Oxidation-Reduction Reactions

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Oxidation-Reduction Reactions"

Transcription

1 Oxidation-Reduction Reactions Oxidation-reduction reactions (or redox) reactions, are a type of reaction in aqueous solutions that involves a transfer of electrons between two species. An oxidation-reduction reaction is any chemical reaction in which the oxidation number of a molecule, atom, or ion changes by gaining or losing an e -. They occur every day and are vital to some of the basic functions of life. Some examples include photosynthesis (within plants), respiration (within animals), combustion, and corrosion or rusting. To understand these types of reactions, you must first understand oxidation numbers or states. 1. Rules for Assigning Oxidation States 1.1. Sample Problems: Determine the oxidation states: 1.2. Solutions Answers to Example 1: Answers to Example 2: 2. Oxidizing and Reducing Agents 3. Oxidation-Reduction Reactions Answer: Answer: 4. Half Reactions 5. Balancing Oxidation-Reduction Reactions 5.1. Half-Equation Method 5.2. Balancing in Basic and Acidic Solution Example 5: Example 6: 6. Types of Redox Reactions: 6.1. Combination Sample Decomposition Sample Displacement Reactions Sample Sample Combustion 6.5. Disproportionation 7. True or False 8. Solutions 9. Summary 10. References 11. Contributors 1

2 Rules for Assigning Oxidation States The oxidation number corresponds to the number of electrons, e -, that an atom loses, gains, or appears to use when joining with other atoms in compounds. When determining the Oxidation State of an atom there are seven guidelines to follow: 1. The Oxidation State of an individual atom is The total Oxidation State of all atoms in: a neutral species is 0 and in an ion is equal to the ion charge. 3. Group 1 metals have an Oxidation State of +1 and group 2 an Oxidation State of The Oxidation State of fluorine is -1, when in compounds 5. Hydrogen generally has an Oxidation State of +1 in compounds 6. Oxygen generally has an Oxidation State of -2 in compounds 7. In binary metal compounds, group 17 elements have an Oxidation State of -1, group 16 of -2, and group 15 of -3. (Note: The sum of the oxidation states is equal to zero for neutral compounds and equal to the charge for polyatomic ion species.) Sample Problems: Determine the oxidation states: 1. Fe(s) + O 2 (g) Fe 2 O 3 (g) 2. Fe Ag(s) + H 2 S Ag 2 S(g) + H 2 (g) Solutions 1. Fe and O 2 are free elements, therefore they have an O.S. of "0" according to Rule #1. The product has a total O.S. equal to "0" and following Rule #6, O 3 has an O.S. of -2, which means Fe 2 has an O.S. of The O.S. of Fe corresponds to its charge, therefore the O.S. is Ag has an O.S. of 0, H 2 has an O.S. of +1 according to Rule #5 and S has an O.S. of -2 according to Rule #7. Example 1: Determine the oxidation state of the bold element in each of the following: 1. Na 3 PO 3 2. H 2 PO 4-2

3 Answers to Example 1: 1. The oxidation numbers of Na and O are +1 and -2. Since sodium phosphite is neutral, the sum of the oxidation numbers must be zero.. Letting x be the oxidation number of phosphorus then, 0= 3(+1) + x + 3(-2). x=oxidation number of P= Hydrogen and oxygen have oxidation numbers of +1 and -2. The ion has a charge of -1, so the sum of the oxidation numbers must be -1. Letting y be the oxidation number of phosphorus, -1= y + 2(+1) +4(- 2), y= oxidation number of P= +5. Example 2: Determine which element is oxidized and which element is reduced in the following reactions (be sure to include the oxidation state of each): 1. Zn + 2H + Zn 2+ + H Al + 3Cu 2+ 2Al 3+ +3Cu 3. CO H + CO 2 + H 2 O Answers to Example 2: 1. Zn is oxidized (Oxidation number: 0 +2); H + is reduced (Oxidation number: +1 0) 2. Al is oxidized (Oxidation number: 0 +3); Cu 2+ is reduced (+2 0) 3. This is not a redox type because each element has the same oxidation number in both reactants and products: O= -2, H= +1, C= +4. (For a more in depth look see oxidation numbers). Oxidizing and Reducing Agents An atom is oxidized when it oxidation number increases, the reducing agent, and an atom is reduced when its oxidation number decreases, the oxidizing agent. In other words, what is oxidized is the reducing agent and what is reduced is the oxidizing agent. (Note: the oxidizing and reducing agents can be the same element or compound). Oxidation-Reduction Reactions Redox reactions are comprised of two parts, a reduced half and an oxidized half, that always occur together. The reduced half gains electrons and the oxidation number decreases, while the oxidized half losses electrons and the oxidation number increases. Simple ways to remember this are the mnemonic devices OIL RIG meaning "oxidation is loss" and "reduction is gain" or LEO says GER meaning "loss of e - = oxidation" and "gain of e - = 3

4 reduced." There is no net change in the number of electrons in a redox reaction. Those given off in the oxidation half reaction are taken on by another species in the reduction half reaction. The two species that exchange electrons in a redox reaction are given special names. The ion or molecule that accepts electrons is called the oxidizing agent; by accepting electrons it brings about the oxidation of another species. Conversely, the species that donates electrons is called the reducing agent; when reaction occurs it reduces the other species. In other words, what is oxidized is the reducing agent and what is reduced is the oxidizing agent. (Note: the oxidizing and reducing agents can be the same element or compound This will be further discussed under Types of Redox Reactions: Disproportionation). A good example of a redox reaction is the thermite reaction in which iron atoms of ferric oxide lose (or give up) O atoms to Al atoms, producing Al 2 O 3. Fe 2 O 3 (s) + 2Al(s) Al 2 O 3 (s) + 2Fe(l) Another example of the redox reaction is the reaction between Zinc and Copper sulfate. Example 3. Using the equations from the previous examples determine what is oxidized? 1. Zn + 2H + Zn 2+ + H 2 Answer: The O.S. of H goes from +1 to 0 and the O.S. of Zn goes from 0 to 2+. Hence, Zn is oxidized and acts as the reducing agent. Example 4. What is reduced? 1. Zn + 2H + Zn 2+ + H 2 Answer: The O.S. of H goes from +1 to 0 and the O.S. of Zn goes from 0 to 2+. Hence, H + ion is reduced and acts as the oxidizing agent. 4

