# Chapter 13: Comparators

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 13: Comparators So far, we have used op amps in their normal, linear mode, where they follow the op amp Golden Rules (no input current to either input, no voltage difference between the inputs). This week we look at comparators: specialty op-amps which use positive feedback or no feedback. I. Comparators Sometimes, you want to use an op-amp in its saturated mode where the output is pushed either as far positive or as far negative as it can go. This use changes the op-amp from a linear device into a bistable device, that is, one that has only two possible output values. The value of the output is based on a simple decision, made by the chip: If V > V set the output to the positive rail if not set the output to the negative rail. Such a circuit is called a comparator. This is the first step into the world of digital circuits where all output values are expressed as a series of yes or no answers. A. Positive Feedback We often refer to the V voltage as the reference voltage and connect the input to V -. Comparators are supposed to determine: If the input (V - ) is less than the reference (V ) then the output rails high. If the input (V - ) is greater than the reference (V ) then the output rails low. However, when a comparator looks at a real input signal it will always be faced with some small variations in the signal that make it hard to determine which input is greater. Even worse, this electrical noise could drive your comparator through many transitions when you really wanted your signal to show only one transition. Figure 13.1 shows how a little noise added to a slowly decreasing signal can cause multiple transitions in the output. The top curve shows the comparator output, while the bottom curve shows the V input. The dashed line represents the V input. Figure 13.1: A noisy signal on V - (bottom) generates multiple transitions (top) as it goes above and below the threshold on V (dashed line)

2 When V drops below the threshold (dashed line) the output changes state. When noise makes the input voltage briefly go back above the dashed curve the output bounces to low and back to high accordingly. The solution to this problem is to use positive feedback to simultaneously shift the reference voltage (V ) as the output changes states. This is illustrated in Figure If the shift is large enough, then the output will be less likely to bounce between the two output states during the transition. This shift, which is called a hysteresis, depends on the design of the feedback network that ties V to the output level. An example of how this might work in an op-amp implementation is shown in Figure We will start by ignoring the positive feedback, and note that the V input is tied to 0.83 V via a voltage divider formed by a 10 kω resistor and a 50 kω resistor: 10kΩ V = 5 V = 0.83V (13.1) 10kΩ 50kΩ Now let s consider the effects of the feedback resistor. When the output is high, this places the 100 kω resistor (ignore the 4.7 kω for now) in parallel with the 50 kω resistor so the reference voltage goes up to 1.16 V. 10kΩ V = 5 V = 1.16V (13.2) 10kΩ 33kΩ Figure 13.2: When the output makes a transition (top), the reference level can be shifted (dashed) using positive feedback to prevent extra transitions as the input on V - (bottom) makes multiple transitions across the original reference voltage on V (dotted line). 50 KΩ 10 KΩ 100 KΩ 4.7 KΩ Figure 13.3: Comparator with hysteresis. When the output is low the 100 kω resistor is now in parallel with the 10 kω resistor so the reference voltage goes down to 0.76 V. 5V V IN 5V V OUT 9kΩ V = 5 V = 0.76V (13.3) 9kΩ 50kΩ Therefore, this circuit s output will go from high to low when V increases beyond 1.16 V. The circuit s output will go from low to high when V decreases below 0.76 V. When V is between 0.76 V and 1.16 V, the output will stay at its current value (either high or low). This memory of the past is why this type of feedback effect is called hysteresis and is often represented as a plot of output voltage as a function of input voltage. The hysteresis in this case given by

3 1.16V 0.76V = 0.40V (13.4) A plot of the reference voltage (V REF ) vs the input voltage (V IN ) for a comparator with a positive feedback network (figure 13.4). To make the two parts clear they have been slightly offset vertically. This type of plot is called a hysteresis plot. If there is an open box in the middle of the two paths then we say there is an input hysteresis. The hysteresis is defined as the difference between the two values of V IN where there are transitions. V REF V IN Figure 13.4: A plot of V REF vs V IN for a comparator with a positive feedback network. This positive feedback circuit is called a Schmitt trigger. A slightly better version can be made using two transistors but that s beyond the scope of this chapter. B. Comparators Commercial comparators are specialty op amps and come in a standard IC package. They are designed with the sole purpose of switching very quickly and do not have a number of the other good op amp qualities we have been exploiting in negative feedback circuits. The LM2903 and LM311 are the standard comparators that we will use in this week s lab. Open-Collector Output Since comparators convert a linear signal into a digital signal, they are routinely used to connect two dissimilar electrical systems with different supply or reference voltages. Consequently, most standard comparators come designed to connect to any system you want to use. The output of a comparator is actually the collector input of a transistor switch (with open or closed states), rather than actual output voltages note: in a regular op-amp the output would be some form of push-pull stage. When you use a comparator in a circuit, you usually connect the output to a voltage source via a pull-up resistor, as shown in figure When the comparator is in the high state, the switch will be open, no current will flow through the resister. There will not be a voltage drop across the resistor, and hence the output will be pulled to the positive supply. When the comparator is in the low state, the switch will be closed, current will flow through the resistor. There will be a voltage drop across the resistor, and the output will be pulled to the lower supply level (ground in this case). The 4.7 kω resistor in Figure 13.3 is a pull-up resistor. V IN V REF V V OUT Figure 13.5: Equivalent circuit for an open collector output and a pull-up resistor

