Using Everyday Examples in Engineering (E3) Physics Waves and Sound: The Guitar

Size: px
Start display at page:

Download "Using Everyday Examples in Engineering (E3) Physics Waves and Sound: The Guitar"

Transcription

1 Using Everyday Examples in Engineering (E3) Physics Waves and Sound: The Guitar Samuel Hokin, IMS LLC The guitar is the most common stringed instrument, and shares many characteristics with other stringed instruments. For example, the overtones potentially available on any stringed instrument are the same. Why, then, does a guitar sound so much different from, say, a violin? The answer lies in which overtones are emphasized in a particular instrument, due to the shape and materials in the resonator (body), strings, how it's played, and other factors. In the course of studying the overtones, or harmonics of a string fixed at both ends, we will uncover the overtone series for strings, which is the basis of Western harmony. Waves on a String A guitar string is a common example of a string fixed at both ends which is elastic and can vibrate. The vibrations of such a string are called standing waves, and they satisfy the relationship between wavelength and frequency that comes from the definition of waves: v = fλ where v is the speed of the wave, f is the frequency (measured in cycles/second or Hertz, Hz) and λ is the wavelength. The speed v of waves on a string depends on the string tension T and linear mass density (mass/length) µ, measured in kg/m. Waves travel faster on a tighter string and the frequency is therefore higher for a given wavelength. On the other hand, waves travel slower on a more massive string and the frequency is therefore lower for a given wavelength. The relationship between speed, tension and mass density is a bit difficult to derive, but is a simple formula: v = v T/µ Since the fundamental wavelength of a standing wave on a guitar string is twice the distance between the bridge and the fret, all six strings use the same range of wavelengths. To have different pitches (frequencies) of the strings, then, one must have different wave speeds. There are two ways to do this: by having different tension T or by having different mass density µ (or a combination of the two). If one varied pitch only by varying tension, the high strings would be very tight and the low strings would be very loose and it would be very difficult to play. It is much easier to play a guitar if the strings This material is based upon work supported by the National Science Foundation (NSF) under Grant No Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of NSF.

2 all have roughly the same tension; for this reason, the lower strings have higher mass density, by making them thicker and, for the 3 low strings, wrapping them with wire. From what you have learned so far, and the fact that the strings are a perfect fourth apart in pitch (except between the G and B strings in standard tuning), you can calculate how much µ increases between strings for T to be constant. String Harmonics (Overtones) If a guitar string had only a single frequency vibration on it, it would sound a bit boring (you can listen to a single frequency sound with the Overtones Applet ( What makes a guitar or any stringed instrument interesting is the rich variety of harmonics that are present. Any wave that satisfies the condition that it has nodes at the ends of the string can exist on a string. The fundamental, the main pitch you hear, is the lowest tone, and it comes from the string vibrating with one big arc from bottom to top: fundamental (l = λ/2) The fundamental satisfies the condition l = λ/2, where l is the length of the freely vibrating portion of the string. The first harmonic or overtone comes from vibration with a node in the center: 1st overtone (l = 2λ/2) The 1st overtone satisfies the condition l =λ. Each higher overtone fits an additional half wavelength on the string: 2nd overtone (l = 3λ/2) 3rd overtone (l = 4λ/2) 4th overtone (l = 5λ/2)

3 Since frequency is inversely proportional to wavelength, the frequency difference between overtones is the fundamental frequency. This leads to the overtone series for a string: overtone f/f 0 freq/tonic approx interval fundamental 1 1=1.0 tonic 1 st 2 1=1.0 tonic 2 nd 3 3/2=1.5 perfect 5 th 3 rd 4 1=1.0 tonic 4 th 5 5/4=1.25 major 3 rd 5 th 6 6/4=1.5 perf 5 th 6 th 7 7/4=1.75 dominant 7th 7 th 8 1=1.0 tonic 8 th 9 9.8=1.125 major 2nd 9 th 10 10/8=1.25 major 3rd 10 th 11 11/8=1.375 between 4th and dim 5th 11 th 12 12/8=1.5 perfect 5th 12 th 13 13/8=1.625 between aug 5th and maj 6th Most of the first 12 overtones fall very close to tones of the Western musical scale, and one can argue that this is not coincidence: it is natural to use a musical scale which incorporates the overtones of stringed instruments. The equal-tempered scale has 12 intervals (half-steps) making up an octave (factor of two). The ratio, r, of frequencies for a half-step therefore satisfies r 12 =2, which means r= The scale, notated with interval names, then corresponds to frequency multiples of: tonic maj2nd maj3rd 4th 5th maj6th maj7th octave min2nd min3rd dim5th aug5th dom7th The top row shows the intervals of the major scale. The equal-tempered scale and overtone series don't match perfectly, of course, but the difference between, say, a major 3rd of the equal-tempered scale (1.2599) and the 4th overtone (1.2500) is pretty hard to hear. In fact, I often tune my guitar using harmonics. I strike a B at the 7th fret (2nd overtone) of the bottom E string to tune the B string. This means that my B string is at a pitch of above E rather than the equal-tempered value of , ie. the B string is slightly sharp. I tune the A string by striking at the 5th fret of E (3rd overtone) to get an E which matches the E I make on the A string by striking the 2nd overtone at the 7th fret. This means my A string is 4/3= above E rather than of the equal-tempered scale, ie. it's slightly flat. Then I do the same match to get the D from the A string, which means my D is 4/3 above A or 16/9= above E rather than of the equal-tempered scale, ie. it's even more flat. That leaves the G string, which becomes a problem. The B

