Convexity I: Sets and Functions

Size: px
Start display at page:

Download "Convexity I: Sets and Functions"

Transcription

1 Convexity I: Sets and Functions Lecturer: Ryan Tibshirani Convex Optimization / See supplements for reviews of basic real analysis basic multivariate calculus basic linear algebra

2 Last time: why convexity? Why convexity? Simply put: because we can broadly understand and solve convex optimization problems Nonconvex problems are mostly treated on a case by case basis Reminder: a convex optimization problem is of the form min x D f(x) subject to g i (x) 0, i = 1,... m h j (x) = 0, j = 1,... r where f and g i, i = 1,... m are all convex, and h j, j = 1,... r are affine. Special property: any local minimizer is a global minimizer 2

3 Outline Today: Convex sets Examples Key properties Operations preserving convexity Same, for convex functions 3

4 Convex sets Convex set: C R n such that x, y C = tx + (1 t)y C for all 0 t 1 In words, line segment joining any two elements lies entirely in set Convex combination of x 1,... x k R n : any linear combination θ 1 x θ k x k with θ i 0, i = 1,... k, and k i=1 θ i = 1. Convex hull of a set C, conv(c), is all convex combinations of elements. Always convex 4

5 Examples of convex sets Trivial ones: empty set, point, line Norm ball: {x : x r}, for given norm, radius r Hyperplane: {x : a T x = b}, for given a, b Halfspace: {x : a T x b} Affine space: {x : Ax = b}, for given A, b 5

6 Polyhedron: {x : Ax b}, where inequality is interpreted componentwise. Note: the set {x : Ax b, Cx = d} is also a polyhedron (why?) a1 a2 P a5 a3 a4 Simplex: special case of polyhedra, given by conv{x 0,... x k }, where these points are affinely independent. The canonical example is the probability simplex, conv{e 1,... e n } = {w : w 0, 1 T w = 1} 6

7 Cone: C R n such that Cones x C = tx C for all t 0 Convex cone: cone that is also convex, i.e., x 1, x 2 C = t 1 x 1 + t 2 x 2 C for all t 1, t 2 0 x1 x2 0 Conic combination of x 1,... x k R n : any linear combination θ 1 x θ k x k with θ i 0, i = 1,... k. Conic hull collects all conic combinations 7

8 Examples of convex cones Norm cone: {(x, t) : x t}, for a norm. Under l 2 norm 2, called second-order cone Normal cone: given any set C and point x C, we can define N C (x) = {g : g T x g T y, for all y C} This is always a convex cone, regardless of C Positive semidefinite cone: S n + = {X S n : X 0}, where X 0 means that X is positive semidefinite (and S n is the set of n n symmetric matrices) 8

9 Key properties of convex sets Separating hyperplane theorem: two disjoint convex sets have a separating between hyperplane them a T x b a T x b D C a Formally: if C, D are nonempty convex sets with C D =, then there exists a, b such that C {x : a T x b} D {x : a T x b} 9

10 Supporting hyperplane theorem: a boundary point of a convex set has a supporting hyperplane passing through it Formally: if C is a nonempty convex set, and x 0 bd(c), then there exists a such that C {x : a T x a T x 0 } Both of the above theorems (separating and supporting hyperplane theorems) have partial converses; see Section 2.5 of BV 10

11 11 Operations preserving convexity Intersection: the intersection of convex sets is convex Scaling and translation: if C is convex, then is convex for any a, b ac + b = {ax + b : x C} Affine images and preimages: if f(x) = Ax + b and C is convex then f(c) = {f(x) : x C} is convex, and if D is convex then is convex f 1 (D) = {x : f(x) D}

12 12 Example: linear matrix inequality solution set Given A 1,... A k, B S n, a linear matrix inequality is of the form x 1 A 1 + x 2 A x k A k B for a variable x R k. Let s prove the set C of points x that satisfy the above inequality is convex Approach 1: directly verify that x, y C tx + (1 t)y C. This follows by checking that, for any v, v T ( B k (tx i + (1 t)y i )A i )v 0 i=1 Approach 2: let f : R k S n, f(x) = B k i=1 x ia i. Note that C = f 1 (S n +), affine preimage of convex set

