# 2.8 Expected values and variance

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 y 1 b a 0 y a b (a) Probability density function x 0 a b (b) Cumulative distribution function x Figure 2.3: The probability density function and cumulative distribution function of the uniform distribution with parameters a and b 2.8 Expected values and variance We now turn to two fundamental quantities of probability distributions: expected value and variance Expected value The expected value of a random variable X, which is denoted in many forms including E(X), E[X], X, and µ, is also known as the expectation or mean. For a discrete random variable X under probability distribution P, it s defined as E(X) = i x i P(x i ) (2.13) For a Bernoulli random variable X π with parameter π, for example, the possible outcomes are 0 and 1, so we have E(X π ) = 0 (1 π) + 1 π (2.14) = π (2.15) For a continuous random variable X under cpd p, the expectation is defined using integrals instead of sums, as E(X) = x p(x)dx (2.16) Roger Levy Linguistics 251, Fall October 1, 2008 Page 8

2 For example, a uniformly-distributed random variable X (a,b) with parameters a and b has expectation E(X (a,b) ) = a b x p(x) dx + b a x p(x) dx + b x p(x) dx (2.17) = 0 + x 1 dx + 0 (2.18) a b a = x2 b 1 2 b a (2.19) = b2 a 2 2 = b + a 2 a 1 b a (2.20) (2.21) which corresponds nicely to the intuition that the expectation should be in the middle of the allowed interval Variance The variance is a measure of how broadly distributed the r.v. tends to be. It s defined as the expectation of the squared deviation from the mean: Var(X) = E[(X E(X)) 2 ] (2.22) The variance is often denoted σ 2 and its positive square root, σ, is known as the standard deviation. Variance of Bernoulli and uniform distributions The Bernoulli distribution s variance needs to be calculated explicitly; recall that its expectation is π: E[((X) E(X)) 2 ] = x {0,1} (x π) 2 P(x) (2.23) = π 2 (1 π) + (1 π) 2 π (2.24) = π(1 π)[π + (1 π] (2.25) = π(1 π) (2.26) Note that the variance is largest at π = 0.5 and zero when π = 0 or π = 1. The uniform distribution also needs its variance explicitly calculated; its variance is (b a)2 12 (see Homework XXX). Roger Levy Linguistics 251, Fall October 1, 2008 Page 9

3 2.9 Joint probability distributions Recall that a basic probability distribution is defined over a random variable, and a random variable maps from the sample space to the real numbers (R). What about when you are interested in the outcome of an event that is not naturally characterizable as a single realvalued number, such as the two formants of a vowel? The answer is really quite simple: probability distributions can be generalized over multiple random variables at once, in which case they are called joint probability distributions (jpd s). If a jpd is over N random variables at once then it maps from the sample space to R N, which is short-hand for real-valued vectors of dimension N. Notationally, for random variables X 1, X 2,, X N, the joint probability density function is written as or simply p(x 1 = x 1, X 2 = x 2,, X N = x n ) p(x 1, x 2,, x n ) for short. Whereas for a single r.v., the cumulative distribution function is used to indicate the probability of the outcome falling on a segment of the real number line, the joint cumulative probability distribution function indicates the probability of the outcome falling in a region of N-dimensional space. The joint cpd, which is sometimes notated as F(x 1,, x n ) is defined as the probability of the set of random variables all falling at or below the specified values of X i : 3 F(x 1,, x n ) def = P(X 1 x 1,, X N x n ) The natural thing to do is to use the joint cpd to describe the probabilities of rectangular volumes. For example, suppose X is the f 1 formant and Y is the f 2 formant of a given utterance of a vowel. The probability that the vowel will lie in the region 480Hz f 1 530Hz, 940Hz f Hz is given below: P(480Hz f 1 530Hz, 940Hz f Hz) = F(530Hz, 1020Hz) F(530Hz, 940Hz) F(480Hz, 1020Hz) + F(480Hz, 940Hz) 3 Technically, the definition of the multivariate cpd is then F(x 1,,x n ) def = P(X 1 x 1,,X N x n ) = x x 1,,x N xn F(x 1,,x n ) def x1 = P(X 1 x 1,,X N x n ) = p( x) [Discrete] (2.27) p( x)dx N dx 1 [Continuous] (2.28) Roger Levy Linguistics 251, Fall October 1, 2008 Page 10

