Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chter 4 Rdils (Surds) Contents: A Rdils on numer line B Oertions with rdils C Exnsions with rdils D Division y rdils

2 88 RADICALS (SURDS) (Chter 4) INTRODUCTION In revious yers we used the Theorem of Pythgors to find the length of the third side of tringle. Our nswers often involved rdils suh s,,, nd so on. ~` A rdil is numer tht is written using the rdil sign. Rdils suh s 4 nd 9 re rtionl sine 4= nd 9=. Rdils suh s, nd re irrtionl. They hve deiml exnsions whih neither terminte nor reur. Irrtionl rdils re lso known s surds. RESEARCH ² Where did the nmes rdil nd surd ome from? ² Why do we use the word irrtionl to desrie some numers? ² Before we hd lultors nd omuters, finding deiml reresenttions for numers like to four or five deiml les ws uite diffiult nd time onsuming. Imgine hving to find :44 orret to five deiml les using long division! A method ws devised to do this lultion uikly. Wht ws the roess? SQUARE ROOTS The sure root of or is the ositive numer whih oeys the rule =. For to hve mening we reuire to e non-negtive, i.e., > 0. For exmle, = or ( ) =. Note tht A 4=, not, sine the sure root of numer nnot e negtive. RADICALS ON A NUMBER LINE If we onvert rdil suh s to deiml we n find its roximte osition on numer line. ¼ : 0, so is lose to 4. ~` 0

3 RADICALS (SURDS) (Chter 4) 89 We n lso onstrut the osition of on numer line using ruler nd omss. Sine + =( ), we n use right-ngled tringle with sides of length, nd. Ste : Drw numer line nd mrk the numers 0,,, nd on it, m rt. Ste : Ste : Ste 4: EXERCISE 4A With omss oint on, drw n r ove. Do the sme with omss oint on using the sme rdius. Drw the erendiulr t through the intersetion of these rs, nd mrk off m. Cll this oint A. Comlete the right ngled tringle. Its sides re, nd m. With entre O nd rdius OA, drw n r through A to meet the numer line. It meets the numer line t. Notie tht +4 ==( ). Lote on numer line using n urte onstrution. The sum of the sures of whih two ositive integers is? Aurtely onstrut the osition of on numer line. 0 Cn we onstrut the ext osition of on numer line using the method ove? 4 nnot e written s the sum of two sures so the ove method nnot e used for loting 4 ~` on the numer line. However, 4 =, so 4 = +( ). We n thus onstrut right ngled tringle with sides of length 4, nd. Use suh tringle to urtely lote on numer line. ~` DEMO B OPERATIONS WITH RADICALS ADDING AND SUBTRACTING RADICALS We n dd nd sutrt like rdils in the sme wy s we do like terms in lger. For exmle: ² just s + =, + = ² just s 4 =, 4 =. Exmle Simlify: 4 ( ) 4 = = ( ) = + =

4 90 RADICALS (SURDS) (Chter 4) SIMPLIFYING PRODUCTS We hve estlished in revious yers tht: =( ) = = r = Exmle Simlify: ( ) ( ) µ 4 ( ) = = ( ) = = µ 4 = 4 ( ) = =8 Exmle Simlifying: ( ) ( ) ( ) = =9 =8 ( ) = = = 8 Exmle 4 Write in simlest form: 4 With rtie you should not need the middle stes. = = 0 4 = 4 = =

5 RADICALS (SURDS) (Chter 4) 9 Exmle Simlify: = = = = = = 4 = EXERCISE 4B. Simlify: + 8 d + e ( ) f ( + ) g + h + i ( ) j ( + ) + ( ) k ( ) ( ) l ( ) ( ) Simlify: ( ) ( ) ( ) d e ( ) f ( ) g i ( ) j ( ) 4 k Simlify: µ h µ l ( ) (4 ) ( ) d ( ) e ( ) f ( ) g ( ) h ( 0) i ( 0) µ µ µ 0 j 4 k l m ( 4 ) n ( ) o ( ) ( )( ) ( ) r ( ) 4 Simlify: d 9

6 9 RADICALS (SURDS) (Chter 4) Simlify: d e f ( ) g h i j ( ) ( ) k ( ) l ( ) Simlify: 8 8 d 0 e f g 8 h 0 i j 4 k 4 4 l 98 Is 9+ = 9+? Is =? Are + = + nd = ossile lws for rdil numers? 8 Prove tht = for ll ositive numers nd. Hint: Consider ( ) nd ( ). r Prove tht = for > 0 nd >0. SIMPLEST RADICAL FORM A rdil is in simlest form when the numer under the rdil sign is the smllest ossile integer. Exmle Write 8 in simlest form. 8 = 4 = 4 = We look for the lrgest erfet sure tht n e tken out s ftor of this numer. = 4 8= 8 is not in simlest form s 8 n e further simlified into. In simlest form, = 4.

