAPTER OBJECTIVES In this chapter you will learn about: Machine instructions and program execution, including branching and subroutine call and return operations

More information

The use of binary codes to represent characters

The use of binary codes to represent characters The use of binary codes to represent characters Teacher s Notes Lesson Plan x Length 60 mins Specification Link 2.1.4/hi Character Learning objective (a) Explain the use of binary codes to represent characters

More information

The programming language C. sws1 1

The programming language C. sws1 1 The programming language C sws1 1 The programming language C invented by Dennis Ritchie in early 1970s who used it to write the first Hello World program C was used to write UNIX Standardised as K&C (Kernighan

More information

Sources: On the Web: Slides will be available on:

Sources: On the Web: Slides will be available on: C programming Introduction The basics of algorithms Structure of a C code, compilation step Constant, variable type, variable scope Expression and operators: assignment, arithmetic operators, comparison,

More information

Lecture 8: Binary Multiplication & Division

Lecture 8: Binary Multiplication & Division Lecture 8: Binary Multiplication & Division Today s topics: Addition/Subtraction Multiplication Division Reminder: get started early on assignment 3 1 2 s Complement Signed Numbers two = 0 ten 0001 two

More information

Q-Format number representation. Lecture 5 Fixed Point vs Floating Point. How to store Q30 number to 16-bit memory? Q-format notation.

Q-Format number representation. Lecture 5 Fixed Point vs Floating Point. How to store Q30 number to 16-bit memory? Q-format notation. Lecture 5 Fixed Point vs Floating Point Objectives: Understand fixed point representations Understand scaling, overflow and rounding in fixed point Understand Q-format Understand TM32C67xx floating point

More information

Number Systems and Radix Conversion

Number Systems and Radix Conversion Number Systems and Radix Conversion Sanjay Rajopadhye, Colorado State University 1 Introduction These notes for CS 270 describe polynomial number systems. The material is not in the textbook, but will

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

Floating point package user s guide By David Bishop (dbishop@vhdl.org)

Floating point package user s guide By David Bishop (dbishop@vhdl.org) Floating point package user s guide By David Bishop (dbishop@vhdl.org) Floating-point numbers are the favorites of software people, and the least favorite of hardware people. The reason for this is because

More information

Number Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi)

Number Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi) Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi) INTRODUCTION System- A number system defines a set of values to represent quantity. We talk about the number of people

More information

Pemrograman Dasar. Basic Elements Of Java

Pemrograman Dasar. Basic Elements Of Java Pemrograman Dasar Basic Elements Of Java Compiling and Running a Java Application 2 Portable Java Application 3 Java Platform Platform: hardware or software environment in which a program runs. Oracle

More information

Base Conversion written by Cathy Saxton

Base Conversion written by Cathy Saxton Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,

More information

Numeral Systems. The number twenty-five can be represented in many ways: Decimal system (base 10): 25 Roman numerals:

Numeral Systems. The number twenty-five can be represented in many ways: Decimal system (base 10): 25 Roman numerals: Numeral Systems Which number is larger? 25 8 We need to distinguish between numbers and the symbols that represent them, called numerals. The number 25 is larger than 8, but the numeral 8 above is larger

More information

Decimal form. Fw.d Exponential form Ew.d Ew.dEe Scientific form ESw.d ESw.dEe Engineering form ENw.d ENw.dEe Lw. Horizontal

Decimal form. Fw.d Exponential form Ew.d Ew.dEe Scientific form ESw.d ESw.dEe Engineering form ENw.d ENw.dEe Lw. Horizontal Fortran Formats The tedious part of using Fortran format is to master many format edit descriptors. Each edit descriptor tells the system how to handle certain type of values or activity. Each value requires

More information

Activity 1: Using base ten blocks to model operations on decimals

Activity 1: Using base ten blocks to model operations on decimals Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division

More information

A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc

A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc Other architectures Example. Accumulator-based machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc

More information

MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.

MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers. 1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with

More information

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

More information

Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs

Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs Nathan Whitehead Alex Fit-Florea ABSTRACT A number of issues related to floating point accuracy and compliance are a frequent

More information

INTERNATIONAL TELECOMMUNICATION UNION

INTERNATIONAL TELECOMMUNICATION UNION INTERNATIONAL TELECOMMUNICATION UNION ITU-T X.690 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (07/2002) SERIES X: DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS OSI networking and system aspects Abstract

More information

Lecture 11: Number Systems

Lecture 11: Number Systems Lecture 11: Number Systems Numeric Data Fixed point Integers (12, 345, 20567 etc) Real fractions (23.45, 23., 0.145 etc.) Floating point such as 23. 45 e 12 Basically an exponent representation Any number

More information

Exponents, Radicals, and Scientific Notation

Exponents, Radicals, and Scientific Notation General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

More information

Everything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6

Everything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6 Everything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6 Number Systems No course on programming would be complete without a discussion of the Hexadecimal (Hex) number

