ECS289: Scalable Machine Learning

Size: px
Start display at page:

Download "ECS289: Scalable Machine Learning"

Transcription

1 ECS289: Scalable Machine Learning Big-O Notations Cho-Jui Hsieh UC Davis Oct 20, 2015

2 Outline Time complexity and Big-O notations Time complexity for basic linear algebra operators

3 Time Complexity From Wikipedia: The time complexity of an algorithm quantifies the amount of time taken by an algorithm to run as a function of the length of the input The time complexity of an algorithm is commonly expressed using big O notation, which excludes coefficients and lower order terms.

4 Time Complexity From Wikipedia: The time complexity of an algorithm quantifies the amount of time taken by an algorithm to run as a function of the length of the input The time complexity of an algorithm is commonly expressed using big O notation, which excludes coefficients and lower order terms. Although time complexity is a good indication of efficiency, in practical numerical computation sometimes constants are important: For example, time for running 1 billion operations: exp : secs * : 1.84 secs / : 7.31 secs + : 1.77 secs In this course we will ignore these constants

5 Big-O Definition of O( ): Let f and g be two functions, we write f (x) = O(g(x)) as x if and only if there exists a positive constant M and x 0 such that f (x) M g(x) for all x x 0 In short, f (x) = O(g(x)) means f is upper bounded by g up to a constant factor

6 Big-O Definition of O( ): Let f and g be two functions, we write f (x) = O(g(x)) as x if and only if there exists a positive constant M and x 0 such that f (x) M g(x) for all x x 0 In short, f (x) = O(g(x)) means f is upper bounded by g up to a constant factor How to show the time complexity O(g(x))? Show there exists a way to implement the algorithm and the implementation requires Cg(x) operations for some C

7 Big-Omega Definition of Ω( ): Let f and g be two functions, we write f (x) = Ω(g(x)) as x if and only if there exists a positive constant m and x 0 such that f (x) m g(x) for all x x 0 In short, f (x) = Ω(g(x)) means f is lower bounded by g up to a constant factor

8 Big-Omega Definition of Ω( ): Let f and g be two functions, we write f (x) = Ω(g(x)) as x if and only if there exists a positive constant m and x 0 such that f (x) m g(x) for all x x 0 In short, f (x) = Ω(g(x)) means f is lower bounded by g up to a constant factor How to show the time complexity Ω(g(x))? Prove any implementation requires at least Cg(x) operations for some constant C.

9 Big-Theta Definition of Θ( ): Let f and g be two functions, we write f (x) = Θ(g(x)) as x if and only if there exists positive constant m, M and x 0 such that M g(x) f (x) m g(x) for all x x 0 In short, f (x) = Θ(g(x)) means f has the same order with g up to a constant factor

10 Big-Theta Definition of Θ( ): Let f and g be two functions, we write f (x) = Θ(g(x)) as x if and only if there exists positive constant m, M and x 0 such that M g(x) f (x) m g(x) for all x x 0 In short, f (x) = Θ(g(x)) means f has the same order with g up to a constant factor How to show the time complexity Θ(g(x))? Show both Big-O and Big-Omega

11 Count number of operations Count the total number of operations (+,,, /, exp, log, if,... ) Only need to count the order of operations, and then use the big-o notation

12 Dense vector and sparse vector If x, y R m are dense: x + y, x y, x T y: O(m) operations If x, y R m, x is dense and y is sparse: x + y, x y, x T y: O(nnz(y)) operations If x, y R m and both of them are sparse: x + y, x y, x T y: O(nnz(y) + nnz(x)) operations

13 Dense Matrix vs Sparse Matrix Any matrix X R m n can be dense or sparse Dense Matrix: most entries in X are nonzero (mn space) Sparse Matrix: only few entries in X are nonzero (O(nnz) space)

14 Dense Matrix Operations Let A R m n, B R m n, s R A + B, sa, A T : O(mn) operations Let A R m n, b R n 1 Ab: O(mn) operations

15 Dense Matrix Operations Matrix-matrix multiplication: let A R m k, B R k n, what is the time complexity of computing AB?

16 Dense Matrix Operations Assume A, B R n n, what is the time complexity of computing AB? Naive implementation: O(n 3 ) Theoretical best: O(n 2.xxx ) (but slower than naive implementation in practice) Best way: using BLAS (Basic Linear Algebra Subprograms)

17 Dense Matrix Operations BLAS matrix product: O(mnk) for computing AB where A R m k, B R k n Compute matrix product block by block to minimize cache miss rate Can be called from C, Fortran; can be used in MATLAB, R, Python,...

