EXISTENCE AND NON-EXISTENCE OF SOLUTIONS TO ELLIPTIC EQUATIONS WITH A GENERAL CONVECTION TERM

Size: px
Start display at page:

Download "EXISTENCE AND NON-EXISTENCE OF SOLUTIONS TO ELLIPTIC EQUATIONS WITH A GENERAL CONVECTION TERM"

Transcription

1 EXISTENCE AND NON-EXISTENCE OF SOLUTIONS TO ELLIPTIC EQUATIONS WITH A GENERAL CONVECTION TERM SALOMÓN ALARCÓN, JORGE GARCÍA-MELIÁN AND ALEXANDER QUAAS Abtract. In thi paper we conider the nonlinear elliptic problem u + αu = g( u ) + λh(x) in Ω u = on Ω, where Ω i a mooth bounded domain of R N, α, g i an arbitrary C increaing function and h C (Ω) i nonnegative. We completely analyze the exitence and nonexitence of (poitive) claical olution in term of the parameter λ. We how that there exit olution for every λ when α = and the integral =, or α > and the integral g() =. Converely, when the repectively integral converge g() and h i nontrivial on Ω, exitence depen on the ize of λ. Moreover, nonexitence hol for large λ. Our proof mainly rely on comparion argument, and on the contruction of uitable uperolution in annuli. Our reult include ome cae where the function g i uperquadratic and till exitence hol without auming any mallne condition on λ.. Introduction The concern of the preent paper i the exitence and non-exitence of olution to the following nonlinear elliptic problem: u + αu = g( u ) + λh(x) in Ω (.) u = on Ω, where Ω i a bounded domain of cla C 2,η of R N for ome η (, ), α and g C (R) i increaing with g() =. The function h C (Ω), will be nonnegative, while λ will be regarded a a poitive parameter. We will focu our attention on general function g, obtaining harp condition which imply: either (a) problem (.) ha a unique olution for every λ or (b) there exit a critical ize of λ that divide exitence from nonexitence for (.) when h in Ω. Thi type of problem ha been extenively tudied. Here we give a quick review on the topic, other reference can be found in the paper quoted below. The pioneering work on the ubject eem to be due to Serrin [29], Amann and Crandall [6] and Lion [24]. The cae α > i conidered in [2] and [3], where exitence hol when g ha at mot quadratic growth, ee alo [4]. The cae α = and g(t) = t 2 wa tudied for example in [7] and [8] (ee alo [2] and [2]). For related reult ee [] and []. More recently alo related fully nonlinear equation are conidered in [3] (ee alo the cae α < in [22], where multiplicity reult are obtained).

2 2 S. ALARCÓN, J. GARCÍA-MELIÁN AND A. QUAAS We finally mention that a tarting point of our work can be found in [3]; actually we olve a problem given in that paper, ee Remark on page 29 there. More precie information on our contribution with repect to the known reult are given in the remark after our main theorem. By a olution to (.) we mean a function u C 2 (Ω) C (Ω) verifying the equation in the claical ene. Remark that, on one hand, tandard boottrapping give u C 2,η (Ω), while on the other hand olution are trictly poitive in Ω by the maximum principle, ince u + αu in Ω. An important remark with regard to problem (.) i that uniquene of olution hol by the comparion principle (cf. for intance Theorem. in [9] or the reult in [27] and [6]). Thu we only need to how exitence and nonexitence of olution. For other uniquene reult ee for example [8], [9] and []. Oberve alo that non-uniquene hol with le regularity on the olution, ee for intance [2]. Let u tate now our main reult. We begin with the cae α =. It turn out that the exitence of olution depen on the condition (.2) More preciely: g() =. Theorem. Aume g C (R) i increaing with g() =, while h C (Ω) i uch that h in Ω. If α = then: (i) If (.2) hol, there exit a unique olution to (.) for every λ >. (ii) If (.2) doe not hold and h on Ω, then there exit Λ > uch that for λ (, Λ) problem (.) ha a unique olution, while there are no olution when λ > Λ. Remark. (a) The non-exitence part in (ii) i already proved in the cae where g i convex (ee Theorem 2. in [3]). In the particular cae g(t) = t p with p > 2, ee [2] for exitence when h i a meaure and λ i mall. (b) Part (ii) of Theorem exten the cae g(t) = t 2 of the above quoted paper. We now turn to the cae α >. exitence of olution i (.3) In thi cae, the condition for the =. g() Oberve that condition (.3) i implied by (.2). We have: Theorem 2. Aume g C (R) i increaing with g() =, while h C (Ω) i uch that h in Ω. If α >, then: (i) If (.3) hol, there exit a unique olution to (.) for every λ >. (ii) If (.3) doe not hold and h in Ω, then there exit Λ > uch that for λ (, Λ) problem (.) admit a unique olution, while no olution exit when λ > Λ.

3 GENERAL CONVECTION TERM 3 Remark 2. (a) The non-exitence part in (ii) i already proved in the particular cae g(t) = t p with p > 2, ee Propoition 2.3 in [3]. (b) Part (i) in Theorem 2 applie for intance to g(t) = t 2 ln( + t), which i uperquadratic, and o exitence hol without the mallne retriction on the right hand ide. Thi mean that in the etting of claical olution, and with mooth data, mot of the previou exitence theorem are not optimal with repect to the growth condition in g, ince at mot quadratic behavior i required in the cae α >. (c) Part (i) in our two theorem anwer an open quetion tated in [3] (ee Remark in page 29 of that paper). We are indeed a little bit more precie here, ince our optimal condition are different for the cae α = and α >. When g(t) = t part (i) hol in both theorem, thi particular cae already being covered in [3] (ee Theorem 3. there). (d) The cae g(t) = O(t) ha been uually the reference cae for a general olvability reult (Part (i) in Theorem or Theorem 2); ee for example [5], and [5] (note that the ymmetrization approach reduce the problem to a radial one, which i related to our approach). The uperlinear model cae g(t) = t q, q > i deeply tudied in [2], in particular a far a neceary condition for the exitence are concerned. In [26], the cae g(t) = t q with the limit α i decribed and the maximal contant Λ i characterized in term of tochatic tate contraint ergodic problem. For the uperquadratic cae, ee alo [7], where the exitence of a generalized vicoity olution i proved when λ >, though thi olution i not claical and in particular may not attain the boundary datum. Let u mention in paing that the poitivity condition on h i only impoed in order to implify the preentation. In particular, it i relevant for the nonexitence reult only. For a function h which take both ign we till may aert the exitence of olution for every λ > in cae (i) in both theorem and for mall λ in cae (ii), although in thi lat ituation the reult are not expected to be optimal. Notice alo that when h i negative, the change of u by u in (.) amount to replacing g by g. In mot of the previou work, no ditinction i made between the two cae, but the reult are far from optimal. Here we have decided to retrict our attention to nonnegative h (hence poitive g) for definitene. On the other hand, we believe that the proof can be adapted to deal with ome more general operator than the Laplacian, for intance the p- Laplacian or even ome fully nonlinear operator which depend on the econd derivative of the olution. The baic idea to prove exitence of olution to (.) come from [24] (ee alo [25] and [23]). It conit in truncating the term g( u ) in order to obtain a problem in a claical etting, i. e. with ubquadratic growth in the gradient. Then the tandard method of ub and uperolution can be ued to get a olution to the truncated problem, and the final tep i to how that the olution to the truncated problem i indeed a olution to the original one. Thi can be achieved by obtaining appropriate etimate for the gradient u of the olution u in Ω. Thee etimate are a conequence