4 f f1 Figure 2.4: The probability of the formants of a vowel landing in the grey rectangle can be calculated using the joint cumulative distribution function. and visualized in Figure 2.4 using the code below. > plot(c(),c(),xlim=c(200,800),ylim=c(500,2500),xlab="f1",ylab="f2") > rect(480,940,530,1020,col=8) 2.10 Marginalization Often we have direct access to a joint density function but we are more interested in the probability of an outcome of a subset of the random variables in the joint density. Obtaining this probability is called marginalization, and it involves taking a weighted sum 4 over the possible outcomes of the r.v. s that are not of interest. For two variables X, Y : P(X = x) = y = y P(x, y) P(X = x Y = y)p(y) In this case P(X) is often called a marginal probability and the process of calculating it from the joint density P(X, Y ) is known as marginalization Covariance The covariance between two random variables X and Y is defined as follows: 4 or integral in the continuous case Roger Levy Linguistics 251, Fall October 1, 2008 Page 11

5 Simple example: Cov(X, Y ) = E[(X E(X))(Y E(Y ))] (2) Coding for Y 0 1 Coding for X Pronoun Not Pronoun 0 Object Preverbal Object Postverbal Each of X and Y can be treated as a Bernoulli random variable with arbitrary codings of 1 for Postverbal and Not Pronoun, and 0 for the others. As a resunt, we have µ X = 0.121, µ Y = The covariance between the two is: (0.121) (0.762).224 (0,0) +(1.121) (0.762) (1,0) +(0.121) (1.762) (0,1) +(1.121) (1.762) (1,1) = If X and Y are conditionally independent given our state of knowledge, then the covariance between the two is zero In R, we can use the cov() function to get the covariance between two random variables, such as word length versus frequency across the English lexicon: > cov(x\$length,x\$count) [1] > cov(x\$length,log(x\$count)) [1] The covariance in both cases is negative, indicating that longer words tend to be less frequent. If we shuffle one of the covariates around, it eliminates this covariance: > cov(x\$length,log(x\$count)[order(runif(length(x\$count)))]) [1] The covariance is essentially zero now. Two important asides: the variance of a random variable X is just its covariance with itself: Var(X) = Cov(X, X) (2.29) and any two random variables X and Y that are conditionally independent given our state of knowledge have covariance Cov(X, Y ) = 0. order() plus runif() give a nice way of randomizing a vector. Roger Levy Linguistics 251, Fall October 1, 2008 Page 12

6 Covariance and scaling random variables What happens to Cov(X, Y ) when you scale X? Let Z = a + bx. It turns out that the covariance with Y increases by b: 5 Cov(Z, Y ) = bcov(x, Y ) As an important consequence of this, rescaling a random variable by Z = a + bx rescales the variance by b 2 : Var(Z) = b 2 Var(X) Correlation We just saw that the covariance of word length with frequency was much higher than with log frequency. However, the covariance cannot be compared directly across different pairs of random variables, because we also saw that random variables on different scales (e.g., those with larger versus smaller ranges) have different covariances due to the scale. For this reason, it is commmon to use the correlation ρ as a standardized form of covariance: ρ XY = Cov(X, Y ) V ar(x)v ar(y ) If X and Y are independent, then their covariance (and hence correlation) is zero Properties of Expectation and Variance Linearity of the expectation Linearity of the expectation is an extremely important property and can expressed in two parts. First, if you rescale a random variable, its expectation rescales in the exact same way. Mathematically, if Y = a + bx, then E(Y ) = a + be(x). Second, the expectation of the sum of random variables is the sum of the expectations. That is, if Y = i X i, then E(Y ) = i E(X i). This holds regardless of any conditional dependencies that hold among the X i. 5 The reason for this is as follows. By linearity of expectation, E(Z) = a + be(x). This gives us Cov(Z, Y ) = E[(Z a + be(x))(y E(Y ))] = E[(bX be(x))(y E(Y ))] = E[b(X E(X))(Y E(Y ))] = be[(x E(X))(Y E(Y ))] [by linearity of expectation] = bcov(x, Y ) [by linearity of expectation] Roger Levy Linguistics 251, Fall October 1, 2008 Page 13