18 Sparse Matrix Operations Widely-used format: Compressed Sparse Column (CSC), Compressed Sparse Row (CSR),... CSR: three arrays for storing an m n matrix with nnz nonzeroes 1 val (nnz real numbers): the values of each nonzero elements 2 row ind (nnz integers): the column indices corresponding to the values 3 col ptr (m + 1 integers): the list of value indexes where each column starts

19 Sparse Matrix Operations If A R m n (sparse), B R m n (sparse or dense), s R A + B, sa, A T : O(nnz) operations If A R m n, b R n 1 Ab: O(nnz) operations If A R m k (sparse), B R k n (dense): AB: O((nnz)n) operations (use sparse BLAS) If A R m k (sparse), B R k n (sparse): AB: O(nnz(A)nnz(B)/k) in average AB: O(nnz(A)n) worst case The resulting matrix will be much denser

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2016 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2016 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

CS/COE 1501 http://cs.pitt.edu/~bill/1501/

CS/COE 1501 http://cs.pitt.edu/~bill/1501/ CS/COE 1501 http://cs.pitt.edu/~bill/1501/ Lecture 01 Course Introduction Meta-notes These notes are intended for use by students in CS1501 at the University of Pittsburgh. They are provided free of charge

More information

Arithmetic and Algebra of Matrices

Arithmetic and Algebra of Matrices Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

More information

Operation Count; Numerical Linear Algebra

Operation Count; Numerical Linear Algebra 10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

CUDAMat: a CUDA-based matrix class for Python

CUDAMat: a CUDA-based matrix class for Python Department of Computer Science 6 King s College Rd, Toronto University of Toronto M5S 3G4, Canada http://learning.cs.toronto.edu fax: +1 416 978 1455 November 25, 2009 UTML TR 2009 004 CUDAMat: a CUDA-based

More information

In mathematics, it is often important to get a handle on the error term of an approximation. For instance, people will write

In mathematics, it is often important to get a handle on the error term of an approximation. For instance, people will write Big O notation (with a capital letter O, not a zero), also called Landau's symbol, is a symbolism used in complexity theory, computer science, and mathematics to describe the asymptotic behavior of functions.

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above: Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

FACTORING SPARSE POLYNOMIALS

FACTORING SPARSE POLYNOMIALS FACTORING SPARSE POLYNOMIALS Theorem 1 (Schinzel): Let r be a positive integer, and fix non-zero integers a 0,..., a r. Let F (x 1,..., x r ) = a r x r + + a 1 x 1 + a 0. Then there exist finite sets S

More information

Lecture Notes 2: Matrices as Systems of Linear Equations

Lecture Notes 2: Matrices as Systems of Linear Equations 2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 19: SVD revisited; Software for Linear Algebra Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 9 Outline 1 Computing

More information

Modélisation et résolutions numérique et symbolique

Modélisation et résolutions numérique et symbolique Modélisation et résolutions numérique et symbolique via les logiciels Maple et Matlab Jeremy Berthomieu Mohab Safey El Din Stef Graillat Mohab.Safey@lip6.fr Outline Previous course: partial review of what

More information

CPLEX Tutorial Handout

CPLEX Tutorial Handout CPLEX Tutorial Handout What Is ILOG CPLEX? ILOG CPLEX is a tool for solving linear optimization problems, commonly referred to as Linear Programming (LP) problems, of the form: Maximize (or Minimize) c

More information

6. Cholesky factorization

6. Cholesky factorization 6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix

More information

Report: Declarative Machine Learning on MapReduce (SystemML)

Report: Declarative Machine Learning on MapReduce (SystemML) Report: Declarative Machine Learning on MapReduce (SystemML) Jessica Falk ETH-ID 11-947-512 May 28, 2014 1 Introduction SystemML is a system used to execute machine learning (ML) algorithms in HaDoop,

More information

Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

More information

General Framework for an Iterative Solution of Ax b. Jacobi s Method

General Framework for an Iterative Solution of Ax b. Jacobi s Method 2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

CS3220 Lecture Notes: QR factorization and orthogonal transformations

CS3220 Lecture Notes: QR factorization and orthogonal transformations CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss

More information

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d.