5 Half Reactions Before one can balance an overall redox equation, one has to be able to balance two half-equations, one for oxidation (electron loss) and one for reduction (electron gain). Collectively, oxidation and reduction are known as redox, or an electron transfer reaction. After balancing the two halfequations one can determine the total net reaction. Each equation is balanced by adjusting coefficients and adding H 2 O, H +, and e - in this order: 1) Balance the number of atoms of each element. 2) Balance the number of electrons transferred. 3) Balance the total charge on reactants and products (Note: If #1 and #2 are done correctly, #3 will follow. Thus, it serves as a means of checking your work). Balancing Oxidation-Reduction Reactions To solve redox reactions accurately, you must first understand how to balance chemical equations. Though this process is more difficult than normal balancing it is a required step in the process of redox reactions. One of the most accepted methods of balancing a redox reaction is known as the half-equation method, however it can become more complex when involving basic or acidic solutions. In this module, a brief introduction to this different method will be explored. For an in depth explanation see: Balancing Oxidation-Reduction Reactions. Half-Equation Method The half-equation method (for neutral reactions) involves three basic steps which are as follows: Write and balance the half reactions. Adjust coefficients in both equations so that the same number of electrons appears in each half. Add together both halves, canceling out electrons, to obtain the overall equation. Balancing in Basic and Acidic Solution 5

6 Balancing in acidic solution is similar to balancing in neutral solutions however, instead of three steps to follow, there are six. These rules are: Write and balance the half reactions. Balance oxygen, O, by adding with H 2 O Balance hydrogen, H, by adding H + (acidic) Balance charge by adding electrons (you should be adding the same number of electrons as H + ions) Multiply both half reactions by some integer to cancel out electrons Add the half reactions together and cancel out what appears on both sides Example 5: Balance the redox reaction in acidic solution: MnO I - --> Mn 2+ + I 2(s) Write and balance the half reactions: MnO I - --> Mn 2+ + I 2(s) O.S: (Mn is reduced and I - is oxidized) Oxidation Rx:2I - (aq) --> I 2(s) + 2e - Reduction Rx: MnO e - --> Mn 2+ Balance oxygen, O, by adding H 2 O Oxidation Rx: 2I - (aq) --> I 2(s) + 2e - Reduction Rx: MnO e - --> Mn H 2 O Balance hydrogen, H, by adding H + Oxidation Rx: 2I - (aq) --> I 2(s) + 2e - - Reduction Rx: MnO 4 + 5e - + 8H + --> Mn H 2 O Balance charge by adding electrons Oxidation Rx: 2I - (aq) --> I 2(s) + 2e - Reduction Rx: MnO e - + 8H + --> Mn H 2 O Multiply both half reactions by some integer to cancel out electrons (Oxidation Rx: 2I - (aq) --> I 2(s) + 2e - ) * 5 (Reduction Rx: MnO e - + 8H + --> Mn H 2 O) *2 Oxidation Rx: 10I - (aq) --> 5I 2(s) + 10e - Reduction Rx: 2MnO e H + --> 2Mn H 2 O Add the half reactions together and cancel out what appears on both sides: 10I - (aq) + 2MnO 4 - (aq) + 16H + (aq) --> 2Mn 2+ (aq) + 5I 2(s) + 8H 2 O (l) (Note: Don't forget the states of matter! Generally, anything with a charge is (aq) and H2O is (l) ) Balancing in basic solution follows balancing in acidic solutions in three steps: Balance the reaction in acidic solution 6

7 Add the same amount of OH - ions as H + ions to both sides of the equation. On one side, the OH - and H + will react to form water (H2O) in a 1:1 ratio. Cancel out water molecules appearing on both sides Example 6: Balance the above redox reaction in basic solution: Balance the reaction in acidic solution 10I - - (aq) + 2MnO 4 (aq) + 16H + (aq) --> 2Mn 2+ (aq) + 5I 2(s) + 8H 2 O (l) Add the same amount of OH - ions as H + ions to both sides of the equation. 10I - - (aq) + 2MnO 4 (aq) + 16H + (aq) + 16OH - --> 2Mn 2+ (aq) + 5I 2(s) + 8H 2 O (l) + 16OH - On one side, the OH - and H + will react to form water (H2O) in a 1:1 ratio. 10I - - (aq) + 2MnO 4 (aq) + 16H 2 O --> 2Mn 2+ (aq) + 5I 2(s) + 8H 2 O (l) + 16OH - Cancel out the water molecules appearing on both sides 10I - - (aq) + 2MnO 4 (aq) + 8H 2 O (l) --> 2Mn 2+ (aq) + 5I 2(s) + 16OH - (aq) Example: Balance the following half-equation: (1) MnO 4 - Mn 2+ Answers: (1) a. Because there is one atom of Mn on both sides, no adjustment is required. b. Because manganese is reduced from an oxidation number of +7 to +2, five electrons must be added to the left (MnO e - Mn 2+ ) c. There is a total charge of -6 on the left versus +2 on the right. To balance, add eight H + to the left to give a charge of +2 on both sides. (MnO H + + 5e - Mn 2+ ) d. To balance the eight H + ions on the left, add four H 2 O molecules to the right. MnO H + + 5e - Mn H 2 O e. Note that there are the same number of oxygen atoms, four, on both sides, as there should be. The equation shown in green is the correctly balanced reduction half-equation. 7