7 We can put together these two pieces to express the expectation of a linear combination of random variables. If Y = a + i b ix i, then E(Y ) = a + i b i E(X i ) (2.30) This is incredibly convenient. We ll demonstrate this convenience by introducing the binomial distribution in the next section. Variance of the sum of random variables What is the the variance of the sum of random variables X X n. We have Var(X X n ) = E [ (X X n E (X X n )) 2] (2.31) = E [ (X X n (µ µ n )) 2] (Linearity of the expectation) (2.32) = E [ ((X 1 µ 1 ) + + (X n µ n )) 2] (2.33) [ n = E i µ i ) i=1(x 2 + ] (X i µ i )(X j µ j ) (2.34) i j n = E [(X i µ i )(X j µ j )] (Linearity of the expectation) = i=1 E [ (X i µ i ) 2] + i j n i=1 Var(X i ) + i j (2.35) Cov(X i, X j )(Definition of variance & covariance) (2.36) Since the covariance between conditionally independent random variables is zero, it follows that the variance of the sum of pairwise independent random variables is the sum of their variances The binomial distribution We re now in a position to introduce one of the most important probability distributions for linguistics, the binomial distribution. The binomial distribution family is characterized by two parameters, n and π, and a binomially distributed random variable Y is defined as the sum of n identical, independently distributed (i.i.d.) Bernoulli random variables, each with parameter π. For example, it is intuitively obvious that the mean of a binomially distributed r.v. Y with parameters n and π is πn. However, it takes some work to show this explicitly by Roger Levy Linguistics 251, Fall October 1, 2008 Page 14

8 summing over the possible outcomes of Y and their probabilities. On the other hand, Y can be re-expressed as the sum of n Bernoulli random variables X i. The resulting probability density function is, for k = 0, 1,..., n: P(Y = k) = ( ) n π k (1 π) n k (2.37) k We ll also illustrate the utility of the linearity of expectation by deriving the expectation of Y. The mean of each X i is trivially π, so we have: E(Y ) = = n E(X i ) (2.38) i n π = πn (2.39) i which makes intuitive sense. Finally, since a binomial random variable is the sum of n mutually independent Bernoulli random variables and the variance of a Bernoulli random variable is π(1 π), the variance of a binomial random variable is nπ(1 π) The multinomial distribution The multinomial distribution is the generalization of the binomial distribution to r 2 possible outcomes. The r-class multinomial is a sequence of r random variables X 1,..., X r whose joint distribution is characterized by r parameters: a size parameter n denoting the number of trials, and r 1 parameters π 1,...,π r 1, where π i denotes the probability that the outcome of a single trial will fall into the i-th class. (The probability that a single trial def will fall into the r-th class is π r = 1 r 1 i=1 π i, but this is not a real parameter of the family because it s completely determined by the other parameters.) The (joint) probability mass function of the multinomial looks like this: ( ) r n P(X 1 = n 1,, X r = n r ) = π i (2.40) n 1 n r where n i is the number of trials that fell into the r-th class, and ( n n 1 n r ) = n! n 1!...n r!. i=1 Roger Levy Linguistics 251, Fall October 1, 2008 Page 15