More information

MEMORY STORAGE CALCULATIONS. Professor Jonathan Eckstein (adapted from a document due to M. Sklar and C. Iyigun)

MEMORY STORAGE CALCULATIONS. Professor Jonathan Eckstein (adapted from a document due to M. Sklar and C. Iyigun) 1/29/2007 Calculations Page 1 MEMORY STORAGE CALCULATIONS Professor Jonathan Eckstein (adapted from a document due to M. Sklar and C. Iyigun) An important issue in the construction and maintenance of information

More information

Positional Numbering System

Positional Numbering System APPENDIX B Positional Numbering System A positional numbering system uses a set of symbols. The value that each symbol represents, however, depends on its face value and its place value, the value associated

More information

Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:

Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers: Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules

More information

Data Storage. 1s and 0s

Data Storage. 1s and 0s Data Storage As mentioned, computer science involves the study of algorithms and getting machines to perform them before we dive into the algorithm part, let s study the machines that we use today to do

More information

What Every Computer Scientist Should Know About Floating-Point Arithmetic

What Every Computer Scientist Should Know About Floating-Point Arithmetic What Every Computer Scientist Should Know About Floating-Point Arithmetic D Note This document is an edited reprint of the paper What Every Computer Scientist Should Know About Floating-Point Arithmetic,

More information

Name: Class: Date: 9. The compiler ignores all comments they are there strictly for the convenience of anyone reading the program.

Name: Class: Date: 9. The compiler ignores all comments they are there strictly for the convenience of anyone reading the program. Name: Class: Date: Exam #1 - Prep True/False Indicate whether the statement is true or false. 1. Programming is the process of writing a computer program in a language that the computer can respond to

More information

The New IoT Standard: Any App for Any Device Using Any Data Format. Mike Weiner Product Manager, Omega DevCloud KORE Telematics

The New IoT Standard: Any App for Any Device Using Any Data Format. Mike Weiner Product Manager, Omega DevCloud KORE Telematics The New IoT Standard: Any App for Any Device Using Any Data Format Mike Weiner Product Manager, Omega DevCloud KORE Telematics About KORE The world s largest M2M/IoT services provider 12 Carriers Enterprise

More information

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have 8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents

More information

Figure 1. A typical Laboratory Thermometer graduated in C.

Figure 1. A typical Laboratory Thermometer graduated in C. SIGNIFICANT FIGURES, EXPONENTS, AND SCIENTIFIC NOTATION 2004, 1990 by David A. Katz. All rights reserved. Permission for classroom use as long as the original copyright is included. 1. SIGNIFICANT FIGURES

More information

This section describes how LabVIEW stores data in memory for controls, indicators, wires, and other objects.

This section describes how LabVIEW stores data in memory for controls, indicators, wires, and other objects. Application Note 154 LabVIEW Data Storage Introduction This Application Note describes the formats in which you can save data. This information is most useful to advanced users, such as those using shared

More information

1 1 0 1 0 1 0 1 ( 214 (represen ed by flipping) - 256 (magnitude = -42) 1 1 0 1 0 1 1 0 = -128 + 64 + 16 + 4 + 1 = -42 (flip the bits and add 1)

1 1 0 1 0 1 0 1 ( 214 (represen ed by flipping) - 256 (magnitude = -42) 1 1 0 1 0 1 1 0 = -128 + 64 + 16 + 4 + 1 = -42 (flip the bits and add 1) 1. Express 42 (decimal) in 8-bit binary 128 64 32 16 8 4 2 1 0 0 1 0 1 0 1 0 = 32 + 8 + 2 = 42 NOTE: This document is not officially endorsed by the Department of Informatics, or the lecturers responsible

More information

Zuse's Z3 Square Root Algorithm Talk given at Fall meeting of the Ohio Section of the MAA October 1999 - College of Wooster

Zuse's Z3 Square Root Algorithm Talk given at Fall meeting of the Ohio Section of the MAA October 1999 - College of Wooster Zuse's Z3 Square Root Algorithm Talk given at Fall meeting of the Ohio Section of the MAA October 1999 - College of Wooster Abstract Brian J. Shelburne Dept of Math and Comp Sci Wittenberg University In

More information

IT:101 Cisco Networking Academy I Subnetting

IT:101 Cisco Networking Academy I Subnetting IT:101 Cisco Networking Academy I Subnetting The IPv4 address is 32 bits long and it is written in the form of dotted decimal notation. IP address in binary format: 11000000.00000001.00000001.00000020

More information

A-level COMPUTER SCIENCE

A-level COMPUTER SCIENCE A-level COMPUTER SCIENCE Paper 2 TBC am/pm 2 hours 30 minutes Materials There are no additional materials required for this paper. Instructions Use black ink or black ball-point pen. Fill in the boxes

More information