4 Even though the real open collector states are open and closed, they are still often called high and low in the assumption that you are using pull-up resistors. Comparator Limitations Comparators typically have high gain at high frequencies and no phase compensation. Since comparators are designed to go all the way from the negative rail to the positive rail during transition, their data sheets list a transition delay time, which is the time to go from one rail to the other, instead of a slew rate. For the LM2903 the transition time is roughly 1.5 µs. The most serious limitation for some comparators is that they will not allow a large voltage difference between V and V. This difference is called the differential input voltage and should be looked up on the data sheet before you design a circuit using a specific comparator. Finally, another issue is that the input circuit s impedance changes as the output state changes. Edge Triggers A closely related class of circuits is triggers. A rising edge trigger will make a pulse (fast transition from low to high and back again) each time the input voltage rises past a particular threshold voltage. On the other hand, when the input voltage goes back below the threshold the output stays low. When the output is triggered, the threshold voltage is raised for a certain period of time to prevent multiple triggers. After that time has elapsed, the threshold is lowered back to its normal value. This is called rearming the trigger (Figure 13.6). Figure 13.6: The output of the rising edge trigger sends out a pulse (top) when the input (bottom) rises past the threshold (dashed line). The output stays low when the output returns to be low the line. A hysteresis ensures that only one pulse is made per transition even in the presence of noise. II. Oscillators In many electronics applications it is useful to have a small function generator to synchronize various portions of a circuit or to insert time delays between different actions. This is called a clock signal. You should be used to this concept from a trip to a store shopping for PCs. The speed that it will perform individual operations (single core) is proportional to the clock speed. Therefore we know that 3.0 GHz PC will be 10% faster than a 2.7 GHz PC

5 One simple way to make a clock signal is using positive feedback and a comparator to make a square wave generator. An example square wave generator is shown in figure The circuit is based on a comparator with hysteresis. The comparator is assumed to be powered by 0 V and 5 V. The divider in this example defines the transition levels to be V /3 and 2V /3. The wrinkle here is that the output is connected to the reference voltage through an RC circuit. After the output switches state, the capacitor gets charged by the voltage at the output. When the charge on the capacitor gets higher than 2V /3, the hysteresis causes the output to change states and the capacitor gets discharged. When the charge on the capacitor gets lower than V /3 then the V output changes states again. This process repeats forever and the resulting output is a square wave as shown in figure The square wave will have the period given by roughly 2ln(2)RC. C 100 KΩ 100 KΩ Figure 13.7: A square wave generator made using a relaxation oscillator. R 100 KΩ V 4.7 KΩ V OUT V (Volts) Time (s) Figure 13.8: The output of the relaxation oscillator shown in Figure 7 (dashed) and the voltage across the capacitor are plotted as a function of time

6 These kinds of circuits are called relaxation oscillators or RC oscillator. They generally work well for frequencies from around 1 khz to 1 MHz. When designing an oscillator, make sure that R is significantly larger than the pull-up resistor or the output will be asymmetric. (Can you to figure out why?) In precision applications the simple RC oscillator would be replaced by a vibrating crystal. Vibrating crystals are available as precision oscillators with a wide range of frequencies. Suggested designs for using crystals with comparators are available in the data sheets. Design Exercises Design Exercise 13-1: Design a comparator that will switch when the input signal crosses 2.5 V with no hysteresis (as in equation 13.1). Design Exercise 13-2: Modify the design of your comparator with a positive feedback network to add a total hysteresis of approximately 0.2 V. Design Exercise 13-3: Design a relaxation oscillator with 10 Hz frequency. Use resistor and capacitor values in the same range as those found in the electronics lab. Bonus: If you run design exercise 13-3 in 5Spice, then you will notice that the square wave is not symmetric (i.e. "high" time is longer than the "low" time). Modify the circuit so that you can make the square wave symmetric