### Lecture 4: Joint probability distributions; covariance; correlation

Lecture 4: Joint probability distributions; covariance; correlation 10 October 2007 In this lecture we ll learn the following: 1. what joint probability distributions are; 2. visualizing multiple variables/joint

### Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution

Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution 8 October 2007 In this lecture we ll learn the following: 1. how continuous probability distributions differ

### Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01 Probability and Statistics for Engineers Winter 2010-2011 Contents 1 Joint Probability Distributions 1 1.1 Two Discrete

### Bivariate Distributions

Chapter 4 Bivariate Distributions 4.1 Distributions of Two Random Variables In many practical cases it is desirable to take more than one measurement of a random observation: (brief examples) 1. What is

### Joint Probability Distributions and Random Samples. Week 5, 2011 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

5 Joint Probability Distributions and Random Samples Week 5, 2011 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Two Discrete Random Variables The probability mass function (pmf) of a single

### Joint Distribution and Correlation

Joint Distribution and Correlation Michael Ash Lecture 3 Reminder: Start working on the Problem Set Mean and Variance of Linear Functions of an R.V. Linear Function of an R.V. Y = a + bx What are the properties

### Jointly Distributed Random Variables

Jointly Distributed Random Variables COMP 245 STATISTICS Dr N A Heard Contents 1 Jointly Distributed Random Variables 1 1.1 Definition......................................... 1 1.2 Joint cdfs..........................................

### Covariance and Correlation

Covariance and Correlation ( c Robert J. Serfling Not for reproduction or distribution) We have seen how to summarize a data-based relative frequency distribution by measures of location and spread, such

### Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

### Math 141. Lecture 7: Variance, Covariance, and Sums. Albyn Jones 1. 1 Library 304. jones/courses/141

Math 141 Lecture 7: Variance, Covariance, and Sums Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Last Time Variance: expected squared deviation from the mean: Standard

### L10: Probability, statistics, and estimation theory

L10: Probability, statistics, and estimation theory Review of probability theory Bayes theorem Statistics and the Normal distribution Least Squares Error estimation Maximum Likelihood estimation Bayesian

### 4. Joint Distributions of Two Random Variables

4. Joint Distributions of Two Random Variables 4.1 Joint Distributions of Two Discrete Random Variables Suppose the discrete random variables X and Y have supports S X and S Y, respectively. The joint

### Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

### P (x) 0. Discrete random variables Expected value. The expected value, mean or average of a random variable x is: xp (x) = v i P (v i )

Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =

### Lecture Notes 1. Brief Review of Basic Probability

Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very

### Variances and covariances

Chapter 4 Variances and covariances 4.1 Overview The expected value of a random variable gives a crude measure for the center of location of the distribution of that random variable. For instance, if the

### 3 Multiple Discrete Random Variables

3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f

### Covariance and Correlation. Consider the joint probability distribution f XY (x, y).

Chapter 5: JOINT PROBABILITY DISTRIBUTIONS Part 2: Section 5-2 Covariance and Correlation Consider the joint probability distribution f XY (x, y). Is there a relationship between X and Y? If so, what kind?

### ST 371 (VIII): Theory of Joint Distributions

ST 371 (VIII): Theory of Joint Distributions So far we have focused on probability distributions for single random variables. However, we are often interested in probability statements concerning two or

### Chapters 5. Multivariate Probability Distributions

Chapters 5. Multivariate Probability Distributions Random vectors are collection of random variables defined on the same sample space. Whenever a collection of random variables are mentioned, they are

### Chapter 5. Random variables

Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

### Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

### ECE302 Spring 2006 HW7 Solutions March 11, 2006 1

ECE32 Spring 26 HW7 Solutions March, 26 Solutions to HW7 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics where

### Lesson 5 Chapter 4: Jointly Distributed Random Variables

Lesson 5 Chapter 4: Jointly Distributed Random Variables Department of Statistics The Pennsylvania State University 1 Marginal and Conditional Probability Mass Functions The Regression Function Independence