13 13 Example: Fantope Given some integer k 0, the Fantope of order k is { } F k = Z S n : 0 Z I, tr(z) = k where recall the trace operator tr(z) = n i=1 Z ii is the sum of the diagonal entries. Let s prove that F k is convex Approach 1: verify that 0 Z, W I and tr(z) = tr(w ) = I implies the same for tz + (1 t)w Approach 2: recognize the fact that F k = {Z S n : Z 0} {Z S n : Z I} {Z S n : tr(z) = k} intersection of linear inequality and equality constraints (hence like a polyhedron but for matrices)

14 14 More operations preserving convexity Perspective images and preimages: the perspective function is P : R n R ++ R n (where R ++ denotes positive reals), P (x, z) = x/z for z > 0. If C dom(p ) is convex then so is P (C), and if D is convex then so is P 1 (D) Linear-fractional images and preimages: the perspective map composed with an affine function, f(x) = Ax + b c T x + d is called a linear-fractional function, defined on c T x + d > 0. If C dom(f) is convex then so if f(c), and if D is convex then so is f 1 (D)

15 15 Example: conditional probability set Let U, V be random variables over {1,... n} and {1,... m}. Let C R nm be a set of joint distributions for U, V, i.e., each p C defines joint probabilities p ij = P(U = i, V = j) Let D R nm contain corresponding conditional distributions, i.e., each q D defines q ij = P(U = i V = j) Assume C is convex. Let s prove that D is convex. Write { D = q R nm p } ij : q ij = n k=1 p, for some p C = f(c) kj where f is a linear-fractional function, hence D is convex

16 16 Convex functions Convex function: f : R n R such that dom(f) R n convex, and f(tx + (1 t)y) tf(x) + (1 t)f(y) for 0 t 1 and all x, y dom(f) (x, f(x)) (y, f(y)) In words, f lies below the line segment joining f(x), f(y) Concave function: opposite inequality above, so that f concave f convex

17 17 Important modifiers: Strictly convex: f ( tx + (1 t)y ) < tf(x) + (1 t)f(y) for x y and 0 < t < 1. In words, f is convex and has greater curvature than a linear function Strongly convex with parameter m > 0: f m 2 x 2 2 is convex. In words, f is at least as convex as a quadratic function Note: strongly convex strictly convex convex (Analogously for concave functions)

18 18 Examples of convex functions Univariate functions: Exponential function: e ax is convex for any a over R Power function: x a is convex for a 1 or a 0 over R + (nonnegative reals) Power function: x a is concave for 0 a 1 over R + Logarithmic function: log x is concave over R++ Affine function: a T x + b is both convex and concave Quadratic function: 1 2 xt Qx + b T x + c is convex provided that Q 0 (positive semidefinite) Least squares loss: y Ax 2 2 is always convex (since AT A is always positive semidefinite)

19 19 Norm: x is convex for any norm; e.g., l p norms, x p = ( n i=1 x p i ) 1/p for p 1, x = max i=1,...n x i and also operator (spectral) and trace (nuclear) norms, X op = σ 1 (X), X tr = r σ r (X) i=1 where σ 1 (X)... σ r (X) 0 are the singular values of the matrix X

20 20 Indicator function: if C is convex, then its indicator function { 0 x C I C (x) = x / C is convex Support function: for any set C (convex or not), its support function IC(x) = max y C xt y is convex Max function: f(x) = max{x 1,... x n } is convex

21 21 Key properties of convex functions A function is convex if and only if its restriction to any line is convex Epigraph characterization: a function f is convex if and only if its epigraph is a convex set epi(f) = {(x, t) dom(f) R : f(x) t} Convex sublevel sets: if f is convex, then its sublevel sets {x dom(f) : f(x) t} are convex, for all t R. The converse is not true