4 string above it is sharp and the D string below it is flat, so there's a mismatch: if I tune the G string from the D string, it is really too flat, and if I tune the G string from the B string it is sharp. Alternatively, I could use the 4th overtone of E, which is hard to make loud, to get a G at 5/4=1.2500, which is slightly below the equal-tempered value of This deviation from equal-tempering when you use harmonics to tune is a pain, and sometimes you're better off just matching the next string up to that note on the lower string since the frets are spaced to produce the equal-tempered scale. Guitar Overtones The thing that makes a guitar note "guitarry" is the overtone content and how the note rises and decays in time. This varies with how you play it, such as with a pick vs. a finger, or near the bridge vs. in the middle. (This, of course, isn't counting all the electronic methods for emphasizing different overtones such as the bass/treble control on electric guitars.) As an example, I sampled the A string on my nylon-string guitar played two different ways: plucking in the middle, which emphasizes the fundamental and odd-multiple overtones which have a peak in the center of the string, and plucking near the bridge, which produces more of the even-multiple overtones with nodes in the center of the string to make a more "twangy" sound. Here are sample waveforms taken about a half second after the string was struck:

5 This figure above shows the waveform when the string is plucked in the center. The fundamental is at A 110 Hz and is very large. Note that the odd-multiple overtones (330 Hz, 550 Hz, etc.) are much larger than the even-multiple ones (220 Hz, 440 Hz, etc.). This is very characteristic of a nylon string guitar played this way, which is pretty far from "twangy". The waveform is close to a triangle wave, which results when only the odd-multiple overtones are present. This is the same note plucked near the bridge to make a "twangy" sound. The overtone content is much richer, with plenty of even-multiple overtones present. Note also that the waveform amplitude is smaller. A "twangy" note dies out much more quickly than a note with a strong fundamental like the previous one. You can hear these two sounds in the Guitar A String applet. (

6 Fret Spacing You've probably noticed that the frets on a guitar get closer together towards the bridge. From the fact that each successive note is r= higher in pitch, and the fact that v=fλ=constant on a given string, we can figure out the fret spacing. Let's say the open string length is l. Then the first fret must be placed a distance l/ from the bridge, the second fret a distance l/1.0595² from the bridge, and so on. The twelfth fret, which makes an octave, is at a distance l/ =l/2 from the bridge. The diagram below shows the fret positions (as does the photo at the top of this page for that matter!). Equations wave velocity, frequency, wavelength: v = fλ standing waves on a string of length l: l = nλ/2 (n is a positive integer) half-step frequency ratio in equal-tempered scale: r 12 = 2 -> r = Applets The Overtones Applet - The Guitar A Applet: Summary A guitar string sound consists of standing waves: the fundamental and overtones. The fundamental wavelengh is twice the length of the vibrating part of the string. The Western musical scale is based on the overtone series for a string: all the overtones up to the 9th are close to notes of the equal-tempered scale (and define the notes of the perfect-tempered scale). The timber of a stringed instrument depends on the overtone content of the sound: a "twangy" sound has both odd and even multiples of the fundamental, while a "smooth" sound tends to have only odd multiples Samuel Hokin. All rights reserved. Copies may be downloaded from This material may be reproduced for educational purposes.

The Physics of Guitar Strings

The Physics of Guitar Strings The Physics of Guitar Strings R. R. McNeil 1. Introduction The guitar makes a wonderful device to demonstrate the physics of waves on a stretched string. This is because almost every student has seen a

More information

A: zero everywhere. B: positive everywhere. C: negative everywhere. D: depends on position.

A: zero everywhere. B: positive everywhere. C: negative everywhere. D: depends on position. A string is clamped at both ends and then plucked so that it vibrates in a standing wave between two extreme positions a and c. (Let upward motion correspond to positive velocities.) When the

More information

Sound and stringed instruments

Sound and stringed instruments Sound and stringed instruments Lecture 14: Sound and strings Reminders/Updates: HW 6 due Monday, 10pm. Exam 2, a week today! 1 Sound so far: Sound is a pressure or density fluctuation carried (usually)

More information

The Sonometer The Resonant String and Timbre Change after plucking

The Sonometer The Resonant String and Timbre Change after plucking The Sonometer The Resonant String and Timbre Change after plucking EQUIPMENT Pasco sonometers (pick up 5 from teaching lab) and 5 kits to go with them BK Precision function generators and Tenma oscilloscopes