### Random Variables. Chapter 2. Random Variables 1

Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets

### For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

### Statistiek (WISB361)

Statistiek (WISB361) Final exam June 29, 2015 Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1. The maximum number of points is 100. Points distribution: 23 20 20 20 17

### We have discussed the notion of probabilistic dependence above and indicated that dependence is

1 CHAPTER 7 Online Supplement Covariance and Correlation for Measuring Dependence We have discussed the notion of probabilistic dependence above and indicated that dependence is defined in terms of conditional

### Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

### Statistics - Written Examination MEC Students - BOVISA

Statistics - Written Examination MEC Students - BOVISA Prof.ssa A. Guglielmi 26.0.2 All rights reserved. Legal action will be taken against infringement. Reproduction is prohibited without prior consent.

### Statistics 100A Homework 8 Solutions

Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half

### Chapter 4. Multivariate Distributions

1 Chapter 4. Multivariate Distributions Joint p.m.f. (p.d.f.) Independent Random Variables Covariance and Correlation Coefficient Expectation and Covariance Matrix Multivariate (Normal) Distributions Matlab

### 15.062 Data Mining: Algorithms and Applications Matrix Math Review

.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

### Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

### Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

### What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures

### An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211)

An-Najah National University Faculty of Engineering Industrial Engineering Department Course : Quantitative Methods (65211) Instructor: Eng. Tamer Haddad 2 nd Semester 2009/2010 Chapter 5 Example: Joint

### MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo. 3 MT426 Notebook 3 3. 3.1 Definitions... 3. 3.2 Joint Discrete Distributions...

MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo c Copyright 2004-2012 by Jenny A. Baglivo. All Rights Reserved. Contents 3 MT426 Notebook 3 3 3.1 Definitions............................................

### 5. Continuous Random Variables

5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

### Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

### Homework 4 - KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here.

Homework 4 - KEY Jeff Brenion June 16, 2004 Note: Many problems can be solved in more than one way; we present only a single solution here. 1 Problem 2-1 Since there can be anywhere from 0 to 4 aces, the

### Topic 8 The Expected Value

Topic 8 The Expected Value Functions of Random Variables 1 / 12 Outline Names for Eg(X ) Variance and Standard Deviation Independence Covariance and Correlation 2 / 12 Names for Eg(X ) If g(x) = x, then

### Topic 4: Multivariate random variables. Multiple random variables

Topic 4: Multivariate random variables Joint, marginal, and conditional pmf Joint, marginal, and conditional pdf and cdf Independence Expectation, covariance, correlation Conditional expectation Two jointly

### Chapter 2, part 2. Petter Mostad

Chapter 2, part 2 Petter Mostad mostad@chalmers.se Parametrical families of probability distributions How can we solve the problem of learning about the population distribution from the sample? Usual procedure:

### Examination 110 Probability and Statistics Examination

Examination 0 Probability and Statistics Examination Sample Examination Questions The Probability and Statistics Examination consists of 5 multiple-choice test questions. The test is a three-hour examination

### Probability and Statistics

CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2b - 0 Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be

### MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

### 4. Introduction to Statistics

Statistics for Engineers 4-1 4. Introduction to Statistics Descriptive Statistics Types of data A variate or random variable is a quantity or attribute whose value may vary from one unit of investigation

### Correlation in Random Variables

Correlation in Random Variables Lecture 11 Spring 2002 Correlation in Random Variables Suppose that an experiment produces two random variables, X and Y. What can we say about the relationship between

### The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

### Notes on Continuous Random Variables

Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

### Joint Distributions. Tieming Ji. Fall 2012

Joint Distributions Tieming Ji Fall 2012 1 / 33 X : univariate random variable. (X, Y ): bivariate random variable. In this chapter, we are going to study the distributions of bivariate random variables

### Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Geometric Distribution Negative Binomial Distribution Hypergeometric Distribution Sections 3-7, 3-8 The remaining discrete random

### Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem

1.1.2 Normal distribution 1.1.3 Approimating binomial distribution by normal 2.1 Central Limit Theorem Prof. Tesler Math 283 October 22, 214 Prof. Tesler 1.1.2-3, 2.1 Normal distribution Math 283 / October

### A Tutorial on Probability Theory

Paola Sebastiani Department of Mathematics and Statistics University of Massachusetts at Amherst Corresponding Author: Paola Sebastiani. Department of Mathematics and Statistics, University of Massachusetts,

### Random Vectors and the Variance Covariance Matrix

Random Vectors and the Variance Covariance Matrix Definition 1. A random vector X is a vector (X 1, X 2,..., X p ) of jointly distributed random variables. As is customary in linear algebra, we will write

### Exercises with solutions (1)

Exercises with solutions (). Investigate the relationship between independence and correlation. (a) Two random variables X and Y are said to be correlated if and only if their covariance C XY is not equal

### Sections 2.11 and 5.8

Sections 211 and 58 Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1/25 Gesell data Let X be the age in in months a child speaks his/her first word and

### Statistics 100 Binomial and Normal Random Variables

Statistics 100 Binomial and Normal Random Variables Three different random variables with common characteristics: 1. Flip a fair coin 10 times. Let X = number of heads out of 10 flips. 2. Poll a random

### Feb 28 Homework Solutions Math 151, Winter 2012. Chapter 6 Problems (pages 287-291)

Feb 8 Homework Solutions Math 5, Winter Chapter 6 Problems (pages 87-9) Problem 6 bin of 5 transistors is known to contain that are defective. The transistors are to be tested, one at a time, until the

### 4. Joint Distributions

Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 4. Joint Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an underlying sample space. Suppose

### Introduction to Probability

Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

### A crash course in probability and Naïve Bayes classification

Probability theory A crash course in probability and Naïve Bayes classification Chapter 9 Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s

### The Delta Method and Applications

Chapter 5 The Delta Method and Applications 5.1 Linear approximations of functions In the simplest form of the central limit theorem, Theorem 4.18, we consider a sequence X 1, X,... of independent and

### Change of Continuous Random Variable

Change of Continuous Random Variable All you are responsible for from this lecture is how to implement the Engineer s Way (see page 4) to compute how the probability density function changes when we make

### Unit 4 The Bernoulli and Binomial Distributions

PubHlth 540 4. Bernoulli and Binomial Page 1 of 19 Unit 4 The Bernoulli and Binomial Distributions Topic 1. Review What is a Discrete Probability Distribution... 2. Statistical Expectation.. 3. The Population

### Stat 704 Data Analysis I Probability Review

1 / 30 Stat 704 Data Analysis I Probability Review Timothy Hanson Department of Statistics, University of South Carolina Course information 2 / 30 Logistics: Tuesday/Thursday 11:40am to 12:55pm in LeConte

### Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

### An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

### Sufficient Statistics and Exponential Family. 1 Statistics and Sufficient Statistics. Math 541: Statistical Theory II. Lecturer: Songfeng Zheng

Math 541: Statistical Theory II Lecturer: Songfeng Zheng Sufficient Statistics and Exponential Family 1 Statistics and Sufficient Statistics Suppose we have a random sample X 1,, X n taken from a distribution

### Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1

Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2011 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected

### Statistics 100A Homework 4 Solutions

Problem 1 For a discrete random variable X, Statistics 100A Homework 4 Solutions Ryan Rosario Note that all of the problems below as you to prove the statement. We are proving the properties of epectation

### SYSM 6304: Risk and Decision Analysis Lecture 3 Monte Carlo Simulation

SYSM 6304: Risk and Decision Analysis Lecture 3 Monte Carlo Simulation M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu September 19, 2015 Outline

### Random Variable: A function that assigns numerical values to all the outcomes in the sample space.

STAT 509 Section 3.2: Discrete Random Variables Random Variable: A function that assigns numerical values to all the outcomes in the sample space. Notation: Capital letters (like Y) denote a random variable.