22 22 First-order characterization: if f is differentiable, then f is convex if and only if dom(f) is convex, and f(y) f(x) + f(x) T (y x) for all x, y dom(f). Therefore for a differentiable convex function f(x) = 0 x minimizes f Second-order characterization: if f is twice differentiable, then f is convex if and only if dom(f) is convex, and 2 f(x) 0 for all x dom(f) Jensen s inequality: if f is convex, and X is a random variable supported on dom(f), then f(e[x]) E[f(X)]

23 23 Operations preserving convexity Nonnegative linear combination: f 1,... f m convex implies a 1 f a m f m convex for any a 1,... a m 0 Pointwise maximization: if f s is convex for any s S, then f(x) = max s S f s (x) is convex. Note that the set S here (number of functions f s ) can be infinite Partial minimization: if g(x, y) is convex in x, y, and C is convex, then f(x) = min y C g(x, y) is convex

24 24 Example: distances to a set Let C be an arbitrary set, and consider the maximum distance to C under an arbitrary norm : f(x) = max y C x y Let s check this is convex: f y (x) = x y is convex in x for any fixed y, so by pointwise maximization rule, f is convex Now let C be convex, and consider the minimum distance to C: f(x) = min y C x y Let s check this is convex: g(x, y) = x y is convex in x, y jointly, and C is assumed convex, so apply partial minimization rule

25 25 More operations preserving convexity Affine composition: f convex implies g(x) = f(ax + b) convex General composition: suppose f = h g, where g : R n R, h : R R, f : R n R. Then: f is convex if h is convex and nondecreasing, g is convex f is convex if h is convex and nonincreasing, g is concave f is concave if h is concave and nondecreasing, g concave f is concave if h is concave and nonincreasing, g convex How to remember these? Think of the chain rule when n = 1: f (x) = h (g(x))g (x) 2 + h (g(x))g (x)

26 26 Vector composition: suppose that f(x) = h ( g(x) ) = h ( g 1 (x),... g k (x) ) where g : R n R k, h : R k R, f : R n R. Then: f is convex if h is convex and nondecreasing in each argument, g is convex f is convex if h is convex and nonincreasing in each argument, g is concave f is concave if h is concave and nondecreasing in each argument, g is concave f is concave if h is concave and nonincreasing in each argument, g is convex

27 27 Example: log-sum-exp function Log-sum-exp function: g(x) = log( k i=1 eat i x+b i ), for fixed a i, b i, i = 1,... k. Often called soft max, as it smoothly approximates max i=1,...k (a T i x + b i) How to show convexity? First, note it suffices to prove convexity of f(x) = log( n i=1 ex i ) (affine composition rule) Now use second-order characterization. Calculate i f(x) = 2 ijf(x) = e x i n l=1 ex l e x i e x i e x j n 1{i = j} l=1 ex l ( n l=1 ex l ) 2 Write 2 f(x) = diag(z) zz T, where z i = e x i /( n l=1 ex l). This matrix is diagonally dominant, hence positive semidefinite

28 28 References and further reading S. Boyd and L. Vandenberghe (2004), Convex optimization, Chapters 2 and 3 J.P. Hiriart-Urruty and C. Lemarechal (1993), Fundamentals of convex analysis, Chapters A and B R. T. Rockafellar (1970), Convex analysis, Chapters 1 10,

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions 3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Optimisation et simulation numérique.

Optimisation et simulation numérique. Optimisation et simulation numérique. Lecture 1 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 1/106 Today Convex optimization: introduction Course organization and other gory details...

More information

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725 Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

More information

What is Linear Programming?

What is Linear Programming? Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

Notes on Symmetric Matrices

Notes on Symmetric Matrices CPSC 536N: Randomized Algorithms 2011-12 Term 2 Notes on Symmetric Matrices Prof. Nick Harvey University of British Columbia 1 Symmetric Matrices We review some basic results concerning symmetric matrices.

