Hawkes Learning Systems: College Algebra


 Alicia Hunt
 10 months ago
 Views:
Transcription
1 Hawkes Learning Systems: College Algebra Section 1.2: The Arithmetic of Algebraic Expressions
2 Objectives o Components and terminology of algebraic expressions. o The field properties and their use in algebra. o The order of mathematical operations. o Basic set operations and Venn diagrams.
3 Components and Terminology of Algebraic Expressions o Algebraic Expressions are made of constants and variables combined by mathematical operations. o Constants are fixed numbers. o Variables are unspecified numbers. o Terms are the parts of an algebraic expression joined by addition (or subtraction). o Factors of a term are the parts of a term that are joined by multiplication (or division). o The coefficient of a term is the constant factor of the term while the remaining part of the term constitutes the variable factor.
4 Example: Components and Terminology of an Algebraic Expression Consider the algebraic expression What are its terms? What is the coefficient of each of the terms? 3, 2, 7, 12 What is the variable factor of each of the terms? (x y), none
5 Evaluating Algebraic Expressions o To evaluate an expression means to replace the variables with constants, perform the mathematical operations and simplify.
6 Example: Evaluate an Algebraic Expression Evaluate the following algebraic expression: 2 2x 5( x y) 2 2x 5( x y) for x 1and y 4 Replace x with 1 and y with 4. Simplify. 27
7 The Field Properties and Their Use in Algebra The set of real numbers forms what is known mathematically as a field and the properties below are called field properties. a, b and c represent arbitrary real numbers. Name of Property Closure Commutative Associative Identity Inverse Distributive a Additive Version b is real number Multiplicative Version is a real number a b b a ab ba a ( b c) ( a b) c a 0 0 a a a ( a) 0 ab a( b c) ab ac a( bc) ( ab) c a 1 1 a a 1 a 1(for a 0) a
8 Example: Field Properties Identify the property that justifies the statement. a) 4(y 3) = 4y 12 b) 3(4x 6 z) = (3 4)(x 6 z) = 12x 6 z c)
9 The Field Properties and Their Use in Algebra Cancellation Properties Throughout this table, A, B and C represent algebraic expressions. The symbol can be read as if and only if or is equivalent to. Property A B A C B C For C 0, A B A C B C Description Additive Cancellation Adding the same quantity to both sides of an equation results in an equivalent equation Multiplicative Cancellation Multiplying both sides of an equation by the same nonzero quantity results in an equivalent equation
10 The Field Properties and Their Use in Algebra ZeroFactor Property Let A and B represent algebraic expressions. If the product of A and B is 0, then at least one of A and B is itself 0. Using the symbol AB 0 A 0 or B 0 for implies, we write
11 Example: Properties Identify the property that justifies the statement. (If it s a cancellation property, identify the quantity added or multiplied on both sides.) a) 14y = 7 y = ½ b) (x 3)(x + 2) = 0 x 3 = 0 or x + 2 = 0 c)
12 The Order of Mathematical Operations Order of Operations 1. If the expression is a fraction, simplify the numerator and denominator individually, according to the guidelines in the following steps. 2. Parentheses, braces and brackets are all used as grouping symbols. Simplify expressions within each set of grouping symbols, if any are present, working from the innermost outward. 3. Simplify all powers (exponents) and roots. 4. Perform all multiplications and divisions in the expression in the order they occur, working from left to right. 5. Perform all additions and subtractions in the expression in the order they occur, working from left to right.
13 Example: Order of Operations Evaluate following Order of Operations. a) b)
14 Basic Set Operations and Venn Diagrams o Set operations, union and intersection, combine two or more sets. o A Venn diagram is a pictorial representation of a set or sets and its aim is to indicate, through shading, the outcome of set operations such as union and intersection.