7 RADICALS (SURDS) (Chter 4) 9 Exmle It my e useful Write to do rime 4 in simlest 4 rdil form. = ftoristion of the 4 numer under the = 4 rdil sign. =4 = EXERCISE 4B. Write in the form k where k is n integer: 8 0 d 98 e f 00 g h Write in the form k where k is n integer: 48 d 00 Write in the form k where k Z : d 00 4 Write in simlest rdil form: d e 48 f g 4 h i j 0 k l 000 Write in simlest rdil form + n where, Q, n Z : 4+ 8 e + f g d 8 4 h 00 0 C EXPANSIONS WITH RADICALS The rules for exnding rdil exressions ontining rkets re identil to those for ordinry lger. ( + ) = + ( + )( + d) = + d + + d ( + ) = + + ( + )( ) =

8 94 RADICALS (SURDS) (Chter 4) Exmle 8 Simlify: ( + ) ( ) ( + ) = + ( ) =4+ = + = 4 With rtie you should not need the middle stes. Exmle 9 Exnd nd simlify: ( + ) ( ) ( + ) = + = ( ) = + = + EXERCISE 4C Exnd nd simlify: 4( + ) ( + ) (4 ) d ( 4) e ( + ) f ( ) g ( + ) h ( ) i ( ) j ( ) k ( + ) l ( + + ) Exnd nd simlify: (4 + ) ( ) ( ) d ( + ) e ( ) f ( + ) g ( ) h ( + ) i ( ) j ( +4) k ( ) l ( ) (4 ) Exmle 0 Exnd nd simlify: ( + )( + ) ( + )( ) ( + )( + ) = ( + )+( + ) =+ + + =8+ ( + )( ) =(+ )( + ) = ( + )+( + )( ) =+ =

9 RADICALS (SURDS) (Chter 4) 9 Exnd nd simlify: ( + )( + ) ( + )( + ) ( + )( ) d (4 )( + ) e ( + )( ) f ( )( + ) g ( + )( ) h ( + )( ) i ( + )( +) j ( )( + ) Exmle Exnd nd simlify: ( +) ( ) ( +) =( ) + () + =+ +9 =+ ( ) =( + ) =( ) + ( ) + ( ) = + =8 4 Exnd nd simlify: ( + ) ( +) ( ) d ( + ) e ( ) f (4 ) g ( + ) h ( ) i ( ) j ( +) k ( ) l ( ) Exmle Exnd nd simlify: (4 + )(4 ) ( + )( ) (4 + )(4 ) =4 ( ) = =4 ( + )( ) =( ) =8 9 = Exnd nd simlify: ( + )( ) ( )( +) ( + )( ) d ( 4)( +4) e ( )( +) f ( + )( ) g ( )( + ) h ( + )( )

10 9 RADICALS (SURDS) (Chter 4) i ( + )( ) j ( )( + ) k ( )( + ) l ( + )( ) D DIVISION BY RADICALS In numers like nd 9 we hve divided y rdil. It is ustomry to simlify these numers y rewriting them without the rdil in the denomintor. INVESTIGATION DIVISION BY In this investigtion we onsider frtions of the form where nd re rel numers. To remove the rdil from the denomintor, there re two methods we ould use: ² slitting the numertor ² rtionlising the denomintor Wht to do: Consider the frtion. Sine is ftor of, slit the into. Simlify. Cn the method of slitting the numertor e used to simlify? Consider the frtion. If we multily this frtion y, re we hnging its vlue? Simlify y multilying oth its numertor nd denomintor y. 4 The method in is lled rtionlising the denomintor. Will this method work for ll frtions of the form where nd re rel? From the Investigtion ove, you should hve found tht for ny frtion of the form, we n remove the rdil from the denomintor y multilying y. Sine =, we do not hnge the vlue of the frtion.