More information

CHAPTER 9. Integer Programming

CHAPTER 9. Integer Programming CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral

More information

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information

10. Proximal point method

10. Proximal point method L. Vandenberghe EE236C Spring 2013-14) 10. Proximal point method proximal point method augmented Lagrangian method Moreau-Yosida smoothing 10-1 Proximal point method a conceptual algorithm for minimizing

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

More information

A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION

A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION 1 A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION Dimitri Bertsekas M.I.T. FEBRUARY 2003 2 OUTLINE Convexity issues in optimization Historical remarks Our treatment of the subject Three unifying lines of

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8 Spaces and bases Week 3: Wednesday, Feb 8 I have two favorite vector spaces 1 : R n and the space P d of polynomials of degree at most d. For R n, we have a canonical basis: R n = span{e 1, e 2,..., e

More information

(Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties

(Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties Lecture 1 Convex Sets (Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties 1.1.1 A convex set In the school geometry

More information

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013 Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

More information

NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems

NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems Amir Ali Ahmadi, Alex Olshevsky, Pablo A. Parrilo, and John N. Tsitsiklis Abstract We show that unless P=NP, there exists no

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Solutions Of Some Non-Linear Programming Problems BIJAN KUMAR PATEL. Master of Science in Mathematics. Prof. ANIL KUMAR

Solutions Of Some Non-Linear Programming Problems BIJAN KUMAR PATEL. Master of Science in Mathematics. Prof. ANIL KUMAR Solutions Of Some Non-Linear Programming Problems A PROJECT REPORT submitted by BIJAN KUMAR PATEL for the partial fulfilment for the award of the degree of Master of Science in Mathematics under the supervision

More information

NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems

NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems Amir Ali Ahmadi, Alex Olshevsky, Pablo A. Parrilo, and John N. Tsitsiklis Abstract We show that unless P=NP, there exists no

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}. Walrasian Demand Econ 2100 Fall 2015 Lecture 5, September 16 Outline 1 Walrasian Demand 2 Properties of Walrasian Demand 3 An Optimization Recipe 4 First and Second Order Conditions Definition Walrasian

More information

Lecture 1: Schur s Unitary Triangularization Theorem

Lecture 1: Schur s Unitary Triangularization Theorem Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections

More information

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2 4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the

More information

Notes from Week 1: Algorithms for sequential prediction

Notes from Week 1: Algorithms for sequential prediction CS 683 Learning, Games, and Electronic Markets Spring 2007 Notes from Week 1: Algorithms for sequential prediction Instructor: Robert Kleinberg 22-26 Jan 2007 1 Introduction In this course we will be looking

More information

Lecture 7: Finding Lyapunov Functions 1

Lecture 7: Finding Lyapunov Functions 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

Homework # 3 Solutions

Homework # 3 Solutions Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

More information

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of

More information

Summer course on Convex Optimization. Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U.

Summer course on Convex Optimization. Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U. Summer course on Convex Optimization Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U.Minnesota Interior-Point Methods: the rebirth of an old idea Suppose that f is

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

Chapter 6. Cuboids. and. vol(conv(p ))

Chapter 6. Cuboids. and. vol(conv(p )) Chapter 6 Cuboids We have already seen that we can efficiently find the bounding box Q(P ) and an arbitrarily good approximation to the smallest enclosing ball B(P ) of a set P R d. Unfortunately, both

More information

Pattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University

Pattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University Pattern Analysis Logistic Regression 12. Mai 2009 Joachim Hornegger Chair of Pattern Recognition Erlangen University Pattern Analysis 2 / 43 1 Logistic Regression Posteriors and the Logistic Function Decision

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all. 1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.