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d. DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms

More information

MLlib: Scalable Machine Learning on Spark

MLlib: Scalable Machine Learning on Spark MLlib: Scalable Machine Learning on Spark Xiangrui Meng Collaborators: Ameet Talwalkar, Evan Sparks, Virginia Smith, Xinghao Pan, Shivaram Venkataraman, Matei Zaharia, Rean Griffith, John Duchi, Joseph

More information

1.5 SOLUTION SETS OF LINEAR SYSTEMS

1.5 SOLUTION SETS OF LINEAR SYSTEMS 1-2 CHAPTER 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS Many of the concepts and computations in linear algebra involve sets of vectors which are visualized geometrically as

More information

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

Yousef Saad University of Minnesota Computer Science and Engineering. CRM Montreal - April 30, 2008

Yousef Saad University of Minnesota Computer Science and Engineering. CRM Montreal - April 30, 2008 A tutorial on: Iterative methods for Sparse Matrix Problems Yousef Saad University of Minnesota Computer Science and Engineering CRM Montreal - April 30, 2008 Outline Part 1 Sparse matrices and sparsity

More information

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i. Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

More information

Class Overview. CSE 326: Data Structures. Goals. Goals. Data Structures. Goals. Introduction

Class Overview. CSE 326: Data Structures. Goals. Goals. Data Structures. Goals. Introduction Class Overview CSE 326: Data Structures Introduction Introduction to many of the basic data structures used in computer software Understand the data structures Analyze the algorithms that use them Know

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix 7. LU factorization EE103 (Fall 2011-12) factor-solve method LU factorization solving Ax = b with A nonsingular the inverse of a nonsingular matrix LU factorization algorithm effect of rounding error sparse

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Matrix-vector multiplication in terms of dot-products

Matrix-vector multiplication in terms of dot-products Matrix-vector multiplication in terms of dot-products Let M be an R C matrix. Dot-Product Definition of matrix-vector multiplication: M u is the R-vector v such that v[r] is the dot-product of row r of

More information

Lecture 1: Systems of Linear Equations

Lecture 1: Systems of Linear Equations MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables

More information

Computational Mathematics with Python

Computational Mathematics with Python Boolean Arrays Classes Computational Mathematics with Python Basics Olivier Verdier and Claus Führer 2009-03-24 Olivier Verdier and Claus Führer Computational Mathematics with Python 2009-03-24 1 / 40

More information

Network coding for security and robustness

Network coding for security and robustness Network coding for security and robustness 1 Outline Network coding for detecting attacks Network management requirements for robustness Centralized versus distributed network management 2 Byzantine security

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Linearly Independent Sets and Linearly Dependent Sets

Linearly Independent Sets and Linearly Dependent Sets These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation

More information

CS 221. Tuesday 8 November 2011

CS 221. Tuesday 8 November 2011 CS 221 Tuesday 8 November 2011 Agenda 1. Announcements 2. Review: Solving Equations (Text 6.1-6.3) 3. Root-finding with Excel ( Goal Seek, Text 6.5) 4. Example Root-finding Problems 5. The Fixed-point

More information

10/27/14. Streaming & Sampling. Tackling the Challenges of Big Data Big Data Analytics. Piotr Indyk

10/27/14. Streaming & Sampling. Tackling the Challenges of Big Data Big Data Analytics. Piotr Indyk Introduction Streaming & Sampling Two approaches to dealing with massive data using limited resources Sampling: pick a random sample of the data, and perform the computation on the sample 8 2 1 9 1 9 2

More information

Solving Curved Linear Programs via the Shadow Simplex Method

Solving Curved Linear Programs via the Shadow Simplex Method Solving Curved Linear rograms via the Shadow Simplex Method Daniel Dadush 1 Nicolai Hähnle 2 1 Centrum Wiskunde & Informatica (CWI) 2 Bonn Universität CWI Scientific Meeting 01/15 Outline 1 Introduction

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

Computational Mathematics with Python

Computational Mathematics with Python Computational Mathematics with Python Basics Claus Führer, Jan Erik Solem, Olivier Verdier Spring 2010 Claus Führer, Jan Erik Solem, Olivier Verdier Computational Mathematics with Python Spring 2010 1

More information

Computational Mathematics with Python

Computational Mathematics with Python Numerical Analysis, Lund University, 2011 1 Computational Mathematics with Python Chapter 1: Basics Numerical Analysis, Lund University Claus Führer, Jan Erik Solem, Olivier Verdier, Tony Stillfjord Spring

More information

CSR REPORT 2016 Corporate Social Responsibility Report

CSR REPORT 2016 Corporate Social Responsibility Report CSR REPORT 2016 Corporate Social Responsibility Report 01 02 03 07 13 14 15 17 Business 19 20 21 22 Support and Contribution 23 Management System 27 31 with Employee 02 Business 03 1 2 04 18 1 3 4 2 6

More information

Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VI

Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VI Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VI Solving a System of Linear Algebraic Equations (last updated 5/19/05 by GGB) Objectives:

More information

An Overview Of Software For Convex Optimization. Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt.