11 RADICALS (SURDS) (Chter 4) 9 Exmle Write with n integer denomintor: Multilying the originl numer y or does not hnge its vlue. = = = = = = EXERCISE 4D. Write with integer denomintor: f k g l RADICAL CONJUGATES h 9 d i m n 00 r s e j o t 4 ( ) Rdil exressions suh s + nd whih re identil exet for oosing signs in the middle, re lled rdil onjugtes. The rdil onjugte of + is. INVESTIGATION RADICAL CONJUGATES Frtions of the form + n lso e simlified to remove the rdil from the denomintor. To do this we use rdil onjugtes. Wht to do: Exnd nd simlify: ( + )( ) ( )( +) Wht do you notie out your results in?

12 98 RADICALS (SURDS) (Chter 4) Show tht ( + for ny integers )( nd, the following roduts re integers: ) ( )( + ) 4 Coy nd omlete: To remove the rdils from the denomintor of frtion, we n multily the denomintor y its... Wht must we do to the numertor of the frtion to ensure we do not hnge its vlue? From the Investigtion ove, we should hve found tht: to remove the rdils from the denomintor of frtion, we multily oth the numertor nd the denomintor y the rdil onjugte of the denomintor. Exmle 4 Write 4 with n integer denomintor. µ Ã 4 4 = +! + = 4 9 ( + ) = ( + ) =+ Exmle Write + : with integer denomintor in the form + where, Q. + µ Ã = +! = = = So, = nd =.

13 RADICALS (SURDS) (Chter 4) 99 EXERCISE 4D. Write with integer denomintor: + + d e + f 4 g h + Write in the form + where, Q : 4 + d + Write in the form + where, Q : 4 + d If, nd re integers, show tht ( + )( ) is n integer. Write with n integer denomintor: i + ii. If nd re integers, show tht ( + )( ) is lso n integer. Write with n integer denomintor: i ii + LINKS lik here HOW A CALCULATOR CALCULATES RATIONAL NUMBERS Ares of intertion: Humn ingenuity REVIEW SET 4A Simlify: ( ) µ 4 Coy nd omlete: + =(::::::) Simlify: d 4 Use to urtely onstrut the osition of 0 on numer line using ruler nd omss. d 0

14 00 RADICALS (SURDS) (Chter 4) 4 Write 8 in simlest rdil form. Hene, simlify 8. Write 98 in simlest rdil form. Exnd nd simlify: ( +) ( ) ( + ) d ( ) e ( + )( ) f ( + )( ) Write with n integer denomintor: Write in the form + where, Q : + REVIEW SET 4B Simlify: 8 ( ) d 4 9 Find the ext osition of on numer line using ruler nd omss onstrution. Exlin your method. Hint: Look for two ositive integers nd suh tht =. Simlify: 4 4 Simlify: Write in simlest rdil form: Exnd nd simlify: ( ) ( ) ( ) d ( + ) e ( )( + ) f ( + )( ) Write with integer denomintor: Write in the form + where, Q :

### c b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00

Chter 19, exmle rolems: (19.06) A gs undergoes two roesses. First: onstnt volume @ 0.200 m 3, isohori. Pressure inreses from 2.00 10 5 P to 5.00 10 5 P. Seond: Constnt ressure @ 5.00 10 5 P, isori. olume

### If two triangles are perspective from a point, then they are also perspective from a line.

Mth 487 hter 4 Prtie Prolem Solutions 1. Give the definition of eh of the following terms: () omlete qudrngle omlete qudrngle is set of four oints, no three of whih re olliner, nd the six lines inident

### Chapter. Contents: A Constructing decimal numbers

Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting

### The remaining two sides of the right triangle are called the legs of the right triangle.

10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right

### Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

### State the size of angle x. Sometimes the fact that the angle sum of a triangle is 180 and other angle facts are needed. b y 127

ngles 2 CHTER 2.1 Tringles Drw tringle on pper nd lel its ngles, nd. Ter off its orners. Fit ngles, nd together. They mke stright line. This shows tht the ngles in this tringle dd up to 180 ut it is not

### Tallahassee Community College. Simplifying Radicals

Tllhssee Communit College Simplifing Rdils The squre root of n positive numer is the numer tht n e squred to get the numer whose squre root we re seeking. For emple, 1 euse if we squre we get 1, whih is

### Chapter. Fractions. Contents: A Representing fractions

Chpter Frtions Contents: A Representing rtions B Frtions o regulr shpes C Equl rtions D Simpliying rtions E Frtions o quntities F Compring rtion sizes G Improper rtions nd mixed numers 08 FRACTIONS (Chpter