More information

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued. Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

More information

Convex Optimization. Lieven Vandenberghe University of California, Los Angeles

Convex Optimization. Lieven Vandenberghe University of California, Los Angeles Convex Optimization Lieven Vandenberghe University of California, Los Angeles Tutorial lectures, Machine Learning Summer School University of Cambridge, September 3-4, 2009 Sources: Boyd & Vandenberghe,

More information

Proximal mapping via network optimization

Proximal mapping via network optimization L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

More information

Completely Positive Cone and its Dual

Completely Positive Cone and its Dual On the Computational Complexity of Membership Problems for the Completely Positive Cone and its Dual Peter J.C. Dickinson Luuk Gijben July 3, 2012 Abstract Copositive programming has become a useful tool

More information

Convex Rationing Solutions (Incomplete Version, Do not distribute)

Convex Rationing Solutions (Incomplete Version, Do not distribute) Convex Rationing Solutions (Incomplete Version, Do not distribute) Ruben Juarez rubenj@hawaii.edu January 2013 Abstract This paper introduces a notion of convexity on the rationing problem and characterizes

More information

ALMOST COMMON PRIORS 1. INTRODUCTION

ALMOST COMMON PRIORS 1. INTRODUCTION ALMOST COMMON PRIORS ZIV HELLMAN ABSTRACT. What happens when priors are not common? We introduce a measure for how far a type space is from having a common prior, which we term prior distance. If a type

More information

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

More information

Lecture 2: August 29. Linear Programming (part I)

Lecture 2: August 29. Linear Programming (part I) 10-725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they

More information

Additional Exercises for Convex Optimization

Additional Exercises for Convex Optimization Additional Exercises for Convex Optimization Stephen Boyd Lieven Vandenberghe February 11, 2016 This is a collection of additional exercises, meant to supplement those found in the book Convex Optimization,

More information

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

More information

Linear Programming I

Linear Programming I Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

More information

F Matrix Calculus F 1

F Matrix Calculus F 1 F Matrix Calculus F 1 Appendix F: MATRIX CALCULUS TABLE OF CONTENTS Page F1 Introduction F 3 F2 The Derivatives of Vector Functions F 3 F21 Derivative of Vector with Respect to Vector F 3 F22 Derivative

More information

1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES 1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

More information

Largest Fixed-Aspect, Axis-Aligned Rectangle

Largest Fixed-Aspect, Axis-Aligned Rectangle Largest Fixed-Aspect, Axis-Aligned Rectangle David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created: February 21, 2004 Last Modified: February

More information

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0, Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

More information

Continuity of the Perron Root

Continuity of the Perron Root Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North

More information

Nonconvex? NP! (No Problem!) Ryan Tibshirani Convex Optimization 10-725/36-725

Nonconvex? NP! (No Problem!) Ryan Tibshirani Convex Optimization 10-725/36-725 Nonconvex? NP! (No Problem!) Ryan Tibshirani Convex Optimization 10-725/36-725 1 Beyond the tip? 2 Some takeaway points If possible, formulate task in terms of convex optimization typically easier to solve,

More information

Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

Lecture 13 Linear quadratic Lyapunov theory

Lecture 13 Linear quadratic Lyapunov theory EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ] 1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

More information

ORIENTATIONS. Contents

ORIENTATIONS. Contents ORIENTATIONS Contents 1. Generators for H n R n, R n p 1 1. Generators for H n R n, R n p We ended last time by constructing explicit generators for H n D n, S n 1 by using an explicit n-simplex which

More information

FACTORIZATION OF TROPICAL POLYNOMIALS IN ONE AND SEVERAL VARIABLES. Nathan B. Grigg. Submitted to Brigham Young University in partial fulfillment

FACTORIZATION OF TROPICAL POLYNOMIALS IN ONE AND SEVERAL VARIABLES. Nathan B. Grigg. Submitted to Brigham Young University in partial fulfillment FACTORIZATION OF TROPICAL POLYNOMIALS IN ONE AND SEVERAL VARIABLES by Nathan B. Grigg Submitted to Brigham Young University in partial fulfillment of graduation requirements for University Honors Department

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information

Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

Classification of Cartan matrices

Classification of Cartan matrices Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

Master s Theory Exam Spring 2006

Master s Theory Exam Spring 2006 Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem

More information

Discuss the size of the instance for the minimum spanning tree problem.