8

### Comparator and Schmitt Trigger

Comparator and Schmitt Trigger Comparator circuits find frequent application in measurement and instrumentation systems. Learning Objectives Understand the Op-Amp Comparator with and without an offset

### Chapter 12. Common Switching Functional Blocks

Chapter 12 Common Switching Functional Blocks Voltage Comparators In many applications, it is necessary to cause a digital switching action when an analog voltage rises above or drops below some value.

### The 555 timer: Waveform shaping

The 555 timer: Waveform shaping Introduction: Oscillators are ubiquitous not only in research environments but also in our modern, technology-oriented society. Oscillators are used for communication, timing

### 12 Converting Between Digital and Analog

12 CONVERTING BETWEEN DIGITAL AND ANALOG 12 Converting Between Digital and Analog For many applications, it is necessary to convert analog signals from a circuit or sensor to digital signals that can be

### Generation of Square and Rectangular Waveforms Using Astable Multivibrators

Generation of Square and Rectangular Waveforms Using Astable Multivibrators A square waveform can be generated by arranging for a bistable multivibrator to switch states periodically. his can be done by

### Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip

Pulse Width Modulation (PWM) LED Dimmer Circuit Using a 555 Timer Chip Goals of Experiment Demonstrate the operation of a simple PWM circuit that can be used to adjust the intensity of a green LED by varying

### Lab 9: Op Amps Lab Assignment

3 class days 1. Differential Amplifier Source: Hands-On chapter 8 (~HH 6.1) Lab 9: Op Amps Lab Assignment Difference amplifier. The parts of the pot on either side of the slider serve as R3 and R4. The

### CHAPTER 16 OSCILLATORS

CHAPTER 16 OSCILLATORS 16-1 THE OSCILLATOR - are electronic circuits that generate an output signal without the necessity of an input signal. - It produces a periodic waveform on its output with only the

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 5 - Gain-Bandwidth Product and Slew Rate Overview: In this laboratory the student will explore

### Generating Common Waveforms Using the LM555, Operational Amplifiers, and Transistors

Generating Common Waveforms Using the LM555, Operational Amplifiers, and Transistors Kenneth Young November 16, 2012 I. Abstract The generation of precise waveforms may be needed within any circuit design.

### Transistor Amplifiers

Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

### Notes. Astable and Monostable Multivibrator Trainer NV6507. Operating Manual Ver 1.1

Notes Astable and Monostable Multivibrator Trainer Operating Manual Ver 1.1 Nvis Technologies 20 141-B, Electronic Complex, Pardeshipura, Indore- 452 010 India Tel.: 91-731- 4211500 Email: info@nvistech.com

### Bipolar Transistor Amplifiers

Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

### Chapter 7: AC Transistor Amplifiers

Chapter 7: AC Transistor Amplifiers The transistor amplifiers that we studied in the last chapter have some serious problems for use in AC signals. Their most serious shortcoming is that there is a dead

### Chapter 19 Operational Amplifiers

Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common

### Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)

6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and

### Peggy Alavi Application Engineer September 3, 2003

Op-Amp Basics Peggy Alavi Application Engineer September 3, 2003 Op-Amp Basics Part 1 Op-Amp Basics Why op-amps Op-amp block diagram Input modes of Op-Amps Loop Configurations Negative Feedback Gain Bandwidth

### A Constant-current Source

A Constant-current Source Frequently, such as when you want to measure temperature with a silicon diode, it is desirable to have a source of a reproducible, constant current. Many laboratory power supplies

### Operational Amplifiers: Part 2. Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation

Operational Amplifiers: Part 2 Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation by Tim J. Sobering Analog Design Engineer & Op Amp Addict Summary of Ideal Op Amp Assumptions

### EXPERIMENT 1.2 CHARACTERIZATION OF OP-AMP

1.17 EXPERIMENT 1.2 CHARACTERIZATION OF OPAMP 1.2.1 OBJECTIVE 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals 2. To list the amplifier stages in a typical

### LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

### Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones

### EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

### Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Lec-18: Multivibrators Course Instructor: Dr. A. P. VAJPEYI Department of Physics, Indian Institute of Technology Guwahati, India 1 Multivibrators A MULTIVIBRATOR

### MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

### The OpEL will close at 4:30PM on Thursday Nov 8. Week 9 is due next Wed (Nov 7) as usual. The make-up lab (photoflash) is due Wed Nov 14.

The OpEL will close at 4:30PM on Thursday Nov 8. Week 9 is due next Wed (Nov 7) as usual. The make-up lab (photoflash) is due Wed Nov 14. 1 As an Astable Multivibrator 2 3 An integrated chip that is used

### Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

### Class #12: Experiment The Exponential Function in Circuits, Pt 1

Class #12: Experiment The Exponential Function in Circuits, Pt 1 Purpose: The objective of this experiment is to begin to become familiar with the properties and uses of the exponential function in circuits

### Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)

Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap

### R f. V i. ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response

ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response Objective: Design a practical differentiator circuit using common OP AMP circuits. Test the frequency response

### QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 956 24-BIT DIFFERENTIAL ADC WITH I2C LTC2485 DESCRIPTION

LTC2485 DESCRIPTION Demonstration circuit 956 features the LTC2485, a 24-Bit high performance Σ analog-to-digital converter (ADC). The LTC2485 features 2ppm linearity, 0.5µV offset, and 600nV RMS noise.

### Chapter 12: The Operational Amplifier

Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used

### PH 210 Electronics Laboratory I Instruction Manual

PH 210 Electronics Laboratory I Instruction Manual Index Page No General Instructions 2 Experiment 1 Common Emitter (CE) Amplifier 4 Experiment 2 Multistage amplifier: Cascade of two CE stages 7 Experiment

### TLI4946. Datasheet TLI4946K, TLI4946-2K, TLI4946-2L. Sense and Control. May 2009

May 2009 TLI4946 High Precision Hall Effect Latches for Industrial and Consumer Applications TLI4946K, TLI4946-2K, TLI4946-2L Datasheet Rev. 1.0 Sense and Control Edition 2009-05-04 Published by Infineon

### LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

### The OP AMP -, Figure 1

The OP AMP Amplifiers, in general, taking as input, one or more electrical signals, and produce as output, one or more variations of these signals. The most common use of an amplifier is to accept a small

### Low Power VLSI Circuits and Systems Prof. Pro. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Low Power VLSI Circuits and Systems Prof. Pro. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 14 Pass Transistor Logic Circuits - I Hello

### OPERATIONAL AMPLIFIERS. o/p

OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A

### CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

### EAC215 Homework 4. Page 1 of 6

EAC215 Homework 4 Name: 1. An integrated circuit (IC) op-amp has (a) two inputs and two outputs (b) one input and one output (c) two inputs and one output 2. Which of the following characteristics does

### ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME

The national association for AMATEUR RADIO ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME This supplement is intended for use with the ARRL Morse Code Oscillator kit, sold separately.

### Chapter 6: From Digital-to-Analog and Back Again

Chapter 6: From Digital-to-Analog and Back Again Overview Often the information you want to capture in an experiment originates in the laboratory as an analog voltage or a current. Sometimes you want to

### Operational Amplifier as mono stable multi vibrator

Page 1 of 5 Operational Amplifier as mono stable multi vibrator Aim :- To construct a monostable multivibrator using operational amplifier 741 and to determine the duration of the output pulse generated

### Operational Amplifiers

Module 6 Amplifiers Operational Amplifiers The Ideal Amplifier What you ll learn in Module 6. Section 6.0. Introduction to Operational Amplifiers. Understand Concept of the Ideal Amplifier and the Need

### Jawaharlal Nehru Engineering College. Lab Manual. Analog and Digital Circuits. For. SE(Rev)(EEP) Students. Author JNEC, Aurangabad

Jawaharlal Nehru Engineering College Lab Manual Analog and Digital Circuits For SE(Rev)(EEP) Students Author JNEC, Aurangabad PREFACE It is my great pleasure to present this laboratory manual for second

### AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:

### RLC Circuits. OBJECTIVES To observe free and driven oscillations of an RLC circuit.

ircuits It doesn t matter how beautiful your theory is, it doesn t matter how smart you are. If it doesn t agree with experiment, it s wrong. ichard Feynman (1918-1988) OBJETIVES To observe free and driven

### Electronics Prof. D.C. Dube Department of Physics Indian Institute of Technology, Delhi

Electronics Prof. D.C. Dube Department of Physics Indian Institute of Technology, Delhi Module No. #06 Power Amplifiers Lecture No. #01 Power Amplifiers (Refer Slide Time: 00:44) We now move to the next

### Operational Amplifier - IC 741

Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

### LM139/LM239/LM339 A Quad of Independently Functioning Comparators

LM139/LM239/LM339 A Quad of Independently Functioning Comparators INTRODUCTION The LM139/LM239/LM339 family of devices is a monolithic quad of independently functioning comparators designed to meet the

### ENGR 210 Lab 11 Frequency Response of Passive RC Filters

ENGR 210 Lab 11 Response of Passive RC Filters The objective of this lab is to introduce you to the frequency-dependent nature of the impedance of a capacitor and the impact of that frequency dependence

### TRANSISTOR AMPLIFIERS AET 8. First Transistor developed at Bell Labs on December 16, 1947

AET 8 First Transistor developed at Bell Labs on December 16, 1947 Objective 1a Identify Bipolar Transistor Amplifier Operating Principles Overview (1) Dynamic Operation (2) Configurations (3) Common Emitter

### Frequency Response of Filters

School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

### 1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver

Electronics Exercise 2: The 555 Timer and its Applications Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles Ume,

### Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

### Designing a Poor Man s Square Wave Signal Generator. EE-100 Lab: Designing a Poor Man s Square Wave Signal Generator - Theory

EE-100 Lab: - Theory 1. Objective The purpose of this laboratory is to introduce nonlinear circuit measurement and analysis. Your measurements will focus mainly on limiters and clamping amplifiers. During

### FILTER CIRCUITS. A filter is a circuit whose transfer function, that is the ratio of its output to its input, depends upon frequency.

FILTER CIRCUITS Introduction Circuits with a response that depends upon the frequency of the input voltage are known as filters. Filter circuits can be used to perform a number of important functions in

### The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering Final Design Report Dual Channel Stereo Amplifier By: Kristen Gunia Prepared

### A Lesson on Digital Clocks, One Shots and Counters

A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters

### Operational Amplifiers

1. Introduction Operational Amplifiers The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

### 1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal.

CHAPTER 3: OSCILLOSCOPE AND SIGNAL GENERATOR 3.1 Introduction to oscilloscope 1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. 2. The graph show signal change

### Exercise 6-1. The Power MOSFET EXERCISE OBJECTIVES

Exercise 6-1 The Power MOSFET EXERCISE OBJECTIVES At the completion of this exercise, you will know the behaviour of the power MOSFET during switching operation. You will be able to explain how MOSFET

### Material and Equipment NI ELVIS 741 Op Amp, 5k pot, Assorted Resistors (10k, 100k, 220k (2), 100 (2), 560 )

Lab 8 Operational Amplifier Characteristics Purpose The purpose of this lab is to study the non-ideal characteristics of the operational amplifier. The characteristics that will be investigated include

### Final Project: Operational Amplifier

Martin Lizarde Jr. Susanna Guerrero Dung Huynh Final Project: Operational Amplifier June 9, 2005 Professor: Roger Lake TA: Angelo Ledesma Introduction: An operational amplifier is designed. Several tests

### The RC Circuit. Pre-lab questions. Introduction. The RC Circuit

The RC Circuit Pre-lab questions 1. What is the meaning of the time constant, RC? 2. Show that RC has units of time. 3. Why isn t the time constant defined to be the time it takes the capacitor to become

### Lab #4 Capacitors and Inductors. Capacitor and Inductor Transient Response

Capacitor and Inductor Transient Response Capacitor Theory Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all

### A Lesson on Digital Clocks, One Shots and Counters

A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters

### Physics 120 Lab 6: Field Effect Transistors - Ohmic region

Physics 120 Lab 6: Field Effect Transistors - Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS - V

### Absolute Maximum Ratings

RC15 Voltage-to-Frequency Converters www.fairchildsemi.com Features Single supply operation Pulse output DTL/TTL/CMOS compatible Programmable scale factor (K) High noise rejection Inherent monotonicity

### Electrical Resonance

Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

### Lab 7: Operational Amplifiers Part I

Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,

### Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz

Author: Don LaFontaine Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Abstract Making accurate voltage and current noise measurements on op amps in

### LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND

### Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational

### Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff

Supply voltage Supervisor TL77xx Series Author: Eilhard Haseloff Literature Number: SLVAE04 March 1997 i IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to

### Experiment A5. Hysteresis in Magnetic Materials

HYSTERESIS IN MAGNETIC MATERIALS A5 1 Experiment A5. Hysteresis in Magnetic Materials Objectives This experiment illustrates energy losses in a transformer by using hysteresis curves. The difference betwen

### CIRCUITS LABORATORY EXPERIMENT 9. Operational Amplifiers

CIRCUITS LABORATORY EXPERIMENT 9 Operational Amplifiers 9.1 INTRODUCTION An operational amplifier ("op amp") is a direct-coupled, differential-input, highgain voltage amplifier, usually packaged in the

### Basic Op Amp Circuits

Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

### Op Amp Bandwidth and Bandwidth Flatness. OPEN LOOP GAIN db. Figure 1: Frequency Response of Voltage Feedback Op Amps

TUTORIAL Op Amp Bandwidth and Bandwidth Flatness BANDWIDTH OF VOLTAGE FEEDBACK OP AMPS The open-loop frequency response of a voltage feedback op amp is shown in Figure 1 below. There are two possibilities:

### = V peak 2 = 0.707V peak

BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

### Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v.113 Frequency Divider Operation

### " = R # C. Create your sketch so that Q(t=τ) is sketched above the delineated tic mark. Your sketch. 1" e " t & (t) = Q max

Physics 241 Lab: Circuits DC Source http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html Name: Section 1: 1.1. Today you will investigate two similar circuits. The first circuit is

### Step Response of RC Circuits

Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3

### MM74HC4046 CMOS Phase Lock Loop

CMOS Phase Lock Loop General Description The MM74HC4046 is a low power phase lock loop utilizing advanced silicon-gate CMOS technology to obtain high frequency operation both in the phase comparator and

### EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING

Department of Electrical Drives and Power Electronics EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING Valery Vodovozov and Zoja Raud http://learnelectronics.narod.ru Tallinn 2012 2 Contents Introduction...

### AP-1 Application Note on Remote Control of UltraVolt HVPS

Basics Of UltraVolt HVPS Output Voltage Control Application Note on Remote Control of UltraVolt HVPS By varying the voltage at the Remote Adjust Input terminal (pin 6) between 0 and +5V, the UV highvoltage

### Name Date Day/Time of Lab Partner(s) Lab TA

Name Date Day/Time of Lab Partner(s) Lab TA Objectives LAB 7: AC CIRCUITS To understand the behavior of resistors, capacitors, and inductors in AC Circuits To understand the physical basis of frequency-dependent

### Op-Amps Experiment Theory

EE 4/00 Operational mplifiers Op-mps Experiment Theory. Objective The purpose of these experiments is to introduce the most important of all analog building blocks, the operational amplifier ( op-amp for

### Understanding Power Impedance Supply for Optimum Decoupling

Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,

### Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

### Constructing a precision SWR meter and antenna analyzer. Mike Brink HNF, Design Technologist.

Constructing a precision SWR meter and antenna analyzer. Mike Brink HNF, Design Technologist. Abstract. I have been asked to put together a detailed article on a SWR meter. In this article I will deal

### Digital to Analog Converter. Raghu Tumati

Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................

### Building the AMP Amplifier

Building the AMP Amplifier Introduction For about 80 years it has been possible to amplify voltage differences and to increase the associated power, first with vacuum tubes using electrons from a hot filament;

### Operational Amplifiers

perational Amplifiers. perational Amplifiers perational amplifiers (commonly known as opamps) are integrated circuits designed to amplify small voltages (or currents) to usable levels. The physical packaging

### EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose

### Step 1: Create the voltage source.

Glucose meter In this lab we will build a blood glucose meter, similar to the commercial devices that are used to monitor glucose levels in patients with diabetes. Diabetes is a serious disease which affects

### AN AUTOMATIC LINE VOLTAGE SWITCHING CIRCUIT

APPLICATION NOTE ABSTRACT AN AUTOMATIC LINE VOLTAGE SWITCHING CIRCUIT The voltages found in line sockets around the world vary widely. Power supply designers have, most often, overcome this problem by

### Theory of Operation. Figure 1 illustrates a fan motor circuit used in an automobile application. The TPIC2101. 27.4 kω AREF.

In many applications, a key design goal is to minimize variations in power delivered to a load as the supply voltage varies. This application brief describes a simple DC brush motor control circuit using