### Angles 2.1. Exercise 2.1... Find the size of the lettered angles. Give reasons for your answers. a) b) c) Example

2.1 Angles Reognise lternte n orresponing ngles Key wors prllel lternte orresponing vertilly opposite Rememer, prllel lines re stright lines whih never meet or ross. The rrows show tht the lines re prllel

### Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

### Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur

Module 5 Three-hse A iruits Version EE IIT, Khrgur esson 8 Three-hse Blned Suly Version EE IIT, Khrgur In the module, ontining six lessons (-7), the study of iruits, onsisting of the liner elements resistne,

### How to Graphically Interpret the Complex Roots of a Quadratic Equation

Universit of Nersk - Linoln DigitlCommons@Universit of Nersk - Linoln MAT Em Epositor Ppers Mth in the Middle Institute Prtnership 7-007 How to Grphill Interpret the Comple Roots of Qudrti Eqution Crmen

### MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

GRADE Frtions WORKSHEETS Types of frtions equivlent frtions This frtion wll shows frtions tht re equivlent. Equivlent frtions re frtions tht re the sme mount. How mny equivlent frtions n you fin? Lel eh

### MATH PLACEMENT REVIEW GUIDE

MATH PLACEMENT REVIEW GUIDE This guie is intene s fous for your review efore tking the plement test. The questions presente here my not e on the plement test. Although si skills lultor is provie for your

### Words Symbols Diagram. abcde. a + b + c + d + e

Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To

### Factoring Polynomials

Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

### End of term: TEST A. Year 4. Name Class Date. Complete the missing numbers in the sequences below.

End of term: TEST A You will need penil nd ruler. Yer Nme Clss Dte Complete the missing numers in the sequenes elow. 8 30 3 28 2 9 25 00 75 25 2 Put irle round ll of the following shpes whih hve 3 shded.

### Ratio and Proportion

Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty

### 5.6 POSITIVE INTEGRAL EXPONENTS

54 (5 ) Chpter 5 Polynoils nd Eponents 5.6 POSITIVE INTEGRAL EXPONENTS In this section The product rule for positive integrl eponents ws presented in Section 5., nd the quotient rule ws presented in Section

### Rational Functions. Rational functions are the ratio of two polynomial functions. Qx bx b x bx b. x x x. ( x) ( ) ( ) ( ) and

Rtionl Functions Rtionl unctions re the rtio o two polynomil unctions. They cn be written in expnded orm s ( ( P x x + x + + x+ Qx bx b x bx b n n 1 n n 1 1 0 m m 1 m + m 1 + + m + 0 Exmples o rtionl unctions

### Unit 6: Exponents and Radicals

Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

### Section A-4 Rational Expressions: Basic Operations

A- Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr open-topped bo is to be constructed out of 9- by 6-inch sheets of thin crdbord by cutting -inch squres out of ech corner nd bending the

### 1. Area under a curve region bounded by the given function, vertical lines and the x axis.

Ares y Integrtion. Are uner urve region oune y the given funtion, vertil lines n the is.. Are uner urve region oune y the given funtion, horizontl lines n the y is.. Are etween urves efine y two given

### PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

### Operations with Polynomials

38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

### Square & Square Roots

Squre & Squre Roots Squre : If nuber is ultiplied by itself then the product is the squre of the nuber. Thus the squre of is x = eg. x x Squre root: The squre root of nuber is one of two equl fctors which

### Right-angled triangles

13 13A Pythgors theorem 13B Clulting trigonometri rtios 13C Finding n unknown side 13D Finding ngles 13E Angles of elevtion nd depression Right-ngled tringles Syllus referene Mesurement 4 Right-ngled tringles

### SECTION 7-2 Law of Cosines

516 7 Additionl Topis in Trigonometry h d sin s () tn h h d 50. Surveying. The lyout in the figure t right is used to determine n inessile height h when seline d in plne perpendiulr to h n e estlished

### Density Curve. Continuous Distributions. Continuous Distribution. Density Curve. Meaning of Area Under Curve. Meaning of Area Under Curve

Continuous Distributions Rndom Vribles of the Continuous Tye Density Curve Perent Density funtion f () f() A smooth urve tht fit the distribution 6 7 9 Test sores Density Curve Perent Probbility Density