Discuss the size of the instance for the minimum spanning tree problem. 3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

Lecture 4: BK inequality 27th August and 6th September, 2007

Lecture 4: BK inequality 27th August and 6th September, 2007 CSL866: Percolation and Random Graphs IIT Delhi Amitabha Bagchi Scribe: Arindam Pal Lecture 4: BK inequality 27th August and 6th September, 2007 4. Preliminaries The FKG inequality allows us to lower bound

More information

Limits and Continuity

Limits and Continuity Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

More information

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

More information

9 MATRICES AND TRANSFORMATIONS

9 MATRICES AND TRANSFORMATIONS 9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

More information

Linear Programming: Theory and Applications

Linear Programming: Theory and Applications Linear Programming: Theory and Applications Catherine Lewis May 11, 2008 1 Contents 1 Introduction to Linear Programming 3 1.1 What is a linear program?...................... 3 1.2 Assumptions.............................

More information

Several Views of Support Vector Machines

Several Views of Support Vector Machines Several Views of Support Vector Machines Ryan M. Rifkin Honda Research Institute USA, Inc. Human Intention Understanding Group 2007 Tikhonov Regularization We are considering algorithms of the form min

More information

Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation

6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation 6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation Daron Acemoglu and Asu Ozdaglar MIT November 2, 2009 1 Introduction Outline The problem of cooperation Finitely-repeated prisoner s dilemma

More information

Actually Doing It! 6. Prove that the regular unit cube (say 1cm=unit) of sufficiently high dimension can fit inside it the whole city of New York.

Actually Doing It! 6. Prove that the regular unit cube (say 1cm=unit) of sufficiently high dimension can fit inside it the whole city of New York. 1: 1. Compute a random 4-dimensional polytope P as the convex hull of 10 random points using rand sphere(4,10). Run VISUAL to see a Schlegel diagram. How many 3-dimensional polytopes do you see? How many

More information

On Minimal Valid Inequalities for Mixed Integer Conic Programs

On Minimal Valid Inequalities for Mixed Integer Conic Programs On Minimal Valid Inequalities for Mixed Integer Conic Programs Fatma Kılınç Karzan June 27, 2013 Abstract We study mixed integer conic sets involving a general regular (closed, convex, full dimensional,

More information

ON TORI TRIANGULATIONS ASSOCIATED WITH TWO-DIMENSIONAL CONTINUED FRACTIONS OF CUBIC IRRATIONALITIES.

ON TORI TRIANGULATIONS ASSOCIATED WITH TWO-DIMENSIONAL CONTINUED FRACTIONS OF CUBIC IRRATIONALITIES. ON TORI TRIANGULATIONS ASSOCIATED WITH TWO-DIMENSIONAL CONTINUED FRACTIONS OF CUBIC IRRATIONALITIES. O. N. KARPENKOV Introduction. A series of properties for ordinary continued fractions possesses multidimensional

More information

19 LINEAR QUADRATIC REGULATOR

19 LINEAR QUADRATIC REGULATOR 19 LINEAR QUADRATIC REGULATOR 19.1 Introduction The simple form of loopshaping in scalar systems does not extend directly to multivariable (MIMO) plants, which are characterized by transfer matrices instead

More information

BX in ( u, v) basis in two ways. On the one hand, AN = u+

BX in ( u, v) basis in two ways. On the one hand, AN = u+ 1. Let f(x) = 1 x +1. Find f (6) () (the value of the sixth derivative of the function f(x) at zero). Answer: 7. We expand the given function into a Taylor series at the point x = : f(x) = 1 x + x 4 x

More information

Date: April 12, 2001. Contents

Date: April 12, 2001. Contents 2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........

More information