An Overview Of Software For Convex Optimization. Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt. An Overview Of Software For Convex Optimization Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt.edu In fact, the great watershed in optimization isn t between linearity

More information

Vector Spaces 4.4 Spanning and Independence

Vector Spaces 4.4 Spanning and Independence Vector Spaces 4.4 and Independence October 18 Goals Discuss two important basic concepts: Define linear combination of vectors. Define Span(S) of a set S of vectors. Define linear Independence of a set

More information

We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b

We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

The van Hoeij Algorithm for Factoring Polynomials

The van Hoeij Algorithm for Factoring Polynomials The van Hoeij Algorithm for Factoring Polynomials Jürgen Klüners Abstract In this survey we report about a new algorithm for factoring polynomials due to Mark van Hoeij. The main idea is that the combinatorial

More information

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form Section 1.3 Matrix Products A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form (scalar #1)(quantity #1) + (scalar #2)(quantity #2) +...

More information

2+2 Just type and press enter and the answer comes up ans = 4

2+2 Just type and press enter and the answer comes up ans = 4 Demonstration Red text = commands entered in the command window Black text = Matlab responses Blue text = comments 2+2 Just type and press enter and the answer comes up 4 sin(4)^2.5728 The elementary functions

More information

Methods for Finding Bases

Methods for Finding Bases Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,

More information

A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property

A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property Venkat Chandar March 1, 2008 Abstract In this note, we prove that matrices whose entries are all 0 or 1 cannot achieve

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge,

The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints

More information

Linear Algebra Notes

Linear Algebra Notes Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note

More information

To give it a definition, an implicit function of x and y is simply any relationship that takes the form:

To give it a definition, an implicit function of x and y is simply any relationship that takes the form: 2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to

More information

K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013

K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013 Hill Cipher Project K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013 Directions: Answer all numbered questions completely. Show non-trivial work in the space provided. Non-computational

More information

HETEROGENEOUS AGENTS AND AGGREGATE UNCERTAINTY. Daniel Harenberg daniel.harenberg@gmx.de. University of Mannheim. Econ 714, 28.11.

HETEROGENEOUS AGENTS AND AGGREGATE UNCERTAINTY. Daniel Harenberg daniel.harenberg@gmx.de. University of Mannheim. Econ 714, 28.11. COMPUTING EQUILIBRIUM WITH HETEROGENEOUS AGENTS AND AGGREGATE UNCERTAINTY (BASED ON KRUEGER AND KUBLER, 2004) Daniel Harenberg daniel.harenberg@gmx.de University of Mannheim Econ 714, 28.11.06 Daniel Harenberg

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms Computational Complexity Escola Politècnica Superior d Alcoi Universitat Politècnica de València Contents Introduction Resources consumptions: spatial and temporal cost Costs

More information

Lattice-Based Threshold-Changeability for Standard Shamir Secret-Sharing Schemes

Lattice-Based Threshold-Changeability for Standard Shamir Secret-Sharing Schemes Lattice-Based Threshold-Changeability for Standard Shamir Secret-Sharing Schemes Ron Steinfeld (Macquarie University, Australia) (email: rons@ics.mq.edu.au) Joint work with: Huaxiong Wang (Macquarie University)

More information

Sketch As a Tool for Numerical Linear Algebra

Sketch As a Tool for Numerical Linear Algebra Sketching as a Tool for Numerical Linear Algebra (Graph Sparsification) David P. Woodruff presented by Sepehr Assadi o(n) Big Data Reading Group University of Pennsylvania April, 2015 Sepehr Assadi (Penn)

More information

1 Review of Least Squares Solutions to Overdetermined Systems

1 Review of Least Squares Solutions to Overdetermined Systems cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

More information

The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

Nonlinear Algebraic Equations Example

Nonlinear Algebraic Equations Example Nonlinear Algebraic Equations Example Continuous Stirred Tank Reactor (CSTR). Look for steady state concentrations & temperature. s r (in) p,i (in) i In: N spieces with concentrations c, heat capacities