### Heron s Formula for Triangular Area

Heron s Formul for Tringulr Are y Christy Willims, Crystl Holom, nd Kyl Gifford Heron of Alexndri Physiist, mthemtiin, nd engineer Tught t the museum in Alexndri Interests were more prtil (mehnis, engineering,

### SPECIAL PRODUCTS AND FACTORIZATION

MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

### Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

### 1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.

. Definition, Bsi onepts, Types. Addition nd Sutrtion of Mtries. Slr Multiplition. Assignment nd nswer key. Mtrix Multiplition. Assignment nd nswer key. Determinnt x x (digonl, minors, properties) summry

### WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS?

WHAT HAPPES WHE YOU MIX COMPLEX UMBERS WITH PRIME UMBERS? There s n ol syng, you n t pples n ornges. Mthemtns hte n t; they love to throw pples n ornges nto foo proessor n see wht hppens. Sometmes they

### Algebra Review. How well do you remember your algebra?

Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

### Radius of the Earth - Radii Used in Geodesy James R. Clynch Naval Postgraduate School, 2002

dius of the Erth - dii Used in Geodesy Jmes. Clynh vl Postgrdute Shool, 00 I. Three dii of Erth nd Their Use There re three rdii tht ome into use in geodesy. These re funtion of ltitude in the ellipsoidl

### Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

### Angles and Triangles

nges nd Tringes n nge is formed when two rys hve ommon strting point or vertex. The mesure of n nge is given in degrees, with ompete revoution representing 360 degrees. Some fmiir nges inude nother fmiir

### PROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * challenge questions

PROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * hllenge questions e The ll will strike the ground 1.0 s fter it is struk. Then v x = 20 m s 1 nd v y = 0 + (9.8 m s 2 )(1.0 s) = 9.8 m s 1 The speed

### Math 135 Circles and Completing the Square Examples

Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

### RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

### Mathematics Higher Level

Mthemtics Higher Level Higher Mthemtics Exmintion Section : The Exmintion Mthemtics Higher Level. Structure of the exmintion pper The Higher Mthemtics Exmintion is divided into two ppers s detiled below:

### NCERT INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS. Trigonometric Ratios of the angle A in a triangle ABC right angled at B are defined as:

INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS (A) Min Concepts nd Results Trigonometric Rtios of the ngle A in tringle ABC right ngled t B re defined s: side opposite to A BC sine of A = sin A = hypotenuse

### Lesson 4.1 Triangle Sum Conjecture

Lesson 4.1 ringle um onjecture Nme eriod te n ercises 1 9, determine the ngle mesures. 1. p, q 2., y 3., b 31 82 p 98 q 28 53 y 17 79 23 50 b 4. r, s, 5., y 6. y t t s r 100 85 100 y 30 4 7 y 31 7. s 8.

### NQF Level: 2 US No: 7480

NQF Level: 2 US No: 7480 Assessment Guide Primry Agriculture Rtionl nd irrtionl numers nd numer systems Assessor:.......................................... Workplce / Compny:.................................

### 1 Fractions from an advanced point of view

1 Frtions from n vne point of view We re going to stuy frtions from the viewpoint of moern lger, or strt lger. Our gol is to evelop eeper unerstning of wht n men. One onsequene of our eeper unerstning

### The Math Learning Center PO Box 12929, Salem, Oregon 97309 0929 Math Learning Center

Resource Overview Quntile Mesure: Skill or Concept: 1010Q Determine perimeter using concrete models, nonstndrd units, nd stndrd units. (QT M 146) Use models to develop formuls for finding res of tringles,

### Maximum area of polygon

Mimum re of polygon Suppose I give you n stiks. They might e of ifferent lengths, or the sme length, or some the sme s others, et. Now there re lots of polygons you n form with those stiks. Your jo is

### The Pythagorean Theorem

The Pythgoren Theorem Pythgors ws Greek mthemtiin nd philosopher, orn on the islnd of Smos (. 58 BC). He founded numer of shools, one in prtiulr in town in southern Itly lled Crotone, whose memers eventully

### Isothermal process on p-v, T-V, and p-t diagrams

Isotherml roess on -, T-, nd -T digrms isotherml T = T 0 = onstnt = ( 1, 1, T 0 ) = ( 2, 2, T 0 ) = nrt 0 T 1 1 T 0 Q T 0 2 W 2 1 2 1 2 T 0 T () = nrt 0 T() = T0 (T) = multivlued PHYS 1101, Winter 2009,

### Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

### P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

### HW 9. Problem 14.5. a. To Find:

HW 9 Problem 14.5. To Find: ( The number-verge moleulr weight (b The weight-verge moleulr weight ( The degree of polymeriztion for the given polypropylene mteril Moleulr Weight Rnge (g/mol x i w i 8,000

### Sine and Cosine Ratios. For each triangle, find (a) the length of the leg opposite lb and (b) the length of the leg adjacent to lb.