### Probability Theory. Elementary rules of probability Sum rule. Product rule. p. 23

Probability Theory Uncertainty is key concept in machine learning. Probability provides consistent framework for the quantification and manipulation of uncertainty. Probability of an event is the fraction

### Notes for STA 437/1005 Methods for Multivariate Data

Notes for STA 437/1005 Methods for Multivariate Data Radford M. Neal, 26 November 2010 Random Vectors Notation: Let X be a random vector with p elements, so that X = [X 1,..., X p ], where denotes transpose.

### Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

### 4: Probability. What is probability? Random variables (RVs)

4: Probability b binomial µ expected value [parameter] n number of trials [parameter] N normal p probability of success [parameter] pdf probability density function pmf probability mass function RV random

### Mathematical Background

Appendix A Mathematical Background A.1 Joint, Marginal and Conditional Probability Let the n (discrete or continuous) random variables y 1,..., y n have a joint joint probability probability p(y 1,...,

### Aggregate Loss Models

Aggregate Loss Models Chapter 9 Stat 477 - Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman - BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing

### Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions

Math 370, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

### Worked examples Multiple Random Variables

Worked eamples Multiple Random Variables Eample Let X and Y be random variables that take on values from the set,, } (a) Find a joint probability mass assignment for which X and Y are independent, and

### Mathematical Expectation

Mathematical Expectation Properties of Mathematical Expectation I The concept of mathematical expectation arose in connection with games of chance. In its simplest form, mathematical expectation is the

### Joint distributions Math 217 Probability and Statistics Prof. D. Joyce, Fall 2014

Joint distributions Math 17 Probability and Statistics Prof. D. Joyce, Fall 14 Today we ll look at joint random variables and joint distributions in detail. Product distributions. If Ω 1 and Ω are sample

sheng@mail.ncyu.edu.tw 1 Content Introduction Expectation and variance of continuous random variables Normal random variables Exponential random variables Other continuous distributions The distribution

### Math 2015 Lesson 21. We discuss the mean and the median, two important statistics about a distribution. p(x)dx = 0.5

ean and edian We discuss the mean and the median, two important statistics about a distribution. The edian The median is the halfway point of a distribution. It is the point where half the population has

### Math 431 An Introduction to Probability. Final Exam Solutions

Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

### Chapter 5: Joint Probability Distributions. Chapter Learning Objectives. The Joint Probability Distribution for a Pair of Discrete Random

Chapter 5: Joint Probability Distributions 5-1 Two or More Random Variables 5-1.1 Joint Probability Distributions 5-1.2 Marginal Probability Distributions 5-1.3 Conditional Probability Distributions 5-1.4

### Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

### Notes 11 Autumn 2005

MAS 08 Probabilit I Notes Autumn 005 Two discrete random variables If X and Y are discrete random variables defined on the same sample space, then events such as X = and Y = are well defined. The joint

### Estimation with Minimum Mean Square Error

C H A P T E R 8 Estimation with Minimum Mean Square Error INTRODUCTION A recurring theme in this text and in much of communication, control and signal processing is that of making systematic estimates,

### Probability Generating Functions

page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

### RANDOM VARIABLES MATH CIRCLE (ADVANCED) 3/3/2013. 3 k) ( 52 3 )

RANDOM VARIABLES MATH CIRCLE (ADVANCED) //0 0) a) Suppose you flip a fair coin times. i) What is the probability you get 0 heads? ii) head? iii) heads? iv) heads? For = 0,,,, P ( Heads) = ( ) b) Suppose

### University of California, Los Angeles Department of Statistics. Random variables

University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.

### M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung

M2S1 Lecture Notes G. A. Young http://www2.imperial.ac.uk/ ayoung September 2011 ii Contents 1 DEFINITIONS, TERMINOLOGY, NOTATION 1 1.1 EVENTS AND THE SAMPLE SPACE......................... 1 1.1.1 OPERATIONS

### Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.