More information

The Tuning CD Using Drones to Improve Intonation By Tom Ball

The Tuning CD Using Drones to Improve Intonation By Tom Ball The Tuning CD Using Drones to Improve Intonation By Tom Ball A drone is a sustained tone on a fixed pitch. Practicing while a drone is sounding can help musicians improve intonation through pitch matching,

More information

Mathematical Harmonies Mark Petersen

Mathematical Harmonies Mark Petersen 1 Mathematical Harmonies Mark Petersen What is music? When you hear a flutist, a signal is sent from her fingers to your ears. As the flute is played, it vibrates. The vibrations travel through the air

More information

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity. 1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the

More information

Teaching Fourier Analysis and Wave Physics with the Bass Guitar

Teaching Fourier Analysis and Wave Physics with the Bass Guitar Teaching Fourier Analysis and Wave Physics with the Bass Guitar Michael Courtney Department of Chemistry and Physics, Western Carolina University Norm Althausen Lorain County Community College This article

More information

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude. practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes

More information

Bass Guitar Investigation. Physics 498, Physics of Music Sean G. Ely Randall Fassbinder

Bass Guitar Investigation. Physics 498, Physics of Music Sean G. Ely Randall Fassbinder Bass Guitar Investigation Physics 498, Physics of Music Sean G. Ely Randall Fassbinder May 14, 2009 Table of Contents 1. INTRODUCTION...1 2. EXPERIMENTAL SETUP AND PROCEDURE...1 2.1 PICKUP LOCATION...1

More information

How they invented chord patterns for the guitar. J. Chaurette. Dec., 2012

How they invented chord patterns for the guitar. J. Chaurette. Dec., 2012 How they invented chord patterns for the guitar J. Chaurette Dec., 2012 The guitar has a very long history; it has evolved over the ages to what it is now. It has achieved its final distinct form in 1770,

More information

Everyone cringes at the words "Music Theory", but this is mainly banjo related and very important to learning how to play.

Everyone cringes at the words Music Theory, but this is mainly banjo related and very important to learning how to play. BLUEGRASS MUSIC THEORY 101 By Sherry Chapman Texasbanjo The Banjo Hangout Introduction Everyone cringes at the words "Music Theory", but this is mainly banjo related and very important to learning how

More information

Music Theory: Explanation and Basic Principles

Music Theory: Explanation and Basic Principles Music Theory: Explanation and Basic Principles Musical Scales Musical scales have developed in all cultures throughout the world to provide a basis for music to be played on instruments or sung by the

More information

v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review

v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review

More information

GUITAR THEORY REVOLUTION

GUITAR THEORY REVOLUTION GUITAR THEORY REVOLUTION The Major and Minor Pentatonic Scales Copyright Guitar Theory Revolution 2011 1 Contents Introduction 3 What are the Major and Minor Pentatonic Scales 3 Diagrams for all the Pentatonic

More information

Introduction to Chords For Jazz Band

Introduction to Chords For Jazz Band Introduction to Chords For Jazz Band First, let s start with a major scale and review the scale degrees. We refer to the distance between two notes as an interval, and an interval has two aspects: the

More information

Waves-Wave Characteristics

Waves-Wave Characteristics 1. What is the wavelength of a 256-hertz sound wave in air at STP? 1. 1.17 10 6 m 2. 1.29 m 3. 0.773 m 4. 8.53 10-7 m 2. The graph below represents the relationship between wavelength and frequency of

More information

16.2 Periodic Waves Example:

16.2 Periodic Waves Example: 16.2 Periodic Waves Example: A wave traveling in the positive x direction has a frequency of 25.0 Hz, as in the figure. Find the (a) amplitude, (b) wavelength, (c) period, and (d) speed of the wave. 1

More information

Beginner Guitar Level I

Beginner Guitar Level I Welcome to Beginner Guitar Level I E A D G B E * Please fill out the student form * Who is this guy? E A D G B E Logistics, etc.. sign in / out everyday start promptly -> don t be late! breaks / bathrooms

More information

The Chord Book - for 3 string guitar

The Chord Book - for 3 string guitar The Chord Book - for 3 string guitar Prepared for: 3 string fretted cbg Prepared by: Patrick Curley Forward This short ebook will help you play chords on your 3 string guitar. I m tuned to G, if you re

More information

The CAGED Guitar System

The CAGED Guitar System The CAGED Guitar System First of all, let s look at an example below on how to use the CAGED guitar system: 1 The example showed above demonstrates the general idea of how the CAGED system works in a certain

More information

PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction. Name. Constants and Conversion Factors

PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction. Name. Constants and Conversion Factors PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction Name Constants and Conversion Factors Speed of sound in Air œ $%!7Î= "'!*7/>/

More information

Drum-Set Tuning Guide

Drum-Set Tuning Guide Drum-Set Tuning Guide Tune-Bot enables you to accurately tune your drums to a specific notes or frequencies and once you know the notes or frequencies you want, you can quickly tune and retune your drums.

More information

Fine Tuning. By Alan Carruth Copyright 2000. All Rights Reserved.

Fine Tuning. By Alan Carruth Copyright 2000. All Rights Reserved. Fine Tuning By Alan Carruth Copyright 2000. All Rights Reserved. I've been working toward a rational understanding of guitar acoustics for nearly as long as I've been making guitars (more than twenty years

More information

Analysis of an Acoustic Guitar

Analysis of an Acoustic Guitar I. Introduction Analysis of an Acoustic Guitar The acoustic guitar has been a common component in many genres of music for many years. Its versatile, rich tones and popularity with famous artists have

More information

Musical Analysis and Synthesis in Matlab

Musical Analysis and Synthesis in Matlab 3. James Stewart, Calculus (5th ed.), Brooks/Cole, 2003. 4. TI-83 Graphing Calculator Guidebook, Texas Instruments,1995. Musical Analysis and Synthesis in Matlab Mark R. Petersen (mark.petersen@colorado.edu),

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 20. Traveling Waves You may not realize it, but you are surrounded by waves. The waviness of a water wave is readily apparent, from the ripples on a pond to ocean waves large enough to surf. It

More information

A MUSICAL APPROACH TO LEARNING THE BANJO NECK

A MUSICAL APPROACH TO LEARNING THE BANJO NECK A MUSICAL APPROACH TO LEARNING THE BANJO NECK Introduction One of the things that has become clear to me, after a number of years of playing banjo, is that if I have any hope of improvising creatively

More information

Sample Pages. This pdf contains sample pages from the ebook The Easy Guide to Jazz Guitar Arpeggios. To get the full ebook, Click Here

Sample Pages. This pdf contains sample pages from the ebook The Easy Guide to Jazz Guitar Arpeggios. To get the full ebook, Click Here 1 Sample Pages This pdf contains sample pages from the ebook The Easy Guide to Jazz Guitar Arpeggios. To get the full ebook, Click Here 2 Contents Introduction....6 What Are Arpeggios?....7 Chapter 1:

More information

Tonal Analysis of Different Materials for Trumpet Mouthpieces

Tonal Analysis of Different Materials for Trumpet Mouthpieces Greg Formosa PHYS 199 POM Project Write-up Tonal Analysis of Different Materials for Trumpet Mouthpieces INTRODUCTION: Trumpets have been noted as one of the oldest instruments in the world, and ever since

More information

The Physics of Music - Physics 15 University of California, Irvine. Instructor: David Kirkby dkirkby@uci.edu. Lecture 14.

The Physics of Music - Physics 15 University of California, Irvine. Instructor: David Kirkby dkirkby@uci.edu. Lecture 14. Miscellaneous Office hours this week are Wed 9-10am, 3-4pm. Lecture 14 Percussion Instruments Keyboard Instruments Office hours next week are Wed 2-4pm. There is a typo in 2(b) of Problem Set #6. The length

More information

Chapter 2 How To Cheat A Barre Chord

Chapter 2 How To Cheat A Barre Chord Chapter 2 How To Cheat A Barre Chord Now that you ve learned a variety of chords in different positions, there are times that we want to eliminate some of the notes. I know, in the previous chapter I explained

More information

Waves and Sound. AP Physics B

Waves and Sound. AP Physics B Waves and Sound AP Physics B What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through and need to have in order to move. Two types of

More information

Music Theory Unplugged By Dr. David Salisbury Functional Harmony Introduction

Music Theory Unplugged By Dr. David Salisbury Functional Harmony Introduction Functional Harmony Introduction One aspect of music theory is the ability to analyse what is taking place in the music in order to be able to more fully understand the music. This helps with performing

More information

Open Tunings: Contents

Open Tunings: Contents Open Tunings: Contents adgad Chords: 163 adf#ad Chords: 182 adfad Chords: 199 adgbd Chords: 216 gdgbd (Eaeac#e) Chords: 233 Comments I love open tunings. They add moods to music that just don t show up

More information

Standing Waves on a String

Standing Waves on a String 1 of 6 Standing Waves on a String Summer 2004 Standing Waves on a String If a string is tied between two fixed supports, pulled tightly and sharply plucked at one end, a pulse will travel from one end

More information

The Physics of Music: Brass Instruments. James Bernhard

The Physics of Music: Brass Instruments. James Bernhard The Physics of Music: Brass Instruments James Bernhard As a first approximation, brass instruments can be modeled as closed cylindrical pipes, where closed means closed at one end, open at the other Here

More information

Solution Derivations for Capa #13

Solution Derivations for Capa #13 Solution Derivations for Capa #13 1 Identify the following waves as T-Transverse, or L-Longitudinal. If the first is T and the rets L, enter TLLL. QUESTION: A The WAVE made by fans at sports events. B

More information

UKULELE CHORD SHAPES. More Strumming, Less Memorizing BRAD BORDESSA

UKULELE CHORD SHAPES. More Strumming, Less Memorizing BRAD BORDESSA UKULELE CHORD SHAPES More Strumming, Less Memorizing BRAD BORDESSA TABLE OF CONTENTS GRATITUDES 2 9th 26 13th 26 INTRODUCTION 3 Altered 27 HOW TO USE THIS BOOK 4 Suspended 2 28 The Fingerboard 5 Suspended