More information

LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005

LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005 LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005 DAVID L. BERNICK dbernick@soe.ucsc.edu 1. Overview Typical Linear Programming problems Standard form and converting

More information

Introduction to Algebraic Coding Theory

Introduction to Algebraic Coding Theory Introduction to Algebraic Coding Theory Supplementary material for Math 336 Cornell University Sarah A. Spence Contents 1 Introduction 1 2 Basics 2 2.1 Important code parameters..................... 4

More information

Chapter 3. if 2 a i then location: = i. Page 40

Chapter 3. if 2 a i then location: = i. Page 40 Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)

More information

GENERATING SETS KEITH CONRAD

GENERATING SETS KEITH CONRAD GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors

More information

Notes on Cholesky Factorization

Notes on Cholesky Factorization Notes on Cholesky Factorization Robert A. van de Geijn Department of Computer Science Institute for Computational Engineering and Sciences The University of Texas at Austin Austin, TX 78712 rvdg@cs.utexas.edu

More information

CS 575 Parallel Processing

CS 575 Parallel Processing CS 575 Parallel Processing Lecture one: Introduction Wim Bohm Colorado State University Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5

More information

Transportation Polytopes: a Twenty year Update

Transportation Polytopes: a Twenty year Update Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

More information

Here are some examples of combining elements and the operations used:

Here are some examples of combining elements and the operations used: MATRIX OPERATIONS Summary of article: What is an operation? Addition of two matrices. Multiplication of a Matrix by a scalar. Subtraction of two matrices: two ways to do it. Combinations of Addition, Subtraction,

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

Linear Codes. Chapter 3. 3.1 Basics

Linear Codes. Chapter 3. 3.1 Basics Chapter 3 Linear Codes In order to define codes that we can encode and decode efficiently, we add more structure to the codespace. We shall be mainly interested in linear codes. A linear code of length

More information

1 Cubic Hermite Spline Interpolation

1 Cubic Hermite Spline Interpolation cs412: introduction to numerical analysis 10/26/10 Lecture 13: Cubic Hermite Spline Interpolation II Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mark Cowlishaw, Nathanael Fillmore 1 Cubic Hermite

More information

7 Gaussian Elimination and LU Factorization

7 Gaussian Elimination and LU Factorization 7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

Matrix Indexing in MATLAB

Matrix Indexing in MATLAB 1 of 6 10/8/01 11:47 AM Matrix Indexing in MATLAB by Steve Eddins and Loren Shure Send email to Steve Eddins and Loren Shure Indexing into a matrix is a means of selecting a subset of elements from the

More information

1 Finite difference example: 1D implicit heat equation

1 Finite difference example: 1D implicit heat equation 1 Finite difference example: 1D implicit heat equation 1.1 Boundary conditions Neumann and Dirichlet We solve the transient heat equation ρc p t = ( k ) (1) on the domain L/2 x L/2 subject to the following

More information

1.2 Solving a System of Linear Equations

1.2 Solving a System of Linear Equations 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables

More information

Bringing Linear Algebra Objects to Life in a Column-Oriented In-Memory Database

Bringing Linear Algebra Objects to Life in a Column-Oriented In-Memory Database Bringing Linear Algebra Objects to Life in a Column-Oriented In-Memory Database David Kernert 1,2, Frank Köhler 2 and Wolfgang Lehner 1 1 Technische Universität Dresden, Database Technology Group, 2 SAP

More information

Discuss the size of the instance for the minimum spanning tree problem.

Discuss the size of the instance for the minimum spanning tree problem. 3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can

More information

11 Multivariate Polynomials

11 Multivariate Polynomials CS 487: Intro. to Symbolic Computation Winter 2009: M. Giesbrecht Script 11 Page 1 (These lecture notes were prepared and presented by Dan Roche.) 11 Multivariate Polynomials References: MC: Section 16.6

More information

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ] 1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

On the complexity of some computational problems in the Turing model

On the complexity of some computational problems in the Turing model On the complexity of some computational problems in the Turing model Claus Diem November 18, 2013 Abstract Algorithms for concrete problems are usually described and analyzed in some random access machine

More information

Scalable Distributed Schur Complement Solvers for Internal and External Flow Computations on Many-Core Architectures

Scalable Distributed Schur Complement Solvers for Internal and External Flow Computations on Many-Core Architectures Scalable Distributed Schur Complement Solvers for Internal and External Flow Computations on Many-Core Architectures Dr.-Ing. Achim Basermann, Dr. Hans-Peter Kersken, Melven Zöllner** German Aerospace

More information