8 Types of Redox Reactions: Combination Combination reactions are some of the simplest redox reactions and as the name suggests involves the "combining" of elements to form a chemical compound. As usual, oxidation and reduction occur together. General Equation: A + B AB Sample 1. Equation: H 2 + O 2 H 2 O Calculation: (2)(+1) + (-2) = 0 Explanation: In this equation both H 2 and O 2 are free elements and following Rule#1, their oxidation state is "0." The product is H 2 O, which has a total oxidation state of "0." According to Rule#6, the O.S. of oxygen is usually -2. So, the O.S. of H 2 must be +1. Decomposition General Equation: AB A + B Decomposition reactions are the reverse of combination reactions, meaning they are the breakdown of a chemical compound into the individual elements. Sample 2. Equation: H 2 O H 2 + O 2 Calculation: (2)(+1) + (-2) = Explanation: In this equation the water is "decomposed" into a Hydrogen and Oxygen. Similar to the previous sample the H 2 O has a total oxidation state of "0," thus according to Rule#6 the O.S. of oxygen is usually -2 so the O.S. of H 2 must be +1. Displacement Reactions Displacement reactions, also known as replacement reactions, involve compounds and the "replacing" of elements. They occur as single replacement and double replacement reactions. 8

9 Single Replacement General Equation: A + BC AB + C A single replacement reaction involves the "replacing" of an element in the reactants with another element in the products. Sample 3. Equation: Cl 2 + NaBr NaCl + Br 2 Calculation: (0) + ((+1) + (-1) = 0) -> ((+1) + (-1) = 0) + 0 Explanation: In this equation Br is replaced with Cl and Cl is reduced, while Br is oxidized. Double Replacement General Equation: AB + CD AD + CB A double replacement reaction is similar to a double replacement reaction, but involves "replacing" two elements in the reactants, with two in the products. Sample 4. Equation: Fe 2 O 3 + HCl FeCl 3 + H 2 O Explanation: In this equation Fe and H trade places and oxygen and chlorine trade places. Combustion Combustion reactions always involve oxygen, in the form of O 2 and are almost always exothermic, meaning they produce heat. General Equation: C x H y + O 2 CO 2 + H 2 O Disproportionation General Equation: 2A A' + A" In some redox reactions substances can be both oxidized and reduced. These are known as disproportionation reactions, which have some practical significance in everyday life including the reaction of hydrogen peroxide, H 2 O 2 poured over a cut. This a decomposition reaction of hydrogen 9

10 peroxide, which produces oxygen and water. Oxygen is present in all parts of the chemical equation and as a result it is both oxidized and reduced. Reaction: 2H 2 O 2 (aq) 2H 2 O(l) + O 2 (g) Explanation: In the reactants H has an O has an O.S. of -1, which changes to -2 for the product, H 2 O (reduced) and 0 for the product, O 2 (oxidized). True or False 1. The oxidation state of an individual atom is always The oxidation agent has to be reduced 3. Combustion reactions always involve oxygen 4. Electrons and Hydrogen are almost never on the same side Solutions 1. False: is always 0 2. True 3. True 4. False: electrons and hydrogen are almost always on the same side Summary Remember the 7 Rules of Oxidation States (these are vital to undertanding redox reactions) Oxidation signifies a loss of electron and reduction signifies a gain of electrons. Balancing redox reactions is an important step that changes in neutral, basic, and acidic solutions. Remember the various types of redox reactions o Combination and Decomposition o Displacement Reactions (Single and Double) o Combustion o Disproportionation The oxidizing agent undergoes reduction and the reducing agent undergoes oxidation. 10

11 References 1. Petrucci, et al. General Chemistry: Principles & Modern Applications. 9th ed. Upper Saddle River, New Jersey: Pearson/Prentice Hall, Sadava, et al. Life: The Science of Biology. 8th ed. New York, NY. W.H. Freeman and Company, "oxidation reduction reaction." Encyclopædia Britannica Encyclopædia Britannica Online. 19 May x_chemistry/balancing_redox_reactions Contributors Christopher Spohrer (UCD) Christina Breitenbuecher (UCD) Luvleen Brar (UCD) 11

Oxidation-Reduction Reactions

Oxidation-Reduction Reactions Oxidation-Reduction Reactions What is an Oxidation-Reduction, or Redox, reaction? Oxidation-reduction reactions, or redox reactions, are technically defined as any chemical reaction in which the oxidation

More information

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions Oxidation-Reduction Reactions Chapter 11 Electrochemistry Oxidation and Reduction Reactions An oxidation and reduction reaction occurs in both aqueous solutions and in reactions where substances are burned

More information

Chapter 6 Oxidation-Reduction Reactions. Section 6.1 2. Which one of the statements below is true concerning an oxidation-reduction reaction?

Chapter 6 Oxidation-Reduction Reactions. Section 6.1 2. Which one of the statements below is true concerning an oxidation-reduction reaction? Chapter 6 Oxidation-Reduction Reactions 1. Oxidation is defined as a. gain of a proton b. loss of a proton c. gain of an electron! d. loss of an electron e. capture of an electron by a neutron 2. Which

More information

Worksheet 25 - Oxidation/Reduction Reactions

Worksheet 25 - Oxidation/Reduction Reactions Worksheet 25 Oxidation/Reduction Reactions Oxidation number rules: Elements have an oxidation number of 0 Group I and II In addition to the elemental oxidation state of 0, Group I has an oxidation state

More information

2. DECOMPOSITION REACTION ( A couple have a heated argument and break up )

2. DECOMPOSITION REACTION ( A couple have a heated argument and break up ) TYPES OF CHEMICAL REACTIONS Most reactions can be classified into one of five categories by examining the types of reactants and products involved in the reaction. Knowing the types of reactions can help

More information

Chapter 12: Oxidation and Reduction.

Chapter 12: Oxidation and Reduction. 207 Oxidation- reduction (redox) reactions Chapter 12: Oxidation and Reduction. At different times, oxidation and reduction (redox) have had different, but complimentary, definitions. Compare the following

More information

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

Oxidation-Reduction Reactions

Oxidation-Reduction Reactions CHAPTER 19 REVIEW Oxidation-Reduction Reactions SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. All the following equations involve redox reactions except (a) CaO H 2 O

More information

Oxidation / Reduction Handout Chem 2 WS11

Oxidation / Reduction Handout Chem 2 WS11 Oxidation / Reduction Handout Chem 2 WS11 The original concept of oxidation applied to reactions where there was a union with oxygen. The oxygen was either furnished by elemental oxygen or by compounds

More information

Writing and Balancing Chemical Equations

Writing and Balancing Chemical Equations Name Writing and Balancing Chemical Equations Period When a substance undergoes a chemical reaction, chemical bonds are broken and new bonds are formed. This results in one or more new substances, often

More information

Chemical Reactions in Water Ron Robertson

Chemical Reactions in Water Ron Robertson Chemical Reactions in Water Ron Robertson r2 f:\files\courses\1110-20\2010 possible slides for web\waterchemtrans.doc Properties of Compounds in Water Electrolytes and nonelectrolytes Water soluble compounds

More information

Chemical Reactions in Water

Chemical Reactions in Water Chemical Reactions in Water Ron Robertson r2 f:\files\courses\1110-20\2010 possible slides for web\waterchemtrans.doc Acids, Bases and Salts Acids dissolve in water to give H + ions. These ions attach

More information

Chapter 4: Reactions in Aqueous Solution (Sections )

Chapter 4: Reactions in Aqueous Solution (Sections ) Chapter 4: Reactions in Aqueous Solution (Sections 4.1-4.12) Chapter Goals Be able to: Classify substances as electrolytes or nonelectrolytes. Write molecular, ionic, and net ionic equations for precipitation,

More information

NET IONIC EQUATIONS. A balanced chemical equation can describe all chemical reactions, an example of such an equation is:

NET IONIC EQUATIONS. A balanced chemical equation can describe all chemical reactions, an example of such an equation is: NET IONIC EQUATIONS A balanced chemical equation can describe all chemical reactions, an example of such an equation is: NaCl + AgNO 3 AgCl + NaNO 3 In this case, the simple formulas of the various reactants

More information

Electrochemistry. Chapter 17 Electrochemistry GCC CHM152. Ox # examples. Redox: LEO the lion goes GER. Oxidation Numbers (Chapter 4).

Electrochemistry. Chapter 17 Electrochemistry GCC CHM152. Ox # examples. Redox: LEO the lion goes GER. Oxidation Numbers (Chapter 4). Chapter 17 Electrochemistry GCC CHM152 Electrochemistry Electrochemistry is the study of batteries and the conversion between chemical and electrical energy. Based on redox (oxidation-reduction) reactions

More information

Chapter 4 Notes - Types of Chemical Reactions and Solution Chemistry

Chapter 4 Notes - Types of Chemical Reactions and Solution Chemistry AP Chemistry A. Allan Chapter 4 Notes - Types of Chemical Reactions and Solution Chemistry 4.1 Water, the Common Solvent A. Structure of water 1. Oxygen's electronegativity is high (3.5) and hydrogen's

More information

Chapter 5. Chemical Reactions and Equations. Introduction. Chapter 5 Topics. 5.1 What is a Chemical Reaction

Chapter 5. Chemical Reactions and Equations. Introduction. Chapter 5 Topics. 5.1 What is a Chemical Reaction Introduction Chapter 5 Chemical Reactions and Equations Chemical reactions occur all around us. How do we make sense of these changes? What patterns can we find? 1 2 Copyright The McGraw-Hill Companies,

More information

Chemical Equations and Chemical Reactions. Chapter 8.1

Chemical Equations and Chemical Reactions. Chapter 8.1 Chemical Equations and Chemical Reactions Chapter 8.1 Objectives List observations that suggest that a chemical reaction has taken place List the requirements for a correctly written chemical equation.

More information

Chapter 8 - Chemical Equations and Reactions

Chapter 8 - Chemical Equations and Reactions Chapter 8 - Chemical Equations and Reactions 8-1 Describing Chemical Reactions I. Introduction A. Reactants 1. Original substances entering into a chemical rxn B. Products 1. The resulting substances from

More information

Chapter 7: Chemical Equations. Name: Date: Period:

Chapter 7: Chemical Equations. Name: Date: Period: Chapter 7: Chemical Equations Name: Date: Period: 7-1 What is a chemical reaction? Read pages 232-237 a) Explain what a chemical reaction is. b) Distinguish between evidence that suggests a chemical reaction

More information

Today. Electrochemistry electrons moving about equilibrium with a control knob

Today. Electrochemistry electrons moving about equilibrium with a control knob Today Electrochemistry electrons moving about equilibrium with a control knob Batteries what is going on (the simple view) Cd on one side Ni 3+ on the other side Electrons have a lower free energy in Ni

More information

CHEMICAL EQUATIONS and REACTION TYPES

CHEMICAL EQUATIONS and REACTION TYPES 31 CHEMICAL EQUATIONS and REACTION TYPES The purpose of this laboratory exercise is to develop skills in writing and balancing chemical equations. The relevance of this exercise is illustrated by a series

More information

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy.