15 Basic Set Operations and Venn Diagrams A and B denote two sets and are represented in the Venn diagram by circles. The operation of union is demonstrated by shading. The symbol is read is an element of. The union of A and B, denoted A B, is the set x x A or x B. That is, an element x is in A B, if it is in the set A, A B the set B, or both. Note: the union of A and B contains both individual sets.
16 Basic Set Operations and Venn Diagrams A and B denote two sets and are represented in the Venn diagram by circles. The operation of intersection is demonstrated by shading. The symbol is read is an element of. The intersection of A and B, denoted A B, is the set x x A and x B. That is, an element x is in A B, A B if it is in both A and B. Note: the intersection of A and B is contained in each individual set.
17 Example: Set Operations Simplify each of the following set expressions. a. b. c. d. 3,7 1,11 3,11 3,7 1,11 1,7 2,5 5,7,2 17,, Since these two intervals overlap, their union is best described with a single interval. This intersection of two intervals can also be described with a single interval. These two intervals have no elements in common so their intersection is the empty set. The union of these two intervals constitutes the entire set of real numbers.
18 Example: Set Operations Simplify each of the following set expressions. a) b)
COLLEGE ALGEBRA 10 TH EDITION LIAL HORNSBY SCHNEIDER 1.11
10 TH EDITION COLLEGE ALGEBRA LIAL HORNSBY SCHNEIDER 1.11 1.1 Linear Equations Basic Terminology of Equations Solving Linear Equations Identities 1.12 Equations An equation is a statement that two expressions
More informationAlgebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
More informationProperties of Real Numbers
16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should
More informationChapter 2: Linear Equations and Inequalities Lecture notes Math 1010
Section 2.1: Linear Equations Definition of equation An equation is a statement that equates two algebraic expressions. Solving an equation involving a variable means finding all values of the variable
More informationVocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
More informationLinear Equations in One Variable
Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve
More informationClick on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
More informationOperations with positive and negative numbers  see first chapter below. Rules related to working with fractions  see second chapter below
INTRODUCTION If you are uncomfortable with the math required to solve the word problems in this class, we strongly encourage you to take a day to look through the following links and notes. Some of them
More informationSolutions of Linear Equations in One Variable
2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools
More informationFlorida Department of Education/Office of Assessment January 2012. Algebra 1 EndofCourse Assessment Achievement Level Descriptions
Florida Department of Education/Office of Assessment January 2012 Algebra 1 EndofCourse Assessment Achievement Level Descriptions Algebra 1 EOC Assessment Reporting Category Functions, Linear Equations,
More informationCopy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2  Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers  {1,2,3,4,...}
More information2. Simplify. College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses
College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2
More informationModuMath Algebra Lessons
ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations
More information3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
More information7. Solving Linear Inequalities and Compound Inequalities
7. Solving Linear Inequalities and Compound Inequalities Steps for solving linear inequalities are very similar to the steps for solving linear equations. The big differences are multiplying and dividing
More informationMathematical Procedures
CHAPTER 6 Mathematical Procedures 168 CHAPTER 6 Mathematical Procedures The multidisciplinary approach to medicine has incorporated a wide variety of mathematical procedures from the fields of physics,
More informationA Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25
More informationFractions. Cavendish Community Primary School
Fractions Children in the Foundation Stage should be introduced to the concept of halves and quarters through play and practical activities in preparation for calculation at Key Stage One. Y Understand
More informationBasic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.
Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:
More informationSometimes it is easier to leave a number written as an exponent. For example, it is much easier to write
4.0 Exponent Property Review First let s start with a review of what exponents are. Recall that 3 means taking four 3 s and multiplying them together. So we know that 3 3 3 3 381. You might also recall
More informationMethod To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
More informationSECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS
(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic
More informationMath Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
More informationTYPES OF NUMBERS. Example 2. Example 1. Problems. Answers
TYPES OF NUMBERS When two or more integers are multiplied together, each number is a factor of the product. Nonnegative integers that have exactly two factors, namely, one and itself, are called prime
More information1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes
Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.
More informationPrentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)
New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct
More informationExpressions and Equations
Expressions and Equations Standard: CC.6.EE.2 Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation Subtract y from 5 as 5 y.
More informationAccentuate the Negative: Homework Examples from ACE
Accentuate the Negative: Homework Examples from ACE Investigation 1: Extending the Number System, ACE #6, 7, 1215, 47, 4952 Investigation 2: Adding and Subtracting Rational Numbers, ACE 1822, 38(a),
More informationOrder of Operations. 2 1 r + 1 s. average speed = where r is the average speed from A to B and s is the average speed from B to A.
Order of Operations Section 1: Introduction You know from previous courses that if two quantities are added, it does not make a difference which quantity is added to which. For example, 5 + 6 = 6 + 5.
More information1.4 Variable Expressions
1.4 Variable Expressions Now that we can properly deal with all of our numbers and numbering systems, we need to turn our attention to actual algebra. Algebra consists of dealing with unknown values. These
More informationMaths Workshop for Parents 2. Fractions and Algebra
Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)
More information1.6 The Order of Operations
1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative
More informationMATH0910 Review Concepts (Haugen)
Unit 1 Whole Numbers and Fractions MATH0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,
More informationMBA Jump Start Program
MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right
More informationSection 4.1 Rules of Exponents
Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells
More informationFractions and Linear Equations
Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps
More informationReview of Basic Algebraic Concepts
Section. Sets of Numbers and Interval Notation Review of Basic Algebraic Concepts. Sets of Numbers and Interval Notation. Operations on Real Numbers. Simplifying Expressions. Linear Equations in One Variable.
More informationAlgebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
More information2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
More informationArithmetic Operations. The real numbers have the following properties: In particular, putting a 1 in the Distributive Law, we get
Review of Algebra REVIEW OF ALGEBRA Review of Algebra Here we review the basic rules and procedures of algebra that you need to know in order to be successful in calculus. Arithmetic Operations The real
More information1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
More informationNegative Integer Exponents
7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions
More informationStudents will be able to simplify and evaluate numerical and variable expressions using appropriate properties and order of operations.
Outcome 1: (Introduction to Algebra) Skills/Content 1. Simplify numerical expressions: a). Use order of operations b). Use exponents Students will be able to simplify and evaluate numerical and variable
More informationProperty: Rule: Example:
Math 1 Unit 2, Lesson 4: Properties of Exponents Property: Rule: Example: Zero as an Exponent: a 0 = 1, this says that anything raised to the zero power is 1. Negative Exponent: Multiplying Powers with
More informationAlgebra 1 Course Objectives
Course Objectives The Duke TIP course corresponds to a high school course and is designed for gifted students in grades seven through nine who want to build their algebra skills before taking algebra in
More informationAnswer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More informationUnit 3: Algebra. Date Topic Page (s) Algebra Terminology 2. Variables and Algebra Tiles 3 5. Like Terms 6 8. Adding/Subtracting Polynomials 9 12
Unit 3: Algebra Date Topic Page (s) Algebra Terminology Variables and Algebra Tiles 3 5 Like Terms 6 8 Adding/Subtracting Polynomials 9 1 Expanding Polynomials 13 15 Introduction to Equations 16 17 One
More informationVariable. 1.1 Order of Operations. August 17, evaluating expressions ink.notebook. Standards. letter or symbol used to represent a number
1.1 evaluating expressions ink.notebook page 8 Unit 1 Basic Equations and Inequalities 1.1 Order of Operations page 9 Square Cube Variable Variable Expression Exponent page 10 page 11 1 Lesson Objectives
More informationFlorida Department of Education/Office of Assessment January 2012. Grade 7 FCAT 2.0 Mathematics Achievement Level Descriptions
Florida Department of Education/Office of Assessment January 2012 Grade 7 FCAT 2.0 Mathematics Grade 7 FCAT 2.0 Mathematics Reporting Category Geometry and Measurement Students performing at the mastery
More information4.1. COMPLEX NUMBERS
4.1. COMPLEX NUMBERS What You Should Learn Use the imaginary unit i to write complex numbers. Add, subtract, and multiply complex numbers. Use complex conjugates to write the quotient of two complex numbers