More information

2010 Marty Buttwinick (818) 242-7551 All Rights Reserved Not for Sale. Marty Buttwinick. Melody 1 -

2010 Marty Buttwinick (818) 242-7551 All Rights Reserved Not for Sale. Marty Buttwinick. Melody 1 - 2010 Marty uttwinick (818) 242-7551 All Rights Reserved Not for Sale Marty uttwinick Melody 1 - Melody 1 contains the fundamental definitions about the mechanics of melody. When you understand these concepts,

More information

Intervals Harmony Chords and Scales. Workbook

Intervals Harmony Chords and Scales. Workbook Intervals Harmony Chords and Scales Workbook Introduction In writing this book I was able to make many discoveries for myself both in methods of teaching and basic use of music theory. In every discipline

More information

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.)

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.) PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.) Sound Waves Test -- each multiple choice question is worth 3 points. 1. Sound waves are

More information

Method for Positioning Musical Instrument Frets That Compensate for Fretting-Induced String Tension

Method for Positioning Musical Instrument Frets That Compensate for Fretting-Induced String Tension Method for Positioning Musical Instrument Frets That Compensate for Fretting-Induced String Tension START BASIC DIMENSIONS AND PROPERTIES FRETTED DIMENSIONS AND PROPERTIES FRETTED TENSION BASED INTERVALS

More information

Jim Hall Chords and Comping Techniques

Jim Hall Chords and Comping Techniques Jim Hall Chords and Comping Techniques Jazz guitar comping is an art form in its own right. The comping rhythms, melodies, and voicings of the greatest Jazz guitarists are delightful to listen to, with

More information

GUITAR THEORY REVOLUTION. Part 1: How To Learn All The Notes On The Guitar Fretboard

GUITAR THEORY REVOLUTION. Part 1: How To Learn All The Notes On The Guitar Fretboard GUITAR THEORY REVOLUTION Part 1: How To Learn All The Notes On The Guitar Fretboard Contents Introduction Lesson 1: Numbering The Guitar Strings Lesson 2: The Notes Lesson 3: The Universal Pattern For

More information

Auto-Tuning Using Fourier Coefficients

Auto-Tuning Using Fourier Coefficients Auto-Tuning Using Fourier Coefficients Math 56 Tom Whalen May 20, 2013 The Fourier transform is an integral part of signal processing of any kind. To be able to analyze an input signal as a superposition

More information

www.ptg.org Visit the Piano Learning Center of the Piano Technicians Guild at www.ptg.org for more fun ways to learn about the piano.

www.ptg.org Visit the Piano Learning Center of the Piano Technicians Guild at www.ptg.org for more fun ways to learn about the piano. Piano Science Connect Music and Science Age: Elementary, Middle School The piano is one of the most interesting musical instruments you can learn to play. www.ptg.org It is also one of the most versatile

More information

Chords and More Chords for DGdg Tenor Banjo By Mirek Patek

Chords and More Chords for DGdg Tenor Banjo By Mirek Patek Chords and More Chords for DGdg Tenor Banjo By Mirek Patek This tenth article about the fingerstyle tenor banjo in DGdg tuning will be focused on banjo accompaniment, i.e. on playing chords. The goal is

More information

Building a Guitar to Showcase High School Mathematics and Physics

Building a Guitar to Showcase High School Mathematics and Physics Building a Guitar to Showcase High School Mathematics and Physics College of Engineering and Science Presented at the ASEE 8 t h Annual Workshop on K-12 Engineering Education Vancouver, Canada June 25,

More information

SOLUTIONS TO CONCEPTS CHAPTER 15

SOLUTIONS TO CONCEPTS CHAPTER 15 SOLUTIONS TO CONCEPTS CHAPTER 15 1. v = 40 cm/sec As velocity of a wave is constant location of maximum after 5 sec = 40 5 = 00 cm along negative x-axis. [(x / a) (t / T)]. Given y = Ae a) [A] = [M 0 L

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Giant Slinky: Quantitative Exhibit Activity

Giant Slinky: Quantitative Exhibit Activity Name: Giant Slinky: Quantitative Exhibit Activity Materials: Tape Measure, Stopwatch, & Calculator. In this activity, we will explore wave properties using the Giant Slinky. Let s start by describing the

More information

MUSIC OFFICE - SONGWRITING SESSIONS SESSION 1 HARMONY

MUSIC OFFICE - SONGWRITING SESSIONS SESSION 1 HARMONY MUSIC OFFICE - SONGWRITING SESSIONS SESSION 1 HARMONY Introduction All songwriters will use harmony in some form or another. It is what makes up the harmonic footprint of a song. Chord sequences and melodies

More information

Acoustics. Lecture 2: EE E6820: Speech & Audio Processing & Recognition. Spherical waves & room acoustics. Oscillations & musical acoustics

Acoustics. Lecture 2: EE E6820: Speech & Audio Processing & Recognition. Spherical waves & room acoustics. Oscillations & musical acoustics EE E6820: Speech & Audio Processing & Recognition Lecture 2: Acoustics 1 The wave equation 2 Acoustic tubes: reflections & resonance 3 Oscillations & musical acoustics 4 Spherical waves & room acoustics

More information

Tuning Subwoofers - Calibrating Subwoofers

Tuning Subwoofers - Calibrating Subwoofers Tuning Subwoofers - Calibrating Subwoofers WHY The purpose of a subwoofer is to fill in the bottom octaves below the capabilities of the mains speakers. There are many reasons to use a subwoofer to do

More information

Guitar Reference. By: Frank Markovich

Guitar Reference. By: Frank Markovich Guitar Reference By: Frank Markovich Guitar Reference Introduction The purpose of this book is to give the student the reference materials for learning how to play the guitar. In this book you will find

More information

Suitable for: Beginners with absolutely no previous experience. Beginners who appear particularly shy or nervous.

Suitable for: Beginners with absolutely no previous experience. Beginners who appear particularly shy or nervous. Lesson plan 1: CHORD STRUMMING FOR THE BEGINNER Suitable for: Beginners with absolutely no previous experience. Beginners who appear particularly shy or nervous. Prerequisites: None General Objective:

More information

Study Kit No 9. Aura Lee (Love Me Tender)

Study Kit No 9. Aura Lee (Love Me Tender) Study Kit No 9 Aura Lee (Love Me Tender) Reharmonization Study Kit No. 9 Aura Lee Author: Rosablanca Suen Web: www.learnpianowithrosa.com Email: Rosa@LearnPianoWithRosa.com Cover Design: Raymond Suen Copyright

More information

Chapter 21 Study Questions Name: Class:

Chapter 21 Study Questions Name: Class: Chapter 21 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If a fire engine is traveling toward you, the Doppler

More information

Definitive Piano Improvisation Course

Definitive Piano Improvisation Course Definitive Piano Improvisation Course By Yoke Wong 2007 Harmony and Melody Studio Inc Contents Pages Introduction Pentatonic Scale Improvisation 1 Country Western Style Made Easy 4 Left Hand Harmonizing

More information

Advanced Techniques for the Walkingbass

Advanced Techniques for the Walkingbass Advanced Techniques for the Walkingbass I have seen guys with 5 string basses who can t get half the sounds that you are getting out of just three. -Buddy Fo of the Invitations If you have read the Beginners

More information

Chapter 15, example problems:

Chapter 15, example problems: Chapter, example problems: (.0) Ultrasound imaging. (Frequenc > 0,000 Hz) v = 00 m/s. λ 00 m/s /.0 mm =.0 0 6 Hz. (Smaller wave length implies larger frequenc, since their product,

More information

INTERVALS. An INTERVAL is the distance between two notes /pitches. Intervals are named by size and quality:

INTERVALS. An INTERVAL is the distance between two notes /pitches. Intervals are named by size and quality: Dr. Barbara Murphy University of Tennessee School of Music INTERVALS An INTERVAL is the distance between two notes /pitches. Intervals are named by size and quality: Interval Size: The size is an Arabic

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

The Keyboard in Black and White

The Keyboard in Black and White Chapter 3 The yboard in Black and White In This Chapter Understanding the basics of the black and white key layout Learning about octaves and the range of a piano Discovering half steps and whole steps

More information

Lecture 2: Acoustics

Lecture 2: Acoustics EE E6820: Speech & Audio Processing & Recognition Lecture 2: Acoustics 1 The wave equation Dan Ellis & Mike Mandel Columbia University Dept. of Electrical Engineering http://www.ee.columbia.edu/ dpwe/e6820

More information

Learning to play the piano

Learning to play the piano Learning to play the piano INTRODUCTION TO THE KEYBOARD... 2 STEPPING UP... 2 TREBLE SPACES... 7 BASS SPACES... 9 TIME SIGNATURE... 12 UP AND DOWN THE HILLS... 15 UP AND DOWN THE HILLS IN G MAJOR... 16

More information

Trigonometric functions and sound

Trigonometric functions and sound Trigonometric functions and sound The sounds we hear are caused by vibrations that send pressure waves through the air. Our ears respond to these pressure waves and signal the brain about their amplitude

More information

Answer the following questions during or after your study of Wave Properties. 4. How are refraction and the speed of wave in different media related?

Answer the following questions during or after your study of Wave Properties. 4. How are refraction and the speed of wave in different media related? Wave Properties Student Worksheet Answer the following questions during or after your study of Wave Properties. 1. A person standing 385 m from a cliff claps her hands loudly, only to hear the sound return

More information

Swing & Jump Blues Guitar Matthieu Brandt

Swing & Jump Blues Guitar Matthieu Brandt Swing & Jump Blues Guitar Matthieu Brandt Goto www.swingblues.com for more on Swing and Jump Blues Guitar. 1997-2016 No part of this material (book/cd/website) may be reproduced in any way without prior

More information

Handout #1: Everything you never wanted to know about intervals

Handout #1: Everything you never wanted to know about intervals Handout #1: Everything you never wanted to know about intervals Much to my surprise, it turns out that making and recognizing intervals is one of the more difficult skills for beginning students to master.

More information

BEGINNER GUITAR - LESSON 1

BEGINNER GUITAR - LESSON 1 BEGINNER GUITAR - LESSON 1 PARTS OF THE GUITAR 1- The headstock. 2- The tuning pegs or machine heads. 3- The nut (where the strings are supported at the top of the fingerboard). 4- The frets (the metal

More information

FOURIER TRANSFORM BASED SIMPLE CHORD ANALYSIS. UIUC Physics 193 POM

FOURIER TRANSFORM BASED SIMPLE CHORD ANALYSIS. UIUC Physics 193 POM FOURIER TRANSFORM BASED SIMPLE CHORD ANALYSIS Fanbo Xiang UIUC Physics 193 POM Professor Steven M. Errede Fall 2014 1 Introduction Chords, an essential part of music, have long been analyzed. Different

More information

Beginners Guide to the Walkingbass

Beginners Guide to the Walkingbass Beginners uide to the Walkingbass Learning to play a new instrument can open up a whole new world of creativity. It certainly has for me. The 3-string Walkingbass is an easy instrument to learn, yet it

More information

Graham s Guide to Synthesizers (part 1) Analogue Synthesis

Graham s Guide to Synthesizers (part 1) Analogue Synthesis Graham s Guide to Synthesizers (part ) Analogue Synthesis Synthesizers were originally developed to imitate or synthesise the sounds of acoustic instruments electronically. Early synthesizers used analogue

More information

Resonance in a Closed End Pipe

Resonance in a Closed End Pipe Experiment 12 Resonance in a Closed End Pipe 12.1 Objectives Determine the relationship between frequency and wavelength for sound waves. Verify the relationship between the frequency of the sound, the

More information

Developing Finger Technique

Developing Finger Technique Lesson Twenty One Developing Lead Guitar Techniques (Hammering On and Pulling Off) Gigajam Guitar School Lesson 21 IGS HOPO Lesson Objectives. Develop a library of Lead Guitar Playing Techniques. Develop

More information

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide

More information

PHYSICS EXPERIMENTS (SOUND)

PHYSICS EXPERIMENTS (SOUND) PHYSICS EXPERIMENTS (SOUND) In the matter of physics, the first lessons should contain nothing but what is experimental and interesting to see. A pretty experiment is in itself often more valuable than

More information

DIGITAL MUSIC DAY 1 WHAT IS SOUND? ANALOG AND DIGITAL EARLY RECORDING WAX FOR YOUR EARS ROUND BUT FLAT WIRE AND TAPE PURE SOUND

DIGITAL MUSIC DAY 1 WHAT IS SOUND? ANALOG AND DIGITAL EARLY RECORDING WAX FOR YOUR EARS ROUND BUT FLAT WIRE AND TAPE PURE SOUND DIGITAL MUSIC DAY 1 WHAT IS SOUND? 1. Making a sound playing a musical instrument, moves the surrounding the instrument. 2. Making a sound sends out air which hit your ears. 3. Waves of changing air pressure

More information

Banjo Basics For Standard G Tuning

Banjo Basics For Standard G Tuning Banjo Basics For Standard G uning by D.A. Jacobs his text is distributed free of charge o all Banjo Students D.A.Jacobs 2004 All Rights Reserved Why his ext? When I first decided to learn banjo I had one

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

Intonation and Compensation of Fretted String Instruments. Abstract arxiv:0906.0127v2 [physics.class-ph] 5 Sep 2009

Intonation and Compensation of Fretted String Instruments. Abstract arxiv:0906.0127v2 [physics.class-ph] 5 Sep 2009 Intonation and Compensation of Fretted String Instruments Gabriele U. Varieschi and Christina M. Gower Department of Physics, Loyola Marymount University - Los Angeles, CA 90045, USA Abstract arxiv:0906.0127v2

More information

Transmission Line and Back Loaded Horn Physics

Transmission Line and Back Loaded Horn Physics Introduction By Martin J. King, 3/29/3 Copyright 23 by Martin J. King. All Rights Reserved. In order to differentiate between a transmission line and a back loaded horn, it is really important to understand

More information

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y Fourier Series When the French mathematician Joseph Fourier (768 83) was tring to solve a problem in heat conduction, he needed to epress a function f as an infinite series of sine and cosine functions:

More information

Today, Iʼd like to introduce you to an analytical system that Iʼve designed for microtonal music called Fractional Set Theory.

Today, Iʼd like to introduce you to an analytical system that Iʼve designed for microtonal music called Fractional Set Theory. College Music Society Great Lakes Regional Conference Chicago, IL 2012 1 LECTURE NOTES (to be read in a conversational manner) Today, Iʼd like to introduce you to an analytical system that Iʼve designed

More information

The Monolina is available in four different base tunings D - F - A - C

The Monolina is available in four different base tunings D - F - A - C by feeltone products Monolina Easy to transport monochord for soundmassage and performace Utility model grant ash & cherry 28.4 x 13 x 4.3 2,7 kg designed by Ingo Böhme www.feeltoneusa.com The Monolina

More information

Sample of Version 2.0 of Swing & Jump Blues Guitar

Sample of Version 2.0 of Swing & Jump Blues Guitar The Charlie Christian Approach Charlie Christian (1916 1942) was one of the first real swing guitar players that had a lasting influence on all other swing and jump guitar players after him. Even more

More information

Introduction to Guzheng

Introduction to Guzheng Introduction to Guzheng Guzheng is a Chinese musical instrument that has a history dating back to 500 BC It has many descendants all over Asia, such as the koto of Japan, the kayagum of Korea, and the

More information

Chords and Voicings Made Simple By: Sungmin Shin January 2012

Chords and Voicings Made Simple By: Sungmin Shin January 2012 Chords and Voicings Made Simple By: Sungmin Shin January 2012 I. Intervals An interval is the space between two notes. intervals of a 2nd, 3rd, 6th, and 7th can be diminished, minor, major, or augmented

More information

How to Improvise Jazz Melodies Bob Keller Harvey Mudd College January 2007 Revised 4 September 2012

How to Improvise Jazz Melodies Bob Keller Harvey Mudd College January 2007 Revised 4 September 2012 How to Improvise Jazz Melodies Bob Keller Harvey Mudd College January 2007 Revised 4 September 2012 There are different forms of jazz improvisation. For example, in free improvisation, the player is under

More information

The Basic Jazz Guitar Chord Book

The Basic Jazz Guitar Chord Book The Basic Jazz Guitar Chord Book By Dirk Laukens / January 25, 2005 Hello and welcome to the basic jazz guitar chord book, brought to you by www.jazzguitar.be. How are guitar chords built? What makes a

More information

Playing Chromatic Music on Mountain Dulcimer in 1-3-5 Tuning

Playing Chromatic Music on Mountain Dulcimer in 1-3-5 Tuning Playing Chromatic Music on Mountain Dulcimer in 1-3-5 Tuning By Rob Brereton The sentence I dread hearing when I talk to mountain dulcimer players is, There ain t no notes on a dulcimer, you just play

More information

Summary The students will learn how to make a basic musical instrument and how to modify it to get different loudness and pitches.

Summary The students will learn how to make a basic musical instrument and how to modify it to get different loudness and pitches. Partnerships Implementing Engineering Education Sound: 4.D.3B Rubber Band Banjo Grade Level 4 Sessions 50 minutes Seasonality N/A Instructional Mode(s) Whole class Team Size 2 WPS Benchmarks 04.SC.PS.01

More information

Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k

Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k Physics 1C Midterm 1 Summer Session II, 2011 Solutions 1. If F = kx, then k m is (a) A (b) ω (c) ω 2 (d) Aω (e) A 2 ω Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of

More information

The Secret Weapon for Bar Chords

The Secret Weapon for Bar Chords Created by BCM The Secret Weapon for Bar Chords This handy device will make it much easier to form bar chords on your guitar. It is an effective tool that will give you immediate results. No more hours

More information

AP PHYSICS 2012 SCORING GUIDELINES

AP PHYSICS 2012 SCORING GUIDELINES AP PHYSICS 2012 SCORING GUIDELINES General Notes About 2012 AP Physics Scoring Guidelines 1. The solutions contain the most common method of solving the free-response questions and the allocation of points

More information

8-6 Radical Expressions and Rational Exponents. Warm Up Lesson Presentation Lesson Quiz

8-6 Radical Expressions and Rational Exponents. Warm Up Lesson Presentation Lesson Quiz 8-6 Radical Expressions and Rational Exponents Warm Up Lesson Presentation Lesson Quiz Holt Algebra ALgebra2 2 Warm Up Simplify each expression. 1. 7 3 7 2 16,807 2. 11 8 11 6 121 3. (3 2 ) 3 729 4. 5.

More information

Congratulations on purchasing Molten MIDI B by Molten Voltage

Congratulations on purchasing Molten MIDI B by Molten Voltage OWNER S MANUAL Congratulations on purchasing Molten MIDI B by Molten Voltage Molten MIDI B is designed to control the Digitech Bass Whammy. When configured for Whammy & Clock output, Molten MIDI B also

More information

Guitar Rubric. Technical Exercises Guitar. Debut. Group A: Scales. Group B: Chords. Group C: Riff

Guitar Rubric. Technical Exercises Guitar. Debut. Group A: Scales. Group B: Chords. Group C: Riff Guitar Rubric Technical Exercises Guitar Debut In this section the examiner will ask you to play a selection of exercises drawn from each of the three groups shown below. Groups A and B contain examples

More information