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy. Chapter 13: Electrochemistry Redox Reactions Galvanic Cells Cell Potentials Cell Potentials and Equilbrium Batteries Electrolysis Electrolysis and Stoichiometry Corrosion Prevention Electrochemistry The

More information

Similarities and Differences Galvanic and Electrolytic Cell:

Similarities and Differences Galvanic and Electrolytic Cell: Electrolytic Cells Voltaic cells are driven by a spontaneous chemical reaction that produces an electric current through an outside circuit. These cells are important because they are the basis for the

More information

WRITING REDOX EQUATIONS : HALF-EQUATION METHOD

WRITING REDOX EQUATIONS : HALF-EQUATION METHOD 30 WRITING REDOX EQUATIONS : HALF-EQUATION METHOD Comparing different methods for balancing redox equations: If the objective is simply to balance an equation, and the equation can be balanced easily BY

More information

Chapter 3. Stoichiometry: Ratios of Combination. Insert picture from First page of chapter. Copyright McGraw-Hill 2009 1

Chapter 3. Stoichiometry: Ratios of Combination. Insert picture from First page of chapter. Copyright McGraw-Hill 2009 1 Chapter 3 Insert picture from First page of chapter Stoichiometry: Ratios of Combination Copyright McGraw-Hill 2009 1 3.1 Molecular and Formula Masses Molecular mass - (molecular weight) The mass in amu

More information

Chapter 8: Chemical Equations and Reactions

Chapter 8: Chemical Equations and Reactions Chapter 8: Chemical Equations and Reactions I. Describing Chemical Reactions A. A chemical reaction is the process by which one or more substances are changed into one or more different substances. A chemical

More information

Sample Exercise 20.1 Identifying Oxidizing and Reducing Agents

Sample Exercise 20.1 Identifying Oxidizing and Reducing Agents Sample Exercise 20.1 Identifying Oxidizing and Reducing Agents The nickel-cadmium (nicad) battery, a rechargeable dry cell used in battery-operated devices, uses the following redox reaction to generate

More information

6 Reactions in Aqueous Solutions

6 Reactions in Aqueous Solutions 6 Reactions in Aqueous Solutions Water is by far the most common medium in which chemical reactions occur naturally. It is not hard to see this: 70% of our body mass is water and about 70% of the surface

More information

Experiment 17-Chemical Reactions Lab

Experiment 17-Chemical Reactions Lab Since the Middle Ages, when ancient physicians attempted to find a magical substance that would cure all diseases, humans have been fascinated with chemical reactions. In order to effectively describe

More information

Steps to Predicting the Products of Chemical Reactions. CP Chemistry

Steps to Predicting the Products of Chemical Reactions. CP Chemistry Steps to Predicting the Products of Chemical Reactions CP Chemistry TYPES OF REACTIONS REVIEW 2 NaNO 3 + PbO Pb(NO 3 ) 2 + Na 2 O C 2 H 4 O 2 + 2 O 2 2 CO 2 + 2 H 2 O ZnSO 4 + Li 2 CO 3 ZnCO 3 + Li 2 SO

More information

Module Four Balancing Chemical Reactions. Chem 170. Stoichiometric Calculations. Module Four. Balancing Chemical Reactions

Module Four Balancing Chemical Reactions. Chem 170. Stoichiometric Calculations. Module Four. Balancing Chemical Reactions Chem 170 Stoichiometric Calculations Module Four Balancing Chemical Reactions DePauw University Department of Chemistry and Biochemistry Page 1 Introduction to Module Four When making a cheeseburger you

More information

Chemical Reactions. Chemistry 100. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 4

Chemical Reactions. Chemistry 100. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 4 Chemistry 100 Bettelheim, Brown, Campbell & Farrell Ninth Edition Introduction to General, Organic and Biochemistry Chapter 4 Chemical Reactions Chemical Reactions In a chemical reaction, one set of chemical

More information

GHW#9. Louisiana Tech University, Chemistry 100. POGIL Exercise on Chapter 4. Quantities of Reactants and Products: Equations, Patterns and Balancing

GHW#9. Louisiana Tech University, Chemistry 100. POGIL Exercise on Chapter 4. Quantities of Reactants and Products: Equations, Patterns and Balancing GHW#9. Louisiana Tech University, Chemistry 100. POGIL Exercise on Chapter 4. Quantities of Reactants and Products: Equations, Patterns and Balancing Why? In chemistry, chemical equations represent changes

More information

19.2 Chemical Formulas

19.2 Chemical Formulas In the previous section, you learned how and why atoms form chemical bonds with one another. You also know that atoms combine in certain ratios with other atoms. These ratios determine the chemical formula

More information

Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions

Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions OCN 623 Chemical Oceanography Balanced chemical reactions are the math of chemistry They show the relationship between the reactants

More information

Formulae, stoichiometry and the mole concept

Formulae, stoichiometry and the mole concept 3 Formulae, stoichiometry and the mole concept Content 3.1 Symbols, Formulae and Chemical equations 3.2 Concept of Relative Mass 3.3 Mole Concept and Stoichiometry Learning Outcomes Candidates should be

More information

BALANCING CHEMICAL EQUATIONS

BALANCING CHEMICAL EQUATIONS BALANCING CHEMICAL EQUATIONS The Conservation of Matter states that matter can neither be created nor destroyed, it just changes form. If this is the case then we must account for all of the atoms in a

More information

Unit 8: Chemical Reactions and Equations

Unit 8: Chemical Reactions and Equations 1 Chemical Reactions Unit 8: Chemical Reactions and Equations What are chemical reactions and how do they occur? How are chemical reactions classified? How are products of chemical reactions predicted?

More information

Problem Set #10 - Answers

Problem Set #10 - Answers Problem Set #10 - Answers BIG IDEAS Fill in the blanks or circle the correct response in brackets. 1) When a reaction occurs, the stuff you start with is called the _reactants_ and the stuff you end up

More information

Electrochemistry Voltaic Cells

Electrochemistry Voltaic Cells Electrochemistry Voltaic Cells Many chemical reactions can be classified as oxidation-reduction or redox reactions. In these reactions one species loses electrons or is oxidized while another species gains

More information

Word Equations and Balancing Equations. Video Notes

Word Equations and Balancing Equations. Video Notes Word Equations and Balancing Equations Video Notes In this lesson, you will: Use the law of conservation of mass and provide standard rules for writing and balancing equations. Write and balance equations

More information

Potassium + Chlorine. K(s) + Cl 2 (g) 2 KCl(s)

Potassium + Chlorine. K(s) + Cl 2 (g) 2 KCl(s) Types of Reactions Consider for a moment the number of possible chemical reactions. Because there are millions of chemical compounds, it is logical to expect that there are millions of possible chemical

More information

Calculations and Chemical Equations. Example: Hydrogen atomic weight = 1.008 amu Carbon atomic weight = 12.001 amu

Calculations and Chemical Equations. Example: Hydrogen atomic weight = 1.008 amu Carbon atomic weight = 12.001 amu Calculations and Chemical Equations Atomic mass: Mass of an atom of an element, expressed in atomic mass units Atomic mass unit (amu): 1.661 x 10-24 g Atomic weight: Average mass of all isotopes of a given

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations CHE11 Chapter Chapter Stoichiometry: Calculations with Chemical Formulas and Equations 1. When the following equation is balanced, the coefficients are. NH (g) + O (g) NO (g) + H O (g) (a). 1, 1, 1, 1

More information

Chapter 4 An Introduction to Chemical Reactions. An Introduction to Chemistry by Mark Bishop

Chapter 4 An Introduction to Chemical Reactions. An Introduction to Chemistry by Mark Bishop Chapter 4 An Introduction to Chemical Reactions An Introduction to Chemistry by Mark Bishop Chapter Map Chemical Reaction A chemical change or chemical reaction is a process in which one or more pure substances

More information

Tutorial 5 NET IONIC EQUATIONS

Tutorial 5 NET IONIC EQUATIONS T-33 Tutorial 5 NET IONIC EQUATIONS The efficiency and extent of a chemical reaction is very much dependent upon the physical state (solid, liquid, gas, or solution) of reactants and products. Not surprisingly,

More information

Worksheet # 11. 4. When heated, nickel (II) carbonate undergoes a decomposition reaction. Write a balanced equation to describe this reaction

Worksheet # 11. 4. When heated, nickel (II) carbonate undergoes a decomposition reaction. Write a balanced equation to describe this reaction Worksheet # 11 1. A solution of sodium chloride is mixed with a solution of lead (II) nitrate. A precipitate of lead (II) chloride results, leaving a solution of sodium nitrated. Determine the class of

More information

CHAPTER 8 Chemical Equations and Reactions

CHAPTER 8 Chemical Equations and Reactions CHAPTER 8 Chemical Equations and Reactions SECTION 1 Describing Chemical Reactions OBJECTIVES 1. List three observations that suggest that a chemical reaction has taken place. 2. List three requirements

More information

1. Oxidation number is 0 for atoms in an element. 3. In compounds, alkalis have oxidation number +1; alkaline earths have oxidation number +2.

1. Oxidation number is 0 for atoms in an element. 3. In compounds, alkalis have oxidation number +1; alkaline earths have oxidation number +2. à xidation numbers In the Lewis model of bonding, when nonidentical atoms are bonded together, an important consideration is how the bonding electrons are apportioned between the atoms. There are two different

More information

OXIDATION REDUCTION. Section I. Cl 2 + 2e. 2. The oxidation number of group II A is always (+) 2.

OXIDATION REDUCTION. Section I. Cl 2 + 2e. 2. The oxidation number of group II A is always (+) 2. OXIDATION REDUCTION Section I Example 1: Na Example 2: 2C1 Example 3: K + + e Na + + e Cl 2 + 2e K Example 4: C1 2 + 2e 2Cl 1. The oxidation number of group I A is always (+) 1. 2. The oxidation number

More information

CHM1 Review Exam 12. Topics REDOX

CHM1 Review Exam 12. Topics REDOX CHM1 Review Exam 12 Topics REDOX REDOX Reactions Oxidation Reduction Oxidizing agent Reducing agent Galvanic (Voltaic) Cells Anode Cathode Salt bridge Electrolyte Half-reactions Voltage o Positive voltages

More information

Experiment 9 - Double Displacement Reactions

Experiment 9 - Double Displacement Reactions Experiment 9 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are

More information

3. Which of the following describes a conjugate acid-base pair for the following equilibrium? CN - (aq) + CH 3 NH 3 + (aq) H 2 CO 3 (aq) + H 2 O (l)

3. Which of the following describes a conjugate acid-base pair for the following equilibrium? CN - (aq) + CH 3 NH 3 + (aq) H 2 CO 3 (aq) + H 2 O (l) Acids, Bases & Redox 1 Practice Problems for Assignment 8 1. A substance which produces OH ions in solution is a definition for which of the following? (a) an Arrhenius acid (b) an Arrhenius base (c) a

More information

Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses

Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses B. Calculations of moles C. Calculations of number of atoms from moles/molar masses 1. Avagadro

More information

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations Moles Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations Micro World atoms & molecules Macro World grams Atomic mass is the mass of an

More information

Chapter 4 Chemical Reactions

Chapter 4 Chemical Reactions Chapter 4 Chemical Reactions I) Ions in Aqueous Solution many reactions take place in water form ions in solution aq solution = solute + solvent solute: substance being dissolved and present in lesser

More information

Chemistry 122 Mines, Spring 2014

Chemistry 122 Mines, Spring 2014 Chemistry 122 Mines, Spring 2014 Answer Key, Problem Set 9 1. 18.44(c) (Also indicate the sign on each electrode, and show the flow of ions in the salt bridge.); 2. 18.46 (do this for all cells in 18.44

More information

Reactions. Balancing Chemical Equations uses Law of conservation of mass: matter cannot be lost in any chemical reaction

Reactions. Balancing Chemical Equations uses Law of conservation of mass: matter cannot be lost in any chemical reaction Reactions Chapter 8 Combustion Decomposition Combination Chapter 9 Aqueous Reactions Exchange reactions (Metathesis) Formation of a precipitate Formation of a gas Formation of a week or nonelectrolyte

More information

Assignment 90 BALANCING OF REDOX EQUATIONS

Assignment 90 BALANCING OF REDOX EQUATIONS Assignment 90 BALANCING OF REDOX EQUATIONS This Assignment concerns balancing of chemical equations for "redox reactions." Balancing of this kind must be done in a stepwise manner. The Procedures given

More information

stoichiometry = the numerical relationships between chemical amounts in a reaction.

stoichiometry = the numerical relationships between chemical amounts in a reaction. 1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse

More information

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions. Aqueous Solutions and Solution Stoichiometry Water is the dissolving medium, or solvent. Some Properties of Water Water is bent or V-shaped. The O-H bonds are covalent. Water is a polar molecule. Hydration

More information

Chapter 6: Writing and Balancing Chemical Equations. AB A + B. CaCO3 CaO + CO2 A + B C. AB + C AC + B (or AB + C CB + A)

Chapter 6: Writing and Balancing Chemical Equations. AB A + B. CaCO3 CaO + CO2 A + B C. AB + C AC + B (or AB + C CB + A) 78 Chapter 6: Writing and Balancing Chemical Equations. It is convenient to classify chemical reactions into one of several general types. Some of the more common, important, reactions are shown below.

More information

Chapter 9. Answers to Questions

Chapter 9. Answers to Questions Chapter 9 Answers to Questions 1. Word equation: Silicon Tetrachloride + Water Silicon Dioxide + Hydrogen Chloride Formulas: Next, the chemical formulas are needed. As these are all covalent compounds,

More information

CHAPTER 4. AQUEOUS REACTION CHEMISTRY

CHAPTER 4. AQUEOUS REACTION CHEMISTRY CAPTER. AQUEOUS REACTION CEMISTRY solution - homogeneous mixture of or more substances; uniform distribution of particles and same properties throughout. A solution is composed of a solute dissolved in

More information

HOW TO PREDICT WHETHER A REDOX REACTION WILL BE SPONTANEOUS:

HOW TO PREDICT WHETHER A REDOX REACTION WILL BE SPONTANEOUS: Chemistry 12 UNIT 5 OXIDATION AND REDUCTION PACKAGE #2 HOW TO PREDICT WHETHER A REDOX REACTION WILL BE SPONTANEOUS: Looking at the table in the data booklet on page 8, INCREASING TENDENCY TO REDUCE = INCREASING

More information

Understanding Chemical Equations

Understanding Chemical Equations Connections Understanding Chemical Equations Have you ever... Seen the result of mixing baking soda and vinegar? Used friction to light a match? Seen a car eaten through by rust? Chemical equations model

More information

CHEMICAL REACTIONS. Chemistry 51 Chapter 6

CHEMICAL REACTIONS. Chemistry 51 Chapter 6 CHEMICAL REACTIONS A chemical reaction is a rearrangement of atoms in which some of the original bonds are broken and new bonds are formed to give different chemical structures. In a chemical reaction,

More information

Elements, Compounds, subscript, superscript, coefficient Periodic Table o Periods, groups, etc. o Metals o Non-metals o Metalloids

Elements, Compounds, subscript, superscript, coefficient Periodic Table o Periods, groups, etc. o Metals o Non-metals o Metalloids Chemistry Elements, Compounds, subscript, superscript, coefficient Periodic Table o Periods, groups, etc. o Metals o Non-metals o Metalloids The patterns are related to the chemical properties of the element.

More information

AP Chem Unit 1 Assignment 3 Chemical Equations

AP Chem Unit 1 Assignment 3 Chemical Equations Symbols used in chemical equations: Symbol Meaning + used to separate one reactant or product from another used to separate the reactants from the products - it is pronounced "yields" or "produces" when

More information

Chapter 3 Mass Relationships in Chemical Reactions

Chapter 3 Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions Student: 1. An atom of bromine has a mass about four times greater than that of an atom of neon. Which choice makes the correct comparison of the relative

More information

W1 WORKSHOP ON STOICHIOMETRY

W1 WORKSHOP ON STOICHIOMETRY INTRODUCTION W1 WORKSHOP ON STOICHIOMETRY These notes and exercises are designed to introduce you to the basic concepts required to understand a chemical formula or equation. Relative atomic masses of

More information

Chapter 5 Chemical Quantities and Reactions. Collection Terms. 5.1 The Mole. A Mole of a Compound. A Mole of Atoms.

Chapter 5 Chemical Quantities and Reactions. Collection Terms. 5.1 The Mole. A Mole of a Compound. A Mole of Atoms. Chapter 5 Chemical Quantities and Reactions 5.1 The Mole Collection Terms A collection term states a specific number of items. 1 dozen donuts = 12 donuts 1 ream of paper = 500 sheets 1 case = 24 cans 1

More information

Science 1194 SAS Curriculum Pathways Chemical Equations: Journal

Science 1194 SAS Curriculum Pathways Chemical Equations: Journal Chemical Equations: Journal NAME: ray CLASS: chem90 DATE: 10/27/2013 FOCUS QUESTION: How and why are chemical equations balanced? TAB 1: Equations Read the questions below. Then complete this Journal by

More information

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole Topic 4 National Chemistry Summary Notes Formulae, Equations, Balancing Equations and The Mole LI 1 The chemical formula of a covalent molecular compound tells us the number of atoms of each element present

More information

Exam 2 Chemistry 65 Summer 2015. Score:

Exam 2 Chemistry 65 Summer 2015. Score: Name: Exam 2 Chemistry 65 Summer 2015 Score: Instructions: Clearly circle the one best answer 1. Valence electrons are electrons located A) in the outermost energy level of an atom. B) in the nucleus of

More information

Summer Assignment Coversheet

Summer Assignment Coversheet Summer Assignment Coversheet Course: A.P. Chemistry Teachers Names: Mary Engels Assignment Title: Summer Assignment A Review Assignment Summary/Purpose: To review the Rules for Solubility, Oxidation Numbers,

More information

1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g)

1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g) 1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) A) 1 B) 2 C) 4 D) 5 E) Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) Al (s) + H 2 O (l)? Al(OH)

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

neutrons are present?

neutrons are present? AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest

More information

Chapter 8 How to Do Chemical Calculations

Chapter 8 How to Do Chemical Calculations Chapter 8 How to Do Chemical Calculations Chemistry is both a qualitative and a quantitative science. In the laboratory, it is important to be able to measure quantities of chemical substances and, as

More information

1332 CHAPTER 18 Sample Questions

1332 CHAPTER 18 Sample Questions 1332 CHAPTER 18 Sample Questions Couple E 0 Couple E 0 Br 2 (l) + 2e 2Br (aq) +1.06 V AuCl 4 + 3e Au + 4Cl +1.00 V Ag + + e Ag +0.80 V Hg 2+ 2 + 2e 2 Hg +0.79 V Fe 3+ (aq) + e Fe 2+ (aq) +0.77 V Cu 2+

More information

Chemistry Post-Enrolment Worksheet

Chemistry Post-Enrolment Worksheet Name: Chemistry Post-Enrolment Worksheet The purpose of this worksheet is to get you to recap some of the fundamental concepts that you studied at GCSE and introduce some of the concepts that will be part

More information

12. REDOX EQUILIBRIA

12. REDOX EQUILIBRIA 12. REDOX EQUILIBRIA The electrochemical series (reference table) 12.1. Redox reactions 12.2. Standard electrode potentials 12.3. Calculations involving electrochemical cells 12.4. Using Eʅ values to predict

More information

Chapter 6 Notes Science 10 Name:

Chapter 6 Notes Science 10 Name: 6.1 Types of Chemical Reactions a) Synthesis (A + B AB) Synthesis reactions are also known as reactions. When this occurs two or more reactants (usually elements) join to form a. A + B AB, where A and

More information

Mass and Moles of a Substance

Mass and Moles of a Substance Chapter Three Calculations with Chemical Formulas and Equations Mass and Moles of a Substance Chemistry requires a method for determining the numbers of molecules in a given mass of a substance. This allows

More information

The 5 Types of Chemical Reactions (Chapter 11) By C B 6 th period

The 5 Types of Chemical Reactions (Chapter 11) By C B 6 th period The 5 Types of Chemical Reactions (Chapter 11) By C B 6 th period 1) Combination Reactions Is also referred to as a synthesis reaction It is a chemical change in which two or more substances react to form

More information

Physical Changes and Chemical Reactions

Physical Changes and Chemical Reactions Physical Changes and Chemical Reactions Gezahegn Chaka, Ph.D., and Sudha Madhugiri, Ph.D., Collin College Department of Chemistry Objectives Introduction To observe physical and chemical changes. To identify

More information

SEATTLE CENTRAL COMMUNITY COLLEGE DIVISION OF SCIENCE AND MATHEMATICS. Oxidation-Reduction

SEATTLE CENTRAL COMMUNITY COLLEGE DIVISION OF SCIENCE AND MATHEMATICS. Oxidation-Reduction SEATTLE CENTRAL COMMUNITY COLLEGE DIVISION OF SCIENCE AND MATHEMATICS OxidationReduction Oxidation is loss of electrons. (Oxygen is EN enough to grab e away from most elements, so the term originally meant

More information

Redox Equations under Basic Conditions

Redox Equations under Basic Conditions Redox Equations under Basic Conditions Basic conditions means that t you have more OH - and very little H + in your solution. In fact, you have so little H + that it can t appear in the equation because

More information

Chemical Calculations: Formula Masses, Moles, and Chemical Equations

Chemical Calculations: Formula Masses, Moles, and Chemical Equations Chemical Calculations: Formula Masses, Moles, and Chemical Equations Atomic Mass & Formula Mass Recall from Chapter Three that the average mass of an atom of a given element can be found on the periodic

More information

Building Electrochemical Cells

Building Electrochemical Cells Cautions Heavy metals, such as lead, and solutions of heavy metals may be toxic and an irritant. Purpose To determine the cell potential (E cell ) for various voltaic cells and compare the data with the

More information

CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS

CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS 1 CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS The Chemical Equation A chemical equation concisely shows the initial (reactants) and final (products) results of

More information

H 2 + O 2 H 2 O. - Note there is not enough hydrogen to react with oxygen - It is necessary to balance equation.

H 2 + O 2 H 2 O. - Note there is not enough hydrogen to react with oxygen - It is necessary to balance equation. CEMICAL REACTIONS 1 ydrogen + Oxygen Water 2 + O 2 2 O reactants product(s) reactant substance before chemical change product substance after chemical change Conservation of Mass During a chemical reaction,

More information

CHAPTER 9. 9.1 Naming Ions. Chemical Names and Formulas. Naming Transition Metals. Ions of Transition Metals. Ions of Transition Metals

CHAPTER 9. 9.1 Naming Ions. Chemical Names and Formulas. Naming Transition Metals. Ions of Transition Metals. Ions of Transition Metals CHAPTER 9 Chemical Names and Formulas 9.1 Naming Ions Monatomic Ions: a single atom with a positive or negative charge Cation (rules): listed first Anion (rules): ide ending Transition Metals have a varying

More information

Nomenclature: How to Name Chemicals

Nomenclature: How to Name Chemicals Nomenclature: How to Name Chemicals Introduction Many of the chemicals we use at home have common names. Baking soda is used as a rising agent in cookies. Bleach is used to whiten our clothes. Ammonia

More information

Chapter 4 Three Major Classes of Chemical Reactions. As will likely come as no surprise, chemical reactions can be categorized in a variety of

Chapter 4 Three Major Classes of Chemical Reactions. As will likely come as no surprise, chemical reactions can be categorized in a variety of Chapter 4 Three Major Classes of Chemical Reactions As will likely come as no surprise, chemical reactions can be categorized in a variety of different ways, with nearly all reactions falling into more

More information

Calculations with Chemical Reactions

Calculations with Chemical Reactions Calculations with Chemical Reactions Calculations with chemical reactions require some background knowledge in basic chemistry concepts. Please, see the definitions from chemistry listed below: Atomic

More information

Chemical Equations & Stoichiometry

Chemical Equations & Stoichiometry Chemical Equations & Stoichiometry Chapter Goals Balance equations for simple chemical reactions. Perform stoichiometry calculations using balanced chemical equations. Understand the meaning of the term

More information