More information1.4 Compound Inequalities
Section 1.4 Compound Inequalities 53 1.4 Compound Inequalities This section discusses a technique that is used to solve compound inequalities, which is a phrase that usually refers to a pair of inequalities
More informationNumber Sense and Operations
Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents
More informationFlorida Algebra 1 EndofCourse Assessment Item Bank, Polk County School District
Benchmark: MA.912.A.2.3; Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions. Also assesses MA.912.A.2.13; Solve
More informationSIMPLIFYING ALGEBRAIC FRACTIONS
Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is
More informationSolve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers
More informationOperations with Algebraic Expressions: Multiplication of Polynomials
Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the
More informationSuch As Statements, Kindergarten Grade 8
Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential
More informationMATH 65 NOTEBOOK CERTIFICATIONS
MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1
More information26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
More informationIV. ALGEBRAIC CONCEPTS
IV. ALGEBRAIC CONCEPTS Algebra is the language of mathematics. Much of the observable world can be characterized as having patterned regularity where a change in one quantity results in changes in other
More informationAlgebra I. In this technological age, mathematics is more important than ever. When students
In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,
More informationCORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
More informationCOMMON CORE STATE STANDARDS FOR MATHEMATICS 35 DOMAIN PROGRESSIONS
COMMON CORE STATE STANDARDS FOR MATHEMATICS 35 DOMAIN PROGRESSIONS Compiled by Dewey Gottlieb, Hawaii Department of Education June 2010 Operations and Algebraic Thinking Represent and solve problems involving
More informationWhat are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
More informationGrade 6 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills
Grade 6 Mathematics Assessment Eligible Texas Essential Knowledge and Skills STAAR Grade 6 Mathematics Assessment Mathematical Process Standards These student expectations will not be listed under a separate
More informationWarmUp. Today s Objective/Standards: Students will use the correct order of operations to evaluate algebraic expressions/ Gr. 6 AF 1.
WarmUp CST/CAHSEE: Gr. 6 AF 1.4 Simplify: 8 + 8 2 + 2 A) 4 B) 8 C) 10 D) 14 Review: Gr. 7 NS 1.2 Complete the statement using ,. Explain. 2 5 5 2 How did students get the other answers? Other: Gr.
More informationExpression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds
Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative
More informationSection 1.1 Real Numbers
. Natural numbers (N):. Integer numbers (Z): Section. Real Numbers Types of Real Numbers,, 3, 4,,... 0, ±, ±, ±3, ±4, ±,... REMARK: Any natural number is an integer number, but not any integer number is
More informationContinued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More informationEquations and Inequalities
Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.
More informationEXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS
To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires
More informationNew York State Mathematics Content Strands, Grade 6, Correlated to Glencoe MathScape, Course 1 and Quick Review Math Handbook Book 1
New York State Mathematics Content Strands, Grade 6, Correlated to Glencoe MathScape, Course 1 and The lessons that address each Performance Indicator are listed, and those in which the Performance Indicator
More information126.7 87. 88. 89. 90. 13.2. Exponents, Roots, and Order of Operations. OBJECTIVE 1 Use exponents. In algebra, w e use exponents as a w ay of writing
SECTION 1. Exponents, Roots, and Order of Operations 227.72126.7100 50 87. 88. 89. 90. 1.2 6.20.010.05 Solve each problem. 91. The highest temperature ever recorded in Juneau, Alaska, was 90 F. The
More informationMATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
More informationOrder of Operations More Essential Practice
Order of Operations More Essential Practice We will be simplifying expressions using the order of operations in this section. Automatic Skill: Order of operations needs to become an automatic skill. Failure
More informationThe Properties of Signed Numbers Section 1.2 The Commutative Properties If a and b are any numbers,
1 Summary DEFINITION/PROCEDURE EXAMPLE REFERENCE From Arithmetic to Algebra Section 1.1 Addition x y means the sum of x and y or x plus y. Some other words The sum of x and 5 is x 5. indicating addition
More informationMultiplying and Dividing Fractions
Multiplying and Dividing Fractions 1 Overview Fractions and Mixed Numbers Factors and Prime Factorization Simplest Form of a Fraction Multiplying Fractions and Mixed Numbers Dividing Fractions and Mixed
More informationMATH 90 CHAPTER 1 Name:.
MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.
More informationRadicals  Rationalize Denominators
8. Radicals  Rationalize Denominators Objective: Rationalize the denominators of radical expressions. It is considered bad practice to have a radical in the denominator of a fraction. When this happens
More informationSet Theory: Shading Venn Diagrams
Set Theory: Shading Venn Diagrams Venn diagrams are representations of sets that use pictures. We will work with Venn diagrams involving two sets (twocircle diagrams) and three sets (threecircle diagrams).
More informationMathematics Review for MS Finance Students
Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,
More informationAlgebra 2 YearataGlance Leander ISD 200708. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks
Algebra 2 YearataGlance Leander ISD 200708 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks
More informationSOLVING EQUATIONS BY COMPLETING THE SQUARE
SOLVING EQUATIONS BY COMPLETING THE SQUARE s There are several ways to solve an equation by completing the square. Two methods begin by dividing the equation by a number that will change the "lead coefficient"
More informationSouth Carolina College and CareerReady (SCCCR) PreCalculus
South Carolina College and CareerReady (SCCCR) PreCalculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
More information2 is the BASE 5 is the EXPONENT. Power Repeated Standard Multiplication. To evaluate a power means to find the answer in standard form.
Grade 9 Mathematics Unit : Powers and Exponent Rules Sec.1 What is a Power 5 is the BASE 5 is the EXPONENT The entire 5 is called a POWER. 5 = written as repeated multiplication. 5 = 3 written in standard
More informationInteger Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions
Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More informationLicensed to: Printed in the United States of America 1 2 3 4 5 6 7 15 14 13 12 11
Licensed to: CengageBrain User This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any
More informationMATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
More information3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or
More information1.3 Polynomials and Factoring
1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.
More informationSouth Carolina College and CareerReady (SCCCR) Algebra 1
South Carolina College and CareerReady (SCCCR) Algebra 1 South Carolina College and CareerReady Mathematical Process Standards The South Carolina College and CareerReady (SCCCR) Mathematical Process
More informationThis is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
More informationSTRAND: ALGEBRA Unit 3 Solving Equations
CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic
More informationWORK SCHEDULE: MATHEMATICS 2007
, K WORK SCHEDULE: MATHEMATICS 00 GRADE MODULE TERM... LO NUMBERS, OPERATIONS AND RELATIONSHIPS able to recognise, represent numbers and their relationships, and to count, estimate, calculate and check
More information1. The algebra of exponents 1.1. Natural Number Powers. It is easy to say what is meant by a n a (raised to) to the (power) n if n N.
CHAPTER 3: EXPONENTS AND POWER FUNCTIONS 1. The algebra of exponents 1.1. Natural Number Powers. It is easy to say what is meant by a n a (raised to) to the (power) n if n N. For example: In general, if
More informationNo Solution Equations Let s look at the following equation: 2 +3=2 +7
5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are
More informationSet operations and Venn Diagrams. COPYRIGHT 2006 by LAVON B. PAGE
Set operations and Venn Diagrams Set operations and Venn diagrams! = { x x " and x " } This is the intersection of and. # = { x x " or x " } This is the union of and. n element of! belongs to both and,
More informationAlgebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 201213 school year.
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra
More information