4 4 S. ALARCÓN, J. GARCÍA-MELIÁN AND A. QUAAS of a kind of maximum principle for u 2 + u 2, o that everything i reduced to etimating u on Ω. Thi can be done by comparing with a uitable uperolution. It i important to notice that our approach doe not rely in obtaining a uperolution ū to (.) which vanihe on the whole Ω, omething which i required to apply Theorem III. in [24]. Rather, we contruct the uperolution by analyzing problem (.) in an annulu which after a uitable tranlation i tangent to Ω at every fixed x Ω. Thi enable u to deal with a radial problem which i in ome ene integrable, o we are able to find condition which are both neceary and ufficient for exitence. The ret of the paper i organized a follow: in Section 2 we contruct uperolution to (.) in the particular cae where Ω i an annulu. Section 3 i dedicated to how nonexitence of olution to (.) when Ω i a ball. Finally, in Section 4 we deal with the proof of Theorem and Superolution for problem in annuli It will be proved in Section 4 that the exitence of a radial uperolution to problem (.) poed in an annulu when h i contant uffice to enure the exitence of a olution to (.). Thu thi ection will be dedicated to contruct a poitive radial function u verifying (2.) (r N u ) r N ( αu + g( u ) + c), R < r < R 2 u(r ) =, u(r 2 ), for uitable value of c, depending on whether α = or α > and alo on the integrability condition on g at infinity conidered in the Introduction. In what follow, R 2 > R > will be fixed. Lemma 3. Aume g C (R) i increaing with g() = and α =. Then, if (2.2) g() =, for every c > there exit a poitive radial function u verifying (2.). If (2.2) doe not hold, the exitence of uch a function alo follow provided c i mall enough. Proof. Introducing the change of variable log r N = 2 (2.3) =, N 3, N 2 rn 2 and denoting u(r) = v(), (2.) i tranformed into v r 2(N ) ( g ( ( v ) ) + c ) r N v(a) =, v(b),

5 GENERAL CONVECTION TERM 5 where a = log R, b = log R 2 when N = 2, while a = N 2 R N 2 2 N 2 R N 2, b = if N 3. Since g i increaing and poitive, it uffice to have ( ( v R 2(N ) 2 g v(a) =, v(b). R N ) ) v + c Setting w() = v( + a), thi ugget to conider the one-dimenional autonomou initial value problem ( ( ) ) w = R 2(N ) 2 g w + c (2.4) R N w() =, w () = γ >, which ha a unique olution for every γ >, and find a poitive olution in (, b a). Oberve that olution to (2.4) verify on one hand w cr 2(N ) 2, o that an integration provide w() (γ cr 2(N ) 2 /2). On the other hand, ince w i decreaing we have w ( ) = for ome >, and it follow by the ymmetry of the problem that w i ymmetric with repect to and w(2 ) =. Letting 2 be the firt zero of w and integrating the equation in (, ) we obtain ( ) N γ R R N = R 2 2 dt g(t) + c. We conclude that i an increaing function of γ which verifie ( ) N R dt (2.5) g(t) + c R 2 2 a γ +. Therefore in the cae where (2.2) hol, ince g i increaing, then the integral in (2.5) diverge. So, we can alway chooe γ large enough o that > (b a)/2, and thi provide with a poitive olution of (2.). When the integral converge, we can alo obtain > (b a)/2 if we elect c mall enough, ince the integral (2.6) dt g(t) diverge at, due to g() = and g C (R). Thi conclude the proof. Lemma 4. Aume g C (R) i increaing with g() = and α >. Then, if (2.7) =, g() for every c > there exit a poitive radial function u verifying (2.). If (2.7) doe not hold and c i mall enough, uch a function alo exit. Proof. Setting z = c/α u, we look for a function verifying (r N z ) r N (αz + g( z )) z(r ) = c α, z(r 2) c α.

6 6 S. ALARCÓN, J. GARCÍA-MELIÁN AND A. QUAAS We will look for a poitive olution z to thi inequality. With the change of variable (2.3), and letting v() = z(r), we find a before that v i a uperolution provided for intance that v R 2(N ) 2 (αv + g( R N v )) v(a) = c, v(b) =. α Setting w() = v(b ), it i thu natural to conider the initial value problem (2.8) w = R 2(N ) 2 ( αw + g ( w() =, w () = γ >, R N )) w which ha a unique olution for every γ >, and ee if we can elect γ o that w(b a) i a large a we pleae. Notice that w a long a w, o that it i not hard to ee that olution are poitive, increaing and convex for >. For every γ >, the olution i defined in an interval [, T (γ)), and when T (γ) < we have (2.9) lim w() = + or lim T (γ) T (γ) w () = +. Let u ee that when the integral condition (2.7) i atified, we alway have both condition in (2.9). Indeed, the firt one implie the econd, and if we had w(t (γ)) < +, then ( ( w R 2(N ) 2 αw(t (γ)) + g Multiplying by w and integrating we arrive at which yiel T w w αw(t (γ)) + g( γ R N R N αw(t (γ)) + g() R N w )) w ) R2(N ) 2 w(t (γ)), R2(N ) 2 R N w(t (γ)), contradicting condition (2.7). Thu w, w a T (γ). We have two cae to conider: either T (γ ) i infinite for ome γ > or T (γ) i finite for every γ >. In the firt cae, let u ee that thi implie T (γ) = for every γ >. Oberve firt that when u, v are two olution to the equation in (2.8) with u() v(), u () = γ > γ 2 = v (), then u > v in the common interval of definition, hence T (γ ) T (γ 2 ). In particular, T (γ) = for γ < γ. If γ > γ and we temporarily denote by w γ the unique olution to (2.8), there exit δ > uch that w γ (δ) > γ, ince w γ i increaing and converge to infinity. Let w(x) = w γ (x + δ). Then w i a olution to the ame equation with initial data w() = w γ (δ) >, w () = w γ (δ) > γ. It follow by the previou obervation that w > w γ, and in particular T (γ) =. Thu all olution are global in thi cae and it i eay to conclude: ince w(x) γx by convexity, we can have w(b a).

7 GENERAL CONVECTION TERM 7 a large a we pleae, o that a uperolution can be contructed with large value of c. The econd poibility i that all olution blow-up in finite time, i. e. T (γ) < for every γ >. Let u ee that in uch cae T (γ) i a continuou function of γ. Take γ n γ. By comparion we have T (γ n ) < T (γ). Moreover, we can chooe δ n uch that w γ(δ n ) > γ n. Arguing a before, w γ (x+δ n ) > w γn (x), o that T (γ) δ n < T (γ n ) and we obtain T (γ n ) T (γ). When γ n γ the proof i imilar. Next, we claim that T (γ) a γ. Indeed, aume T (γ) T when γ. Since w, we obtain w T w, o that ( ( w R 2(N ) 2 γ R N g R N w ) + αt w ) and thi lea, after an integration and a change of variable, to ( ) R 2 N g() + αt R N 2 T. R A contradiction i reached when we let γ, ince the integral then diverge. Thu lim γ T (γ) =. Let u denote T = lim γ T (γ) (which i expected to be zero). If T b a we can ue the continuity of T to obtain γ > uch that T (γ) = b a+ε for mall poitive ε. Taking ε a mall a we pleae we obtain w γ (b a) a large a we wih, and thi provide with a uperolution for large value of c. If, on the contrary, T > b a, then all olution would be defined at leat in [, b a] and ince w(b a) γ(b a), we obtain that w γ (b a) i a large a we pleae by taking large value of γ. To conclude the proof, we now conider the cae when g() < and c i mall enough. Oberve that in thi cae all olution blow up in finite time. Indeed, let T < T (γ). Since ( ) w R 2(N ) 2 g w R N we can integrate in (, T ) and let T T (γ) to arrive at: (2.) R 2(N ) 2 T (γ) R N γ g() <, ince thi lat integral alo converge. It alo follow from (2.) that T (γ) a γ (i. e. T = in the above proof). Since T (γ) i continuou with T (γ) a γ, we can chooe γ uch that T (γ) > b a and obtain a uperolution for c αw γ (T (γ)). It i worth mentioning that in the preent cae where (2.7) doe not hold we cannot guarantee that the firt equality in (2.9) hol, o that the uperolution i not valid in principle for large value of c.,

8 8 S. ALARCÓN, J. GARCÍA-MELIÁN AND A. QUAAS 3. Nonexitence of olution in ball We tackle in thi ection the quetion of nonexitence of olution to (.). We will ee in Section 4 that it uffice to how nonexitence of radial olution when Ω i a ball of R N and h i contant. Thu, under everal hypothee, we will how that the problem u N u = αu + g( u ) + c, < r < R (3.) r u () =, u(r) = doe not admit poitive olution for large value of c. Lemma 5. Aume g C (R) i increaing with g() = and α =. Then if g() <, there exit c > uch that problem (3.) doe not admit poitive olution when c c. Proof. Aume u i a olution to (3.). We firt claim that u (r) < for r (, R) and u (r) < in [, R). Oberve that u () = c/n <, o that u (r) < for r > cloe enough to zero. If we had u (r ) = for ome r (, R) with u < in (, r ), then u (r ) o that from the equation we obtain u (r ) = c <, which i impoible. Then u (r) < if < r < R. Aume now that for ome r (, R) we have u ( r ) =. Since u ( r ) in thi cae, we obtain by differentiating the equation u N u + N r r 2 u = g ( u )u o that u ( r ) <, a contradiction. Thu u (r) < for r (, R) a well. Next if we rewrite the equation a (r N u ) = r N (g( u ) + c) and integrate in (, r) we obtain, taking into account that g( u ) i increaing: r N u (r) = r N (g( u ()) + c) (g( u (r)) + c) o that plugging thi in (3.) we have r N = rn N (g( u (r)) + c), u N (g( u ) + c) in (, R). Integrating in (, R) we obtain dt g(t) + c > u (R) dt g(t) + c N R. Thi implie that c cannot be too large in order to have a poitive olution to (3.).

9 GENERAL CONVECTION TERM 9 Lemma 6. Aume g C (R) i increaing with g() = and α >. Then if (3.2) <, g() there exit c > uch that problem (3.) doe not admit poitive olution when c c. Proof. Let u be a poitive olution to (3.). We firt claim that u < c/α. Indeed, if we had u() = c/α then u c/α by uniquene, which i not poible. If u() > c/α then u () > and u initially increae. According to the boundary condition u(r) =, there hould be a point where u achieve it maximum, but thi i in contradiction with the equation. We conclude that u() < c/α and again by the equation u initially decreae and cannot reach a minimum, o u i alway decreaing. It i een much a in the previou cae that u < in [, R) alo. Thu arguing a in that proof we obtain (3.3) u N ( αu + g( u ) + c). Aume there exit a equence c n uch that a poitive olution u n to (3.) exit with c = c n (with no lo of generality we may aume that c n i increaing). Let v n = c n α u n. Then v n + N v n = αv n + g(v r n) v n() =, v n (R) = c n α, with v n >, v n >. We claim that v n () i bounded a n. Indeed, ince from (3.3) we have we can integrate to arrive at v n N (αv n + g(v n)) N (αv n() + g(v n)), N R v n (R) αv n () + g() < αv n () + g(). Therefore if v n () we arrive at a contradiction. Since olution are increaing in c (thank to uniquene), we can guarantee that v n () v for ome v >. It alo follow that v n z, the unique olution to z + N z = αz + g(z ) r z() = v, z () =, which i defined in a maximal interval [, T ). When T <, we have lim r T z(r) = or lim r T z (r) =. By comparion we alo have v n z in [, mint, R}). Let u ee that T < R. Indeed, if T R, we would have v n (R) = c nα z(r), and then T = R, z(r) = follow. Thi i impoible, ince

10 S. ALARCÓN, J. GARCÍA-MELIÁN AND A. QUAAS z N g(z ), and multiplication by z and another integration between R 2 and R ε for ome mall poitive ε yiel N (z(r ε) z(r 2 )) z (R ε) z (R/2) g() < z (R/2) g(). Letting ε we obtain a contradiction with (3.2). Thu T < R. Now chooe a mall ε >. Since v n z uniformly in [, T ε], we have v n(t ε) z (T ε) ε if n i large enough. Therefore (R T + ε) N v (R) v n(t ε) g() < z (T ε) ε g(). Letting ε, we arrive at T R, a contradiction which how that no olution to (3.) may exit if c i large enough. 4. Proof of the theorem Thi final ection will be dedicated to the proof of Theorem and 2. The idea of the proof of exitence come from [24], and it conit in truncating the function g in order to obtain a olution, and then etimating the gradient of thi olution in Ω. The eential point i to obtain a uitable uperolution. Since Ω verifie the uniform exterior phere condition, there exit R > uch that for every x Ω there exit y R N \Ω with B R (y ) Ω = x }. Chooe R 2 > R large enough o that Ω A := B R2 (y ) \ B R (y ) for every x Ω. Conider the radial problem (r N u ) = r N ( αu + g( u ) + c), R < r < R 2 (4.) u(r ) =, u(r 2 ), where c >. The firt important exitence reult i the following: Lemma 7. Aume g C (R) i increaing with g() = and h C (Ω) i nonnegative. If there exit a poitive uperolution ū to problem (4.), then for every λ (, c/ h ], problem (.) admit a poitive olution. With regard to nonexitence reult, the reference ituation i a radial problem in a ball. Oberve that, ince Ω verifie a uniform interior ball condition and h, h on Ω, we can find x Ω, y Ω and R > uch that B R (y ) Ω, B R (y ) Ω = x } and h h > in B R (y ). Conider the problem (r N u ) = r N ( αu + g( u ) + c), < r < R (4.2) u () =, u(r) =, where c >. Then: Lemma 8. Aume g C (R) i increaing with g() = and h C (Ω) i nonnegative with h h > in B R (y ). If problem (4.2) doe not admit a poitive olution for ome c >, then problem (.) doe not have olution for λ c/h. A we have quoted in the introduction, the method we follow for proving exitence (and indeed alo nonexitence) relie in obtaining good etimate for the gradient of the olution. Thi lat part i achieved by mean of a

11 GENERAL CONVECTION TERM kind of maximum principle for the gradient of olution to (.). The proof i inpired in the claical method of Berntein (ee for intance [29] or [24]). Lemma 9. Let u C 2 (Ω) C (Ω) be a olution to (.). Aume g C (R) i increaing with g() = and h C (Ω). Then there exit a contant C which depen on up Ω u, up Ω u, up Ω h and λ uch that u C in Ω. Proof. Let u be a olution to (.), and define w = u 2 +u 2. For implicity, let u denote g( ξ ) = g( ξ 2 ). By tandard regularity, it follow that u C 3 (Ω ρ ), where Ω ρ = x Ω : u 2 > ρ} for ome < ρ < u, and hence w C 2 (Ω ρ ) C(Ω ρ ). Then, it i not hard to check that in Ω ρ one ha w = 2 N D2 u 2 2 g ( u 2 ) u (w u 2 ) 2λ h u+2u u+(2+2α) u 2. On the other hand, ( N 2 ( u) 2 = ii u) N i= N ( ii u) 2 N D 2 u 2, and ince g i nondecreaing and u, o that 2 g ( u 2 ) u (u 2 ), we have w 2 N ( u)2 2 g ( u 2 ) u w 2λ h u + 2u u + (2 + 2α) u 2 in Ω ρ. An application of Cauchy-Schwarz inequality lea to w N ( u)2 2 g ( u 2 ) u w λ 2 h 2 Nu 2 + u 2 in Ω ρ. Fix M > up u 2 + 2N u 2 + λ 2 h, Ω and aume that the open et Ω = x Ω : w > M} i nonempty. It clearly follow that Ω Ω ρ ince i= u 2 u 2 > ρ in Ω. Hence Lw in Ω, where Lw := w 2g ( u ) u w, and the trong maximum principle implie w < up Ω w = M in Ω, a contradiction. Hence w M in Ω. Now we come to the proof of Lemma 7 and 8. Proof of Lemma 7. Fix for the moment x Ω and denote v(x) = ū( x y ). Take K > and let g K C (R) be a bounded increaing function verifying g K (t) = g(t) if t K. Let u conider the truncated problem u + αu = gk ( u ) + λh(x) in Ω (4.3) u = on Ω. When K > up ū, the function v i a uperolution to (4.3) and ince v = a ubolution, it follow that there exit a olution u to (4.3) (by uing the reult in [6] or [28]), which verifie u v.

12 2 S. ALARCÓN, J. GARCÍA-MELIÁN AND A. QUAAS By the maximum principle we have u > in Ω and u ν Moreover, ince v(x ) =, < on Ω. u ν (x ) v ν (x ) = ū (R ). Let u ee that the ame inequality hol for every x Ω. Indeed, if we take uch a x and A i the correponding annulu, then ince u + αu g K ( u ) + λ h in Ω, the function ū( x y ) i a uperolution to the problem (4.3), conidered in A. By comparion we obtain u(x) ū( x y ) in Ω. Thu u ν (x ) ū (R ). Hence ū (R ) u ν on Ω. We are in a poition to apply Lemma 9 to obtain a contant M >, which doe not depend on K, uch that u < M in Ω. Taking K > M, we have g K ( u ) = g( u ) in Ω and u i a olution to our original problem. Thi conclude the proof. Proof of Lemma 8. Aume problem (.) ha a poitive olution u for ome λ c/h. Then u i a uperolution to the problem v + αv = g( v ) + λh in B R (y ) v = on B R (y ). A imilar procedure a in Lemma 7 yiel the exitence of a olution to thi problem, which i unique, hence radial. Thi i in contradiction with the hypothei. It i important to remark that thi procedure work ince the uperolution vanihe at x B R (y ) Ω, which allow u to etimate v on B R (y ) in term of u(x ). Finally, we proceed to prove our main theorem. We notice that, once we have analyzed eparately the cae α = and α > in Section 2 and 3, the ret of the proof i exactly the ame in both cae. Proof of Theorem and 2. (i) By Lemma 3 and 4, there exit a uperolution to (4.) for every c >. The exitence of a poitive olution to (.) for every λ > follow thank to Lemma 7. (ii) Again by lemma 3, 4 and 7, there exit a olution for mall value of λ. On the other hand, uing Lemma 8 in conjunction with Lemma 5 and 6 we alo have that no olution to (.) exit for large value of λ. Hence, we can define Λ = upλ > : there exit a olution to (.)} and Λ i finite and poitive. By it very definition, there are no olution to (.) for λ > Λ. Now, chooe an arbitrary λ (, Λ). Then there exit µ (λ, Λ) uch that (.) with λ ubtituted by µ admit a poitive olution v. Since thi olution i a uperolution to (.), the exitence of a poitive olution follow a in Lemma 7.

13 GENERAL CONVECTION TERM 3 Acknowledgement. S. A. wa partially upported by USM Grant No. 22, J. G-M wa upported by Miniterio de Ciencia e Innovación and FEDER under grant MTM (Spain) and A. Q. wa partially upported by Fondecyt Grant No. 2 and CAPDE, Anillo ACT-25. All three author were partially upported by Programa Baal CMM, U. de Chile. Reference [] H. Abdel Hamid, M. F. Bidaut-Veron, Correlation between two quailinear elliptic problem with a ource term involving the function or it gradient, C. R. Acad. Sci. Pari Ser. I Math. 346 (28), [2] B. Abdellaoui, A. Dall Aglio, I. Peral, Some remark on elliptic problem with critical growth in the gradient, J. Diff. Equation 222, (26), [3] N. Alaa, M. Pierre, Weak olution of ome quailinear elliptic equation with data meaure, SIAM J. Math. Anal. 24 (993), [4] S. Alarcón, J. García-Melián, A. Quaa, Keller-Oerman type condition for ome elliptic problem with gradient term, to appear in J. Diff. Eqn. [5] A. Alvino, G. Trombetti, P.-L. Lion, Comparion reult for elliptic and parabolic equation via Schwarz ymmetrization, Ann. Int. H. Poincaré Anal. Non Linaire 7 (99), [6] H. Amann, M. G. Crandall, On ome exitence theorem for emi-linear elliptic equation, Indiana Univ. Math. J. 27 (978), [7] G. Barle, A hort proof of the C,α -regularity of vicoity ubolution for uperquadratic vicou Hamilton-Jacobi equation and application, Nonlinear Anal. 73 (2), [8] G. Barle, A. P. Blanc, C. Georgelin, M. Kobylanki, Remark on the maximum principle for nonlinear elliptic PDE with quadratic growth condition, Ann. Scuola Norm. Sup. Pia 28 (999), [9] G. Barle, F. Murat, Uniquene and the maximum principle for quailinear elliptic equation with quadratic growth condition, Arch. Rational. Mech Anal. 33 (995), 77. [] G. Barle, A. Porretta, Uniquene for unbounded olution to tationary vicou Hamilton-Jacobi equation, Ann. Sc. Norm. Super. Pia Cl. Sci. 5 (26), [] L. Boccardo, T. Gallouët, F. Murat, A unified preentation of two exitence reult for problem with natural growth, in Progre in partial differential equation: the Metz urvey, 2 (992), 27 37, Pitman Re. Note Math. Ser. 296, Longman Sci. Tech., Harlow, 993. [2] L. Boccardo, F. Murat, J. P. Puel, Reultat d exitence pour certain probleme elliptique quailineaire, Ann. Scuola Norm. Sup. Pia, (984), [3] L. Boccardo, F. Murat, J. P. Puel, L etimate for ome nonlinear elliptic partial differential equation and application to an exitence reult, SIAM J. Math. Anal. 23 (2) (992), [4] A. Dall Aglio, D. Giachetti, J. P. Puel, Nonlinear elliptic equation with natural growth in general domain, Ann. Mat. Pura Appl. 8 (22), [5] T. Del Vecchio, M.M. Porzio, Exitence reult for a cla of non-coercive Dirichlet problem, Ricerche Mat. 44 (995), [6] P. Felmer, A. Quaa, On the trong maximum principle for quailinear elliptic equation and ytem, Adv. Differential Equation 7 (22), no., [7] V. Ferone, F. Murat, Quailinear problem having quadratic growth in the gradient: an exitence reult when the ource term i mall, Equation aux derivee partielle et application, Gauthier-Villar, Ed. Sci. Med. Elevier, Pari (998), [8] V. Ferone, F. Murat, Nonlinear problem having quadratic growth in the gradient: an exitence reult when the ource term i mall, Non. Anal. TMA 42 (2),

14 4 S. ALARCÓN, J. GARCÍA-MELIÁN AND A. QUAAS [9] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equation of econd order, Springer Verlag, 983. [2] N. Grenon, F. Murat, A. Porretta, Exitence and a priori etimate for elliptic problem with ubquadratic gradient dependent term, C. R. Math. Acad. Sci. Pari 342 (), (26), [2] K. Hanon, V. Mazja, I.E. Verbitky, Criteria of olvability for multidimenional Riccati equation, Ark. Mat. 37 (999), [22] L. Jeanjean, B. Sirakov, Multiple olution for an elliptic problem with quadratic growth in the gradient, preprint. [23] J. M. Lary, P. L. Lion, Nonlinear elliptic equation with ingular boundary condition and tochatic control with tate contraint. I. The model problem, Math. Ann. 283 (989), [24] P. L. Lion, Réolution de problème elliptique quailinéaire, Arch. Rat. Mech. Anal. 74 (98), [25] P. L. Lion, Quelque remarque ur le probleme elliptique quailineaire du econd ordre, J. Anal. Math. 45 (985), [26] A. Porretta, The ergodic limit for a vicou Hamilton-Jacobi equation with Dirichlet condition, Rend. Lincei (9) Mat. Appl. 2 (2), [27] P. Pucci, J. Serrin, H. Zou, A trong maximum principle and a compact upport principle for ingular elliptic equation, J. Math. Pure Appl. 78 (999), [28] J. Schoenenberger-Deuel, P. He, A criterion for the exitence of olution of non-linear elliptic boundary value problem, Proc. Roy. Soc. Edinburgh Sect. A 74 (974/75), (976). [29] J. Serrin, The problem of Dirichlet for quailinear elliptic differential equation with many independent variable, Philo. Tran. R. Soc. London A 264 (969), [3] B. Sirakov, Solvability of uniformly elliptic fully nonlinear PDE, Arch. Rat. Mech. Anal. 95 (2), S. Alarcón and A. Quaa Departamento de Matemática, Univeridad Técnica Federico Santa María Cailla V-, Avda. Epaña, 68 Valparaío, CHILE. addre: J. García-Melián Departamento de Análii Matemático, Univeridad de La Laguna. C/. Atrofíico Francico Sánchez /n, 3827 La Laguna, SPAIN and Intituto Univeritario de Etudio Avanzado (IUdEA) en Fíica Atómica, Molecular y Fotónica, Facultad de Fíica, Univeridad de La Laguna C/. Atrofíico Francico Sánchez /n, 3823 La Laguna, SPAIN addre:

Unit 11 Using Linear Regression to Describe Relationships

Unit 11 Using Linear Regression to Describe Relationships Unit 11 Uing Linear Regreion to Decribe Relationhip Objective: To obtain and interpret the lope and intercept of the leat quare line for predicting a quantitative repone variable from a quantitative explanatory

More information

Queueing systems with scheduled arrivals, i.e., appointment systems, are typical for frontal service systems,

Queueing systems with scheduled arrivals, i.e., appointment systems, are typical for frontal service systems, MANAGEMENT SCIENCE Vol. 54, No. 3, March 28, pp. 565 572 in 25-199 ein 1526-551 8 543 565 inform doi 1.1287/mnc.17.82 28 INFORMS Scheduling Arrival to Queue: A Single-Server Model with No-Show INFORMS

More information

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t Chapter 2 Motion in One Dimenion 2.1 The Important Stuff 2.1.1 Poition, Time and Diplacement We begin our tudy of motion by conidering object which are very mall in comparion to the ize of their movement

More information

A note on profit maximization and monotonicity for inbound call centers

A note on profit maximization and monotonicity for inbound call centers A note on profit maximization and monotonicity for inbound call center Ger Koole & Aue Pot Department of Mathematic, Vrije Univeriteit Amterdam, The Netherland 23rd December 2005 Abtract We conider an

More information

Partial optimal labeling search for a NP-hard subclass of (max,+) problems

Partial optimal labeling search for a NP-hard subclass of (max,+) problems Partial optimal labeling earch for a NP-hard ubcla of (max,+) problem Ivan Kovtun International Reearch and Training Center of Information Technologie and Sytem, Kiev, Uraine, ovtun@image.iev.ua Dreden

More information

Assessing the Discriminatory Power of Credit Scores

Assessing the Discriminatory Power of Credit Scores Aeing the Dicriminatory Power of Credit Score Holger Kraft 1, Gerald Kroiandt 1, Marlene Müller 1,2 1 Fraunhofer Intitut für Techno- und Wirtchaftmathematik (ITWM) Gottlieb-Daimler-Str. 49, 67663 Kaierlautern,

More information

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of Rou-Huai Wang 1. Introduction In this note we consider semistable

More information

Project Management Basics

Project Management Basics Project Management Baic A Guide to undertanding the baic component of effective project management and the key to ucce 1 Content 1.0 Who hould read thi Guide... 3 1.1 Overview... 3 1.2 Project Management

More information

A Note on Profit Maximization and Monotonicity for Inbound Call Centers

A Note on Profit Maximization and Monotonicity for Inbound Call Centers OPERATIONS RESEARCH Vol. 59, No. 5, September October 2011, pp. 1304 1308 in 0030-364X ein 1526-5463 11 5905 1304 http://dx.doi.org/10.1287/opre.1110.0990 2011 INFORMS TECHNICAL NOTE INFORMS hold copyright

More information

Optical Illusion. Sara Bolouki, Roger Grosse, Honglak Lee, Andrew Ng

Optical Illusion. Sara Bolouki, Roger Grosse, Honglak Lee, Andrew Ng Optical Illuion Sara Bolouki, Roger Groe, Honglak Lee, Andrew Ng. Introduction The goal of thi proect i to explain ome of the illuory phenomena uing pare coding and whitening model. Intead of the pare

More information

Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL

Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL Excerpt from the Proceeding of the COMSO Conference 0 India Two Dimenional FEM Simulation of Ultraonic Wave Propagation in Iotropic Solid Media uing COMSO Bikah Ghoe *, Krihnan Balaubramaniam *, C V Krihnamurthy

More information

TIME SERIES ANALYSIS AND TRENDS BY USING SPSS PROGRAMME

TIME SERIES ANALYSIS AND TRENDS BY USING SPSS PROGRAMME TIME SERIES ANALYSIS AND TRENDS BY USING SPSS PROGRAMME RADMILA KOCURKOVÁ Sileian Univerity in Opava School of Buine Adminitration in Karviná Department of Mathematical Method in Economic Czech Republic

More information

Mixed Method of Model Reduction for Uncertain Systems

Mixed Method of Model Reduction for Uncertain Systems SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol 4 No June Mixed Method of Model Reduction for Uncertain Sytem N Selvaganean Abtract: A mixed method for reducing a higher order uncertain ytem to a table reduced

More information

A technical guide to 2014 key stage 2 to key stage 4 value added measures

A technical guide to 2014 key stage 2 to key stage 4 value added measures A technical guide to 2014 key tage 2 to key tage 4 value added meaure CONTENTS Introduction: PAGE NO. What i value added? 2 Change to value added methodology in 2014 4 Interpretation: Interpreting chool

More information

Senior Thesis. Horse Play. Optimal Wagers and the Kelly Criterion. Author: Courtney Kempton. Supervisor: Professor Jim Morrow

Senior Thesis. Horse Play. Optimal Wagers and the Kelly Criterion. Author: Courtney Kempton. Supervisor: Professor Jim Morrow Senior Thei Hore Play Optimal Wager and the Kelly Criterion Author: Courtney Kempton Supervior: Profeor Jim Morrow June 7, 20 Introduction The fundamental problem in gambling i to find betting opportunitie

More information

Redesigning Ratings: Assessing the Discriminatory Power of Credit Scores under Censoring

Redesigning Ratings: Assessing the Discriminatory Power of Credit Scores under Censoring Redeigning Rating: Aeing the Dicriminatory Power of Credit Score under Cenoring Holger Kraft, Gerald Kroiandt, Marlene Müller Fraunhofer Intitut für Techno- und Wirtchaftmathematik (ITWM) Thi verion: June

More information

MECH 2110 - Statics & Dynamics

MECH 2110 - Statics & Dynamics Chapter D Problem 3 Solution 1/7/8 1:8 PM MECH 11 - Static & Dynamic Chapter D Problem 3 Solution Page 7, Engineering Mechanic - Dynamic, 4th Edition, Meriam and Kraige Given: Particle moving along a traight

More information

Queueing Models for Multiclass Call Centers with Real-Time Anticipated Delays

Queueing Models for Multiclass Call Centers with Real-Time Anticipated Delays Queueing Model for Multicla Call Center with Real-Time Anticipated Delay Oualid Jouini Yve Dallery Zeynep Akşin Ecole Centrale Pari Koç Univerity Laboratoire Génie Indutriel College of Adminitrative Science

More information

Online story scheduling in web advertising

Online story scheduling in web advertising Online tory cheduling in web advertiing Anirban Dagupta Arpita Ghoh Hamid Nazerzadeh Prabhakar Raghavan Abtract We tudy an online job cheduling problem motivated by toryboarding in web advertiing, where

More information

DMA Departamento de Matemática e Aplicações Universidade do Minho

DMA Departamento de Matemática e Aplicações Universidade do Minho Univeridade do Minho DMA Departamento de Matemática e Aplicaçõe Univeridade do Minho Campu de Gualtar 47-57 Braga Portugal www.math.uminho.pt Univeridade do Minho Ecola de Ciência Departamento de Matemática

More information

Linear energy-preserving integrators for Poisson systems

Linear energy-preserving integrators for Poisson systems BIT manucript No. (will be inerted by the editor Linear energy-preerving integrator for Poion ytem David Cohen Ernt Hairer Received: date / Accepted: date Abtract For Hamiltonian ytem with non-canonical

More information

MSc Financial Economics: International Finance. Bubbles in the Foreign Exchange Market. Anne Sibert. Revised Spring 2013. Contents

MSc Financial Economics: International Finance. Bubbles in the Foreign Exchange Market. Anne Sibert. Revised Spring 2013. Contents MSc Financial Economic: International Finance Bubble in the Foreign Exchange Market Anne Sibert Revied Spring 203 Content Introduction................................................. 2 The Mone Market.............................................

More information

Chapter 10 Stocks and Their Valuation ANSWERS TO END-OF-CHAPTER QUESTIONS

Chapter 10 Stocks and Their Valuation ANSWERS TO END-OF-CHAPTER QUESTIONS Chapter Stoc and Their Valuation ANSWERS TO EN-OF-CHAPTER QUESTIONS - a. A proxy i a document giving one peron the authority to act for another, typically the power to vote hare of common toc. If earning

More information

Bidding for Representative Allocations for Display Advertising

Bidding for Representative Allocations for Display Advertising Bidding for Repreentative Allocation for Diplay Advertiing Arpita Ghoh, Preton McAfee, Kihore Papineni, and Sergei Vailvitkii Yahoo! Reearch. {arpita, mcafee, kpapi, ergei}@yahoo-inc.com Abtract. Diplay

More information

Socially Optimal Pricing of Cloud Computing Resources

Socially Optimal Pricing of Cloud Computing Resources Socially Optimal Pricing of Cloud Computing Reource Ihai Menache Microoft Reearch New England Cambridge, MA 02142 t-imena@microoft.com Auman Ozdaglar Laboratory for Information and Deciion Sytem Maachuett

More information

Control of Wireless Networks with Flow Level Dynamics under Constant Time Scheduling

Control of Wireless Networks with Flow Level Dynamics under Constant Time Scheduling Control of Wirele Network with Flow Level Dynamic under Contant Time Scheduling Long Le and Ravi R. Mazumdar Department of Electrical and Computer Engineering Univerity of Waterloo,Waterloo, ON, Canada

More information

HUMAN CAPITAL AND THE FUTURE OF TRANSITION ECONOMIES * Michael Spagat Royal Holloway, University of London, CEPR and Davidson Institute.

HUMAN CAPITAL AND THE FUTURE OF TRANSITION ECONOMIES * Michael Spagat Royal Holloway, University of London, CEPR and Davidson Institute. HUMAN CAPITAL AND THE FUTURE OF TRANSITION ECONOMIES * By Michael Spagat Royal Holloway, Univerity of London, CEPR and Davidon Intitute Abtract Tranition economie have an initial condition of high human

More information

1) Assume that the sample is an SRS. The problem state that the subjects were randomly selected.

1) Assume that the sample is an SRS. The problem state that the subjects were randomly selected. 12.1 Homework for t Hypothei Tet 1) Below are the etimate of the daily intake of calcium in milligram for 38 randomly elected women between the age of 18 and 24 year who agreed to participate in a tudy

More information

Name: SID: Instructions

Name: SID: Instructions CS168 Fall 2014 Homework 1 Aigned: Wedneday, 10 September 2014 Due: Monday, 22 September 2014 Name: SID: Dicuion Section (Day/Time): Intruction - Submit thi homework uing Pandagrader/GradeScope(http://www.gradecope.com/

More information

Math 22B, Homework #8 1. y 5y + 6y = 2e t

Math 22B, Homework #8 1. y 5y + 6y = 2e t Math 22B, Homework #8 3.7 Problem # We find a particular olution of the ODE y 5y + 6y 2e t uing the method of variation of parameter and then verify the olution uing the method of undetermined coefficient.

More information

A Resolution Approach to a Hierarchical Multiobjective Routing Model for MPLS Networks

A Resolution Approach to a Hierarchical Multiobjective Routing Model for MPLS Networks A Reolution Approach to a Hierarchical Multiobjective Routing Model for MPLS Networ Joé Craveirinha a,c, Rita Girão-Silva a,c, João Clímaco b,c, Lúcia Martin a,c a b c DEEC-FCTUC FEUC INESC-Coimbra International

More information

Profitability of Loyalty Programs in the Presence of Uncertainty in Customers Valuations

Profitability of Loyalty Programs in the Presence of Uncertainty in Customers Valuations Proceeding of the 0 Indutrial Engineering Reearch Conference T. Doolen and E. Van Aken, ed. Profitability of Loyalty Program in the Preence of Uncertainty in Cutomer Valuation Amir Gandomi and Saeed Zolfaghari

More information

Linear Momentum and Collisions

Linear Momentum and Collisions Chapter 7 Linear Momentum and Colliion 7.1 The Important Stuff 7.1.1 Linear Momentum The linear momentum of a particle with ma m moving with velocity v i defined a p = mv (7.1) Linear momentum i a vector.

More information

SCM- integration: organiational, managerial and technological iue M. Caridi 1 and A. Sianei 2 Dipartimento di Economia e Produzione, Politecnico di Milano, Italy E-mail: maria.caridi@polimi.it Itituto

More information

Health Insurance and Social Welfare. Run Liang. China Center for Economic Research, Peking University, Beijing 100871, China,

Health Insurance and Social Welfare. Run Liang. China Center for Economic Research, Peking University, Beijing 100871, China, Health Inurance and Social Welfare Run Liang China Center for Economic Reearch, Peking Univerity, Beijing 100871, China, Email: rliang@ccer.edu.cn and Hao Wang China Center for Economic Reearch, Peking

More information

Solutions to Sample Problems for Test 3

Solutions to Sample Problems for Test 3 22 Differential Equation Intructor: Petronela Radu November 8 25 Solution to Sample Problem for Tet 3 For each of the linear ytem below find an interval in which the general olution i defined (a) x = x

More information

NETWORK TRAFFIC ENGINEERING WITH VARIED LEVELS OF PROTECTION IN THE NEXT GENERATION INTERNET

NETWORK TRAFFIC ENGINEERING WITH VARIED LEVELS OF PROTECTION IN THE NEXT GENERATION INTERNET Chapter 1 NETWORK TRAFFIC ENGINEERING WITH VARIED LEVELS OF PROTECTION IN THE NEXT GENERATION INTERNET S. Srivatava Univerity of Miouri Kana City, USA hekhar@conrel.ice.umkc.edu S. R. Thirumalaetty now

More information

CASE STUDY BRIDGE. www.future-processing.com

CASE STUDY BRIDGE. www.future-processing.com CASE STUDY BRIDGE TABLE OF CONTENTS #1 ABOUT THE CLIENT 3 #2 ABOUT THE PROJECT 4 #3 OUR ROLE 5 #4 RESULT OF OUR COLLABORATION 6-7 #5 THE BUSINESS PROBLEM THAT WE SOLVED 8 #6 CHALLENGES 9 #7 VISUAL IDENTIFICATION

More information

Scheduling of Jobs and Maintenance Activities on Parallel Machines

Scheduling of Jobs and Maintenance Activities on Parallel Machines Scheduling of Job and Maintenance Activitie on Parallel Machine Chung-Yee Lee* Department of Indutrial Engineering Texa A&M Univerity College Station, TX 77843-3131 cylee@ac.tamu.edu Zhi-Long Chen** Department

More information

Support Vector Machine Based Electricity Price Forecasting For Electricity Markets utilising Projected Assessment of System Adequacy Data.

Support Vector Machine Based Electricity Price Forecasting For Electricity Markets utilising Projected Assessment of System Adequacy Data. The Sixth International Power Engineering Conference (IPEC23, 27-29 November 23, Singapore Support Vector Machine Baed Electricity Price Forecating For Electricity Maret utiliing Projected Aement of Sytem

More information

Real Business Cycles. Jesus Fernandez-Villaverde University of Pennsylvania

Real Business Cycles. Jesus Fernandez-Villaverde University of Pennsylvania Real Buine Cycle Jeu Fernandez-Villaverde Univerity of Pennylvania 1 Buine Cycle U.S. economy uctuate over time. How can we build model to think about it? Do we need dierent model than before to do o?

More information

Group Mutual Exclusion Based on Priorities

Group Mutual Exclusion Based on Priorities Group Mutual Excluion Baed on Prioritie Karina M. Cenci Laboratorio de Invetigación en Sitema Ditribuido Univeridad Nacional del Sur Bahía Blanca, Argentina kmc@c.un.edu.ar and Jorge R. Ardenghi Laboratorio

More information

TRADING rules are widely used in financial market as

TRADING rules are widely used in financial market as Complex Stock Trading Strategy Baed on Particle Swarm Optimization Fei Wang, Philip L.H. Yu and David W. Cheung Abtract Trading rule have been utilized in the tock market to make profit for more than a

More information

CASE STUDY ALLOCATE SOFTWARE

CASE STUDY ALLOCATE SOFTWARE CASE STUDY ALLOCATE SOFTWARE allocate caetud y TABLE OF CONTENTS #1 ABOUT THE CLIENT #2 OUR ROLE #3 EFFECTS OF OUR COOPERATION #4 BUSINESS PROBLEM THAT WE SOLVED #5 CHALLENGES #6 WORKING IN SCRUM #7 WHAT

More information

Risk Management for a Global Supply Chain Planning under Uncertainty: Models and Algorithms

Risk Management for a Global Supply Chain Planning under Uncertainty: Models and Algorithms Rik Management for a Global Supply Chain Planning under Uncertainty: Model and Algorithm Fengqi You 1, John M. Waick 2, Ignacio E. Gromann 1* 1 Dept. of Chemical Engineering, Carnegie Mellon Univerity,

More information

January 21, 2015. Abstract

January 21, 2015. Abstract T S U I I E P : T R M -C S J. R January 21, 2015 Abtract Thi paper evaluate the trategic behavior of a monopolit to influence environmental policy, either with taxe or with tandard, comparing two alternative

More information

Efficient Pricing and Insurance Coverage in Pharmaceutical Industry when the Ability to Pay Matters

Efficient Pricing and Insurance Coverage in Pharmaceutical Industry when the Ability to Pay Matters ömmföäfläafaäflaflafla fffffffffffffffffffffffffffffffffff Dicuion Paper Efficient Pricing and Inurance Coverage in Pharmaceutical Indutry when the Ability to Pay Matter Vea Kanniainen Univerity of Helinki,

More information

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS. G. Chapman J. Cleese E. Idle

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS. G. Chapman J. Cleese E. Idle DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS G. Chapman J. Cleee E. Idle ABSTRACT Content matching i a neceary component of any ignature-baed network Intruion Detection

More information

Growth and Sustainability of Managed Security Services Networks: An Economic Perspective

Growth and Sustainability of Managed Security Services Networks: An Economic Perspective Growth and Sutainability of Managed Security Service etwork: An Economic Perpective Alok Gupta Dmitry Zhdanov Department of Information and Deciion Science Univerity of Minneota Minneapoli, M 55455 (agupta,

More information

Solution of the Heat Equation for transient conduction by LaPlace Transform

Solution of the Heat Equation for transient conduction by LaPlace Transform Solution of the Heat Equation for tranient conduction by LaPlace Tranform Thi notebook ha been written in Mathematica by Mark J. McCready Profeor and Chair of Chemical Engineering Univerity of Notre Dame

More information

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí Opuscula Math. 34 no. 4 2014 683 690 http://dx.doi.org/10.7494/opmath.2014.34.4.683 Opuscula Mathematica CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian Pasquale

More information

2. METHOD DATA COLLECTION

2. METHOD DATA COLLECTION Key to learning in pecific ubject area of engineering education an example from electrical engineering Anna-Karin Cartenen,, and Jonte Bernhard, School of Engineering, Jönköping Univerity, S- Jönköping,

More information

Introduction to the article Degrees of Freedom.

Introduction to the article Degrees of Freedom. Introduction to the article Degree of Freedom. The article by Walker, H. W. Degree of Freedom. Journal of Educational Pychology. 3(4) (940) 53-69, wa trancribed from the original by Chri Olen, George Wahington

More information

Research Article An (s, S) Production Inventory Controlled Self-Service Queuing System

Research Article An (s, S) Production Inventory Controlled Self-Service Queuing System Probability and Statitic Volume 5, Article ID 558, 8 page http://dxdoiorg/55/5/558 Reearch Article An (, S) Production Inventory Controlled Self-Service Queuing Sytem Anoop N Nair and M J Jacob Department

More information

Towards Control-Relevant Forecasting in Supply Chain Management

Towards Control-Relevant Forecasting in Supply Chain Management 25 American Control Conference June 8-1, 25. Portland, OR, USA WeA7.1 Toward Control-Relevant Forecating in Supply Chain Management Jay D. Schwartz, Daniel E. Rivera 1, and Karl G. Kempf Control Sytem

More information

Report 4668-1b 30.10.2010. Measurement report. Sylomer - field test

Report 4668-1b 30.10.2010. Measurement report. Sylomer - field test Report 4668-1b Meaurement report Sylomer - field tet Report 4668-1b 2(16) Contet 1 Introduction... 3 1.1 Cutomer... 3 1.2 The ite and purpoe of the meaurement... 3 2 Meaurement... 6 2.1 Attenuation of

More information

LECTURE 2. TURÁN S THEOREM : BIPARTITE GRAPHS

LECTURE 2. TURÁN S THEOREM : BIPARTITE GRAPHS LECTURE 2. TURÁN S THEOREM : BIPARTITE GRAPHS. Complete bipartite graph.. Kövari-Só-Turán theorem. When H i a bipartite graph, i.e., when χ(h) = 2, Erdő and Stone theorem aert that π H = 0. In other word,

More information

FEDERATION OF ARAB SCIENTIFIC RESEARCH COUNCILS

FEDERATION OF ARAB SCIENTIFIC RESEARCH COUNCILS Aignment Report RP/98-983/5/0./03 Etablihment of cientific and technological information ervice for economic and ocial development FOR INTERNAL UE NOT FOR GENERAL DITRIBUTION FEDERATION OF ARAB CIENTIFIC

More information

Turbulent Mixing and Chemical Reaction in Stirred Tanks

Turbulent Mixing and Chemical Reaction in Stirred Tanks Turbulