4. Experiment D1: Operational Amplifier

Save this PDF as:

Size: px
Start display at page:

Transcription

1 4. Experiment D1: Operational Amplifier 4.1. Aim The aim of this experiment is to investigate some properties of real op-amps which are not present in `ideal' op-amps, but which affect practical op-amp circuits significantly Preparation Note that an ideal op-amp has infinite gain, maintained over an infinitely large frequency range including zero frequency ( DC ), infinitely high input impedances, zero output impedance, zero input offset voltage and zero bias currents. The non-ideal values of these properties are what you will be concerned with in this two week experiment. You need to ensure that you read enough to understand these concepts: 1. input bias current 2. input offset current 3. input offset voltage 4. slew rate 5. common-mode rejection. It is important to study the Clayton book, as it contains a lot of information relevant to this experiment. Other points to remember for your preparation: Consider and draw the circuits that you need to perform the experiments, particularly for week 2; Briefly describe the steps you need to take for each part of the experiment some information is left out deliberately to make you think; Make predictions about the results that you expect to see for each part of the experiment; As part of your results, use the datasheet to get predicted values and sketch graphs. Feedback Op-amps are frequently used with a high degree of negative feedback. In the limit such an amplifier may be used as a unity-gain voltage follower, i.e. be subject to 100% feedback (in the sense of a direct connection from output to inverting input). Stability Any amplifier with negative feedback applied can become unstable (that is, oscillate on its own, without any external provocation). It will do this if, at a frequency at which the gain is greater than unity, the overall loop phase-shift is equal to 180 (equivalent to a sign change, i.e. converting the negative feedback into positive feedback). Since an op-amp has several stages of amplification, the possibility of such a large phase shift must always be present. If we consider a single stage of amplification within an op-amp, then if the stage load comprises a resistor, this will inevitably be shunted by stray capacitance (see Figure 4-1). At high frequencies, the load will degenerate into the capacitance alone, since the impedance of the capacitance will be much less than the impedance of the resistance. 15

2 Figure 4-1: Model of Amplifying Stage (at HF most of the current goes into the capacitance). At LF, (constant) At HF, Consequently the output voltage will exhibit 90 of phase lag over a wide range of frequencies, including a considerable range where the gain, even though falling at 6 db per octave, is still above unity. An op-amp incorporating several similar stages will therefore oscillate when even a limited amount of negative feedback is applied. Consider a specific example-an op-amp with four internal gain stages each with a stage load resistor (R) of 10 kω, with a stray capacity load (C) of 10 pf in parallel. Then simple circuit theory shows that the amplifier gain will have fallen to 0.7 of its low-frequency value (-3 db) when the frequency reaches f = 1/(2 π R C), viz 1.59 MHz. At this frequency the phase shift is 45, and hence four identical stages will have an overall phase shift of 180. The overall gain will have decreased only by a factor (0.7) 4, i.e or -12 db. For any operational amplifier with a reasonable amount of low-frequency gain, instability is almost certain with only the most modest degree of feedback. Internal Compensation To counteract this most practical op-amps are internally compensated, that is, constructed with one stage having a deliberately poor high-frequency response, i.e. one stage has a high equivalent shunt capacitance; the others have the minimum capacitance possible. Then from a very low frequency this stage provides 90 of phase shift with a rate of gain reduction of 6 db per octave (= 20 db per decade). If the overall gain falls to unity (0 db) before the phase shift due to other causes can equal 90, the amplifier will be unconditionally stable under all values of feedback. This makes the amplifier easy to use. The disadvantage is that amplifier gain is thrown away unnecessarily at HF if less feedback is used audio amplifiers are an example. Frequency Response It is this internal compensation which accounts for the characteristic frequency response of op-amps. The frequency at which the phase shift is 45 is of necessity that at which the gain is reduced from the DC value by 3 db. This is shown in Fig. 2 on a graph of gain (db) versus frequency, plotted on a logarithmic scale. This type of graph is known as a `Bode gain plot', and on it the high-frequency section is asymptotic to a straight line falling at 20 db per decade; the phase shift is close to 90 over this range. The high-frequency asymptote meets the flat low-frequency gain asymptote at the same frequency as the 3 db point, i.e. where the true gain is 3 db below the DC gain. 16

3 Figure 4-2: Bode Gain Plot of typical op-amp. Phase and Gain Margins There are two stability criteria which can be applied to the overall amplifier. The first is to measure the phase-shift at unity gain and determine the phase stability margin, i.e. the amount by which the phase shift is less than 180. The second is to measure the gain at the frequency at which the phase shift is 180, and determine the gain stability margin as the amount by which the gain is less than 0 db. Bibliography (Although some of these titles are currently out of print, most are available through the Library.) [1] Operational Amplifiers, 4th Edition, George Clayton and G. Burbridge, Butterworth-Heinemann, 2000, ISBN Library ref: [2] Op-amps and Linear Integrated Circuits, 3rd Edition, R A Gayakwad, Prentice Hall, 1993, ISBN [3] Operational Amplifiers and Linear Integrated Circuits, 5th Edition, Robert F Coughlin, Prentice Hall, 1998, ISBN [4] Reference Data for Radio Engineers, 6th Edition, International Telephone and Telegraph, 1975, ISBN [5] Analog Electronics, T E Price, Prentice Hall, 1997, ISBN [6] Operational amplifier characteristics and applications, 3rd Edition, Robert G. Irvine, Prentice-Hall, 1994, ISBN [7] Intuitive operational amplifiers: from basics to useful applications, Rev. Edition, Thomas M. Frederiksen, McGraw-Hill, 1988, ISBN [8] 17

4 4.3. Experiment D1 (741 op-amp) The circuit is first constructed on strip-board. The op-amp should be connected to a 15 V power supply. The centre terminal then becomes the system 0V. Do not connect the offset null potentiometer until the last part of the experiment (D2 part 5). 1. Measure the input offset voltage, input bias currents, and input offset current, using the circuits shown in Figure 4-3 and the associated formulae. Note signs of voltages and directions of currents. 18

5 Figure 4-3: Offset voltage and bias current. If in (a), R f = 50 kω, and R 1 = 100Ω, can the terms in I b- and I b+ be ignored, assuming the expected values from the 741 data sheet? If so, what is the value of V os? If in (b), R 1 = 100Ω, R 3 = 100 kω, which terms in the formula can be ignored? What is the value of I b+? If in (c), R 4 = 100kΩ, which terms in the formula can be ignored? What is the value of I b-? From the measured values find the input offset current and input bias current. Compare these measured values with those from the data sheet, and comment on any differences. NB: If V o > 12V, the gain is too high and R f should be reduced. 19

6 2. Measure the gain and frequency response of the circuit shown in Figure 4-4 for various values of feedback, in both inverting mode (as shown) and non-inverting mode. Suitable values for R f are 2k2, 22 k and 220 k. Plot the gain in db against log frequency, and comment on the curves found. If the bandwidth is defined as the frequency at which the gain has fallen by 3 db, is there any significance in the product of low-frequency gain and bandwidth? NB: check that the 3 db frequency is the same as the frequency where the sloping asymptote intersects the flat LF asymptote. NB: Is there any advantage in using log-linear graph paper? Figure 4-4: Inverting feedback amplifier. By extrapolation, determine the frequency at which the gain is 0 db. Measure the phase shift between input and output voltages, in the asymptotic sloping section. Check that the output (sign?) lags the input by close to 90. Updated K.N. Bateson Updated July 2008 S. Worrall 20

EAC215 Homework 4. Page 1 of 6

EAC215 Homework 4 Name: 1. An integrated circuit (IC) op-amp has (a) two inputs and two outputs (b) one input and one output (c) two inputs and one output 2. Which of the following characteristics does

Chapter 12: The Operational Amplifier

Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used

Op Amp Bandwidth and Bandwidth Flatness. OPEN LOOP GAIN db. Figure 1: Frequency Response of Voltage Feedback Op Amps

TUTORIAL Op Amp Bandwidth and Bandwidth Flatness BANDWIDTH OF VOLTAGE FEEDBACK OP AMPS The open-loop frequency response of a voltage feedback op amp is shown in Figure 1 below. There are two possibilities:

EXPERIMENT 1.2 CHARACTERIZATION OF OP-AMP

1.17 EXPERIMENT 1.2 CHARACTERIZATION OF OPAMP 1.2.1 OBJECTIVE 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals 2. To list the amplifier stages in a typical

Peggy Alavi Application Engineer September 3, 2003

Op-Amp Basics Peggy Alavi Application Engineer September 3, 2003 Op-Amp Basics Part 1 Op-Amp Basics Why op-amps Op-amp block diagram Input modes of Op-Amps Loop Configurations Negative Feedback Gain Bandwidth

Operational Amplifiers: Part 2. Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation

Operational Amplifiers: Part 2 Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation by Tim J. Sobering Analog Design Engineer & Op Amp Addict Summary of Ideal Op Amp Assumptions

Material and Equipment NI ELVIS 741 Op Amp, 5k pot, Assorted Resistors (10k, 100k, 220k (2), 100 (2), 560 )

Lab 8 Operational Amplifier Characteristics Purpose The purpose of this lab is to study the non-ideal characteristics of the operational amplifier. The characteristics that will be investigated include

The output signal may be of the same form as the input signal, i.e. V in produces V out

What is an amplifier? Operational Amplifiers A device that takes an input (current, voltage, etc.) and produces a correlated output Input Signal Output Signal Usually the output is a multiple of the input

Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators

Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators Technical Brief December 3 TB47. Author: Doug Mattingly Assumptions This Technical Brief makes the following assumptions:.

Part I: Operational Amplifiers & Their Applications

Part I: Operational Amplifiers & Their Applications Contents Opamps fundamentals Opamp Circuits Inverting & Non-inverting Amplifiers Summing & Difference Amplifiers Integrators & Differentiators Opamp

R f. V i. ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response

ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response Objective: Design a practical differentiator circuit using common OP AMP circuits. Test the frequency response

Operational amplifiers

Operational amplifiers Types of operational amplifiers (bioelectric amplifiers have different gain values) Low-gain amplifiers (x1 to x10) Used for buffering and impedance transformation between signal

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 5 - Gain-Bandwidth Product and Slew Rate Overview: In this laboratory the student will explore

EE105 Fall 2014 Microelectronic Devices and Circuits. Ideal vs Non-ideal Op Amps

EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) vs Non-ideal Op Amps Op Amp A 0 Non-ideal Op Amp A < < > 0 Other non-ideal characteristics:

Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)

6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and

Operational Amplifiers - Configurations and Characteristics

Operational Amplifiers - Configurations and Characteristics What is an Op Amp An Op Amp is an integrated circuit that can be used to amplify both DC and AC signals. One of the most common Op Amps available

Frequency response of a general purpose single-sided OpAmp amplifier

Frequency response of a general purpose single-sided OpAmp amplifier One configuration for a general purpose amplifier using an operational amplifier is the following. The circuit is characterized by:

Operational Amplifiers

Operational Amplifiers Aims: To know: Basic Op Amp properties eal & Ideal Basic ideas of feedback. inv input noninv input output gnd To be able to do basic circuit analysis of op amps: using KCL, KL with

APPLICATION BULLETIN

APPLICATION BULLETIN Mailing Address: PO Box 11400, Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 Tel: (520) 746-1111 Telex: 066-6491 FAX (520) 889-1510 Product Info: (800) 548-6132

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational

Op Amp Circuits. Inverting and Non-inverting Amplifiers, Integrator, Differentiator

M.B. Patil, IIT Bombay 1 Op Amp ircuits Inverting and Non-inverting Amplifiers, Integrator, Differentiator Introduction An Operational Amplifier (Op Amp) is a versatile building block used in a variety

Chapter 8. Current-Feedback Op Amp Analysis. Excerpted from Op Amps for Everyone. Literature Number SLOA080. Literature Number: SLOD006A

Chapter 8 Current-Feedback Op Amp Analysis Literature Number SLOA080 Excerpted from Op Amps for Everyone Literature Number: SLOD006A Chapter 8 Current-Feedback Op Amp Analysis Ron Mancini 8.1 Introduction

DC Circuits: Operational Amplifiers Hasan Demirel

DC Circuits: Operational Amplifiers Hasan Demirel Op Amps: Introduction Op Amp is short form of operational amplifier. An op amp is an electronic unit that behaves like a voltage controlled voltage source.

Lab 7: Operational Amplifiers Part I

Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,

Frequency Response of Filters

School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

School of Engineering Department of Electrical and Computer Engineering

1 School of Engineering Department of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #4 Title: Operational Amplifiers 1 Introduction Objectives

Current vs. Voltage Feedback Amplifiers

Current vs. ltage Feedback Amplifiers One question continuously troubles the analog design engineer: Which amplifier topology is better for my application, current feedback or voltage feedback? In most

EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING

Department of Electrical Drives and Power Electronics EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING Valery Vodovozov and Zoja Raud http://learnelectronics.narod.ru Tallinn 2012 2 Contents Introduction...

Fig. 1 :Block diagram symbol of the operational amplifier. Characteristics ideal op-amp real op-amp

Experiment: General Description An operational amplifier (op-amp) is defined to be a high gain differential amplifier. When using the op-amp with other mainly passive elements, op-amp circuits with various

ECG-Amplifier. MB Jass 2009 Daniel Paulus / Thomas Meier. Operation amplifier (op-amp)

ECG-Amplifier MB Jass 2009 Daniel Paulus / Thomas Meier Operation amplifier (op-amp) Properties DC-coupled High gain electronic ec c voltage amplifier Inverting / non-inverting input and single output

Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

OPERATIONAL AMPLIFIERS. o/p

OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A

Precision Diode Rectifiers

by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic

CHAPTER 16 OSCILLATORS

CHAPTER 16 OSCILLATORS 16-1 THE OSCILLATOR - are electronic circuits that generate an output signal without the necessity of an input signal. - It produces a periodic waveform on its output with only the

FILTER CIRCUITS. A filter is a circuit whose transfer function, that is the ratio of its output to its input, depends upon frequency.

FILTER CIRCUITS Introduction Circuits with a response that depends upon the frequency of the input voltage are known as filters. Filter circuits can be used to perform a number of important functions in

Final Project: Operational Amplifier

Martin Lizarde Jr. Susanna Guerrero Dung Huynh Final Project: Operational Amplifier June 9, 2005 Professor: Roger Lake TA: Angelo Ledesma Introduction: An operational amplifier is designed. Several tests

Physics 160. Fun with Op Amps. R. Johnson May 13, 2015

Physics 160 Lecture 14 Fun with Op Amps. Johnson May 13, 015 Ideal Op-Amp Differential gain, of course. Common-mode gain is ideally zero. Such an ideal op-amp of course does not exist, but a first analysis

MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

The Evolution of an EQ Design By Fred Forssell, Forssell Technologies Inc. 1 st draft

The Evolution of an EQ Design By Fred Forssell, Forssell Technologies Inc. st draft This discussion covers the steps used to design a functional multi-band equalizer for use in professional audio applications

Operational Amplifiers

Operational Amplifiers Introduction The operational amplifier (op-amp) is a voltage controlled voltage source with very high gain. It is a five terminal four port active element. The symbol of the op-amp

EE105 Fall 2014 Microelectronic Devices and Circuits. Operational Amplifier Error Sources: dc Current and Output Range Limitations

EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 Operational Amplifier Error Sources: dc Current and Output Range Limitations dc error

Technical Note #3. Error Amplifier Design and Applications. Introduction

Technical Note #3 Error Amplifier Design and Applications Introduction All regulating power supplies require some sort of closed-loop control to force the output to match the desired value. Both digital

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS Chapter Outline 10.1 The Two-Stage CMOS Op Amp 10.2 The Folded-Cascode CMOS Op Amp 10.3 The 741 Op-Amp Circuit 10.4 DC Analysis of the 741 10.5 Small-Signal Analysis

A Constant-current Source

A Constant-current Source Frequently, such as when you want to measure temperature with a silicon diode, it is desirable to have a source of a reproducible, constant current. Many laboratory power supplies

LM118/LM218/LM318 Operational Amplifiers

LM118/LM218/LM318 Operational Amplifiers General Description The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They

Lab 9: Op Amps Lab Assignment

3 class days 1. Differential Amplifier Source: Hands-On chapter 8 (~HH 6.1) Lab 9: Op Amps Lab Assignment Difference amplifier. The parts of the pot on either side of the slider serve as R3 and R4. The

Low Noise, Single Supply, Electret Microphone Amplifier Design for Distant Acoustic Signals

Low Noise, Single Supply, Electret Microphone Amplifier Design for Distant Acoustic Signals Donald J. VanderLaan November 26, 2008 Abstract. Modern day electronics are often battery powered, forcing the

Operational Amplifier - IC 741

Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

Dual High Speed, Implanted BiFET Op Amp AD644

a FEATURES Matched Offset Voltage Matched Offset Voltage Over Temperature Matched Bias Currents Crosstalk 124 db at 1 khz Low Bias Current: 35 pa max Warmed Up Low Offset Voltage: 500 V max Low Input Voltage

Description. Output Stage. 5k (10k) - + 5k (10k)

THAT Corporation Low Noise, High Performance Audio Preamplifier IC FEATURES Low Noise: 1 nv/hz input noise (60dB gain) 34 nv/hz input noise (0dB gain) (1512) Low THD+N (full audio bandwidth): 0.0005% 40dB

CHAPTER 6 Frequency Response, Bode Plots, and Resonance

ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal

Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems

Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems PHOTODIODE VOLTAGE SHORT-CIRCUIT PHOTODIODE SHORT- CIRCUIT VOLTAGE 0mV DARK ark By Luis Orozco Introduction Precision

11: AUDIO AMPLIFIER I. INTRODUCTION

11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an op-amp depend primarily on the characteristics of the feedback network rather than on those of the op-amp itself. A

Analog Signal Conditioning

Analog Signal Conditioning Analog and Digital Electronics Electronics Digital Electronics Analog Electronics 2 Analog Electronics Analog Electronics Operational Amplifiers Transistors TRIAC 741 LF351 TL084

Objectives: to get acquainted with active filter circuits and parameters, design methods, build and investigate active LPF, HPF and BPF.

Laboratory of the circuits and signals Laboratory work No. 4 ACTIVE FILTERS Objectives: to get acquainted with active filter circuits and parameters, design methods, build and investigate active LPF, HPF

Chapter 14 Feedback and Oscillator Circuits

Chapter 14 Feedback and Oscillator Circuits Feedback Concepts The effects of negative feedback on an amplifier: Disadvantage Lower gain Advantages Higher input impedance More stable gain Improved frequency

Transistor Amplifiers

Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

This representation is compared to a binary representation of a number with N bits.

Chapter 11 Analog-Digital Conversion One of the common functions that are performed on signals is to convert the voltage into a digital representation. The converse function, digital-analog is also common.

Operational Amplifiers

662 25 Principles of Electronics Operational Amplifiers 25.1 Operational Amplifier 25.3 Basic Circuit of Differential Amplifier 25.5 Common-mode and Differentialmode signals 25.7 Voltage Gains of DA 25.9

ELECTRONICS. EE 42/100 Lecture 8: Op-Amps. Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad

A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/23 EE 42/100 Lecture 8: Op-Amps ELECTRONICS Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad University of California, Berkeley

Understanding Power Impedance Supply for Optimum Decoupling

Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,

Basic Op Amp Circuits

Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

Op-Amps Experiment Theory

EE 4/00 Operational mplifiers Op-mps Experiment Theory. Objective The purpose of these experiments is to introduce the most important of all analog building blocks, the operational amplifier ( op-amp for

OPERATIONAL AMPLIFIER

MODULE3 OPERATIONAL AMPLIFIER Contents 1. INTRODUCTION... 3 2. Operational Amplifier Block Diagram... 3 3. Operational Amplifier Characteristics... 3 4. Operational Amplifier Package... 4 4.1 Op Amp Pins

Lecture 220 Compensation of Op Amps (3/27/10) Page 220-1

Lecture 220 Compensation of Op Amps (3/27/0) Page 220 LECTURE 220 INTRODUCTION TO OP AMPS LECTURE OUTLINE Outline Op Amps Categorization of Op Amps Compensation of Op Amps Miller Compensation Other Forms

APPLICATION NOTE 29 Testing Capacitors with High DC Bias

APPLICATION NOTE 29 Testing Capacitors with High DC Bias This application note will describe the process of analysing the impedance of a capacitor when subjected to high DC bias voltages. This particular

Design of a TL431-Based Controller for a Flyback Converter

Design of a TL431-Based Controller for a Flyback Converter Dr. John Schönberger Plexim GmbH Technoparkstrasse 1 8005 Zürich 1 Introduction The TL431 is a reference voltage source that is commonly used

S-DOMAIN ANALYSIS: POLES, ZEROS, AND BODE PLOTS

S-DOMAIN ANAYSIS: POES, ZEROS, AND BODE POTS The main objectiveis to find amplifier voltage gain as a transfer function of the complex frequency s. In this s-domain analysis a capacitance С is replaced

AN2653 Application note

Application note Operational amplifier stability compensation methods for capacitive loading applied to TS57 Introduction Who has never experienced oscillations issues when using an operational amplifier?

30. Bode Plots. Introduction

0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these

Application Note 148 September 2014. Does Your Op Amp Oscillate? AN148-1. Barry Harvey, Staff Design Engineer, Linear Technology Corp.

September 2014 Does Your Op Amp Oscillate? Barry Harvey, Staff Design Engineer, Linear Technology Corp. Well, it shouldn t. We analog designers take great pains to make our amplifiers stable when we design

Positive Feedback and Oscillators

Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

Part 2: Operational Amplifiers

Part 2: Operational Amplifiers An operational amplifier is a very high gain amplifier. Op amps can be used in many different ways. Two of the most common uses are a) as comparators b) as amplifiers (either

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

TRANSISTOR AMPLIFIERS AET 8. First Transistor developed at Bell Labs on December 16, 1947

AET 8 First Transistor developed at Bell Labs on December 16, 1947 Objective 1a Identify Bipolar Transistor Amplifier Operating Principles Overview (1) Dynamic Operation (2) Configurations (3) Common Emitter

Operational Amplifiers

perational Amplifiers. perational Amplifiers perational amplifiers (commonly known as opamps) are integrated circuits designed to amplify small voltages (or currents) to usable levels. The physical packaging

Operational Amplifiers

1. Introduction Operational Amplifiers The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

Figure 1: Op amp model.

An Op Amp Tutorial (Based on material in the book Introduction to Electroacoustics and Audio Amplifier Design, Second Edition - Revised Printing, by W. Marshall Leach, Jr., published by Kendall/Hunt, c

Constant Current Add on card for Xgen platforms.

Constant Current Add on card for Xgen platforms. Abstract: The Xgen is designed to supply a constant voltage to the customer load. In recent times there has been a demand for using the Xgen platform as

www.jameco.com 1-800-831-4242

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LF411 Low Offset, Low Drift JFET Input Operational Amplifier General Description

PTC Thermistors [From Philips Data Handbook PA ]

PTC Thermistors [From Philips Data Handbook PA02 1989] 1. GENERAL Positive Temperature Coefficient (PTC) thermistors exhibit a high positive temperature coefficient of resistance. They differ from Negative

Bipolar Transistor Amplifiers

Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

*For stability of the feedback loop, the differential gain must vary as

ECE137a Lab project 3 You will first be designing and building an op-amp. The op-amp will then be configured as a narrow-band amplifier for amplification of voice signals in a public address system. Part

Precision ANALOG MULTIPLIER

Precision ANALOG MULTIPLIER FEATURES ±0.5% max 4-QUADRANT ACCURACY WIDE BANDWIDTH: 1MHz min, 3MHz typ ADJUSTABLE SCALE FACTOR STABLE AND RELIABLE MONOLITHIC CONSTRUCTION LOW COST APPLICATIONS PRECISION

Constant Current Control for DC-DC Converters

Constant Current Control for DC-DC Converters Introduction... Theory of Operation... Power Limitations... Voltage Loop Stability...2 Current Loop Compensation...3 Current Control Example...5 Battery Charger

The Class-D Amplifier

The Class-D Amplifier (From the book Introduction to Electroacoustics and Audio Amplifier Design, Second Edition - Revised Printing, by W. Marshall Leach, Jr., published by Kendall/Hunt, c 2001.) A class-d

12-bit Digital-Analog Converter

12-bit Digital-Analog Converter ECE262 Analog Circuit Design Team Member Jae Shik Lim Chao Chen Lingzhao Xie Agenda Abstract Background Block Diagram Module Level Design System Level Design Design Review

A Low-Cost VCA Limiter

The circuits within this application note feature THAT218x to provide the essential function of voltage-controlled amplifier (VCA). Since writing this note, THAT has introduced a new dual VCA, as well

Precision Gain = 10 DIFFERENTIAL AMPLIFIER

Precision Gain = DIFFERENTIAL AMPLIFIER FEATURES ACCURATE GAIN: ±.% max HIGH COMMON-MODE REJECTION: 8dB min NONLINEARITY:.% max EASY TO USE PLASTIC 8-PIN DIP, SO-8 SOIC PACKAGES APPLICATIONS G = DIFFERENTIAL

Digital to Analog Converter. Raghu Tumati

Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost high speed dual JFET input operational amplifiers with an internally trimmed input offset voltage

Quad 741 Op Amps General Description The LM148 series is a true quad 741. It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to

AN4451 Application note

Application note Signal conditioning for a UV sensor Nicolas Aupetit Introduction This application note describes the analog conditioning circuit used for a high impedance sensor that acts like a current

Table of Contents Part 1: Audio Power Amplifier Basics 1. Introduction 1.1 Organization of the book 1.2 The role of the power amplifier 1.3 Basic performance specifications 1.4 Additional performance specifications

Op Amp Circuit Collection

Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference

AC negative feedback opamp circuits

AC negative feedback opamp circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

Chapter: Operational Amplifiers / Operationsverstärker. Michael E. Auer

Electrical Engineering Chapter: Operational Amplifiers / Operationsverstärker Michael E. Auer Source of figures: Alexander/Sadiku: Fundamentals of Electric Circuits, McGraw-Hill Chapter Content Basics