- Wht You ll ern o use sine nd osine to determine side lengths in tringles... nd Wh o use the sine rtio to estimte stronomil distnes indiretl, s in Emple Sine nd osine tios hek Skills You ll Need for Help

### Binary Representation of Numbers Autar Kaw

Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

### Square Roots Teacher Notes

Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this

### Practice Test 2. a. 12 kn b. 17 kn c. 13 kn d. 5.0 kn e. 49 kn

Prtie Test 2 1. A highwy urve hs rdius of 0.14 km nd is unnked. A r weighing 12 kn goes round the urve t speed of 24 m/s without slipping. Wht is the mgnitude of the horizontl fore of the rod on the r?

### Assuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C;

B-26 Appendix B The Bsics of Logic Design Check Yourself ALU n [Arthritic Logic Unit or (rre) Arithmetic Logic Unit] A rndom-numer genertor supplied s stndrd with ll computer systems Stn Kelly-Bootle,

### Interior and exterior angles add up to 180. Level 5 exterior angle

22 ngles n proof Ientify interior n exterior ngles in tringles n qurilterls lulte interior n exterior ngles of tringles n qurilterls Unerstn the ie of proof Reognise the ifferene etween onventions, eﬁnitions

### SOLVING QUADRATIC EQUATIONS BY FACTORING

6.6 Solving Qudrti Equtions y Ftoring (6 31) 307 In this setion The Zero Ftor Property Applitions 6.6 SOLVING QUADRATIC EQUATIONS BY FACTORING The tehniques of ftoring n e used to solve equtions involving

### 5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

### Formal Languages and Automata Exam

Forml Lnguges nd Automt Exm Fculty of Computers & Informtion Deprtment: Computer Science Grde: Third Course code: CSC 34 Totl Mrk: 8 Dte: 23//2 Time: 3 hours Answer the following questions: ) Consider

### COMPLEX FRACTIONS. section. Simplifying Complex Fractions

58 (6-6) Chpter 6 Rtionl Epressions undles tht they cn ttch while working together for 0 hours. 00 600 6 FIGURE FOR EXERCISE 9 95. Selling. George sells one gzine suscription every 0 inutes, wheres Theres

### Vectors 2. 1. Recap of vectors

Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

### Or more simply put, when adding or subtracting quantities, their uncertainties add.

Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

### Real Analysis HW 10 Solutions

Rel Anlysis HW 10 Solutions Problem 47: Show tht funtion f is bsolutely ontinuous on [, b if nd only if for eh ɛ > 0, there is δ > 0 suh tht for every finite disjoint olletion {( k, b k )} n of open intervls

### Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

### Lecture 5. Inner Product

Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

### In order to master the techniques explained here it is vital that you undertake the practice exercises provided.

Tringle formule m-ty-tringleformule-009-1 ommonmthemtilprolemistofindthenglesorlengthsofthesidesoftringlewhen some,utnotllofthesequntitiesreknown.itislsousefultoeletolultethere of tringle from some of

### Vectors Summary. Projection vector AC = ( Shortest distance from B to line A C D [OR = where m1. and m

. Slr prout (ot prout): = osθ Vetors Summry Lws of ot prout: (i) = (ii) ( ) = = (iii) = (ngle etween two ientil vetors is egrees) (iv) = n re perpeniulr Applitions: (i) Projetion vetor: B Length of projetion

### Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:

Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A

### 1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.

### Quick Guide to Lisp Implementation

isp Implementtion Hndout Pge 1 o 10 Quik Guide to isp Implementtion Representtion o si dt strutures isp dt strutures re lled S-epressions. The representtion o n S-epression n e roken into two piees, the

### TJ Publishers Advantage Business Centre 132-134 Great Ancoats Street Manchester M4 6DE

TJ Pulishers Advntge Business Centre 132-134 Gret Anots Street Mnhester M4 6DE Tel: 0141 880 6839 Fx: 0870 124 9189 e-mil: teejypulishers@tinternet.om we pge: www.teejypulishers.o.uk TeeJy Pulishers 2014

### Lecture 15 - Curve Fitting Techniques

Lecture 15 - Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting - motivtion For root finding, we used given function to identify where it crossed zero where does fx

### 9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

### SOLVING EQUATIONS BY FACTORING

316 (5-60) Chpter 5 Exponents nd Polynomils 5.9 SOLVING EQUATIONS BY FACTORING In this setion The Zero Ftor Property Applitions helpful hint Note tht the zero ftor property is our seond exmple of getting

### . At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

### Math Review for Algebra and Precalculus

Copyrigt Jnury 00 y Stnley Oken. No prt of tis doument my e opied or reprodued in ny form wtsoever witout epress permission of te utor. Mt Review for Alger nd Prelulus Stnley Oken Deprtment of Mtemtis

### and thus, they are similar. If k = 3 then the Jordan form of both matrices is

Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

### Homework 3 Solutions

CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

### FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation

FUNCTIONS AND EQUATIONS. SETS AND SUBSETS.. Definition of set. A set is ny collection of objects which re clled its elements. If x is n element of the set S, we sy tht x belongs to S nd write If y does

### CSE 1400 Applied Discrete Mathematics Sets

CSE 1400 Applie Disrete Mthemtis Sets Deprtment of Computer Sienes College of Engineering Flori Teh Fll 2011 Set Bsis 1 Common Sets 3 Opertions On Sets 3 Preeene of Set Opertions 4 Crtesin Prouts 4 Suset

### ALGEBRAIC FRACTIONS,AND EQUATIONS AND INEQUALITIES INVOLVING FRACTIONS

CHAPTER ALGEBRAIC FRACTIONS,AND EQUATIONS AND INEQUALITIES INVOLVING FRACTIONS Although people tody re mking greter use of deciml frctions s they work with clcultors, computers, nd the metric system, common

### Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková

Indices and Surds The term indices refers to the power to which a number is raised. Thus x is a number with an index of. People prefer the phrase "x to the power of ". Term surds is not often used, instead

### LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

### Learning Outcomes. Computer Systems - Architecture Lecture 4 - Boolean Logic. What is Logic? Boolean Logic 10/28/2010

/28/2 Lerning Outcomes At the end of this lecture you should: Computer Systems - Architecture Lecture 4 - Boolen Logic Eddie Edwrds eedwrds@doc.ic.c.uk http://www.doc.ic.c.uk/~eedwrds/compsys (Hevily sed

### 4: RIEMANN SUMS, RIEMANN INTEGRALS, FUNDAMENTAL THEOREM OF CALCULUS

4: RIEMA SUMS, RIEMA ITEGRALS, FUDAMETAL THEOREM OF CALCULUS STEVE HEILMA Contents 1. Review 1 2. Riemnn Sums 2 3. Riemnn Integrl 3 4. Fundmentl Theorem of Clculus 7 5. Appendix: ottion 10 1. Review Theorem

### 4 Geometry: Shapes. 4.1 Circumference and area of a circle. FM Functional Maths AU (AO2) Assessing Understanding PS (AO3) Problem Solving HOMEWORK 4A

Geometry: Shpes. Circumference nd re of circle HOMEWORK D C 3 5 6 7 8 9 0 3 U Find the circumference of ech of the following circles, round off your nswers to dp. Dimeter 3 cm Rdius c Rdius 8 m d Dimeter

### Pythagorean Triples and Rational Points on the Unit Circle

Pythagorean Triles and Rational Points on the Unit Circle Solutions Below are samle solutions to the roblems osed. You may find that your solutions are different in form and you may have found atterns

### Section 5-5 Solving Right Triangles*

5-5 Solving Right Tringles 379 79. Geometry. The re of retngulr n-sided polygon irumsried out irle of rdius is given y A n tn 80 n (A) Find A for n 8, n 00, n,000, nd n 0,000. Compute eh to five deiml

### Geometry 7-1 Geometric Mean and the Pythagorean Theorem

Geometry 7-1 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the

### CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001

CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic

### www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

### Volumes of solids of revolution

Volumes of solids of revolution We sometimes need to clculte the volume of solid which cn be obtined by rotting curve bout the x-xis. There is strightforwrd technique which enbles this to be done, using

### Regular Sets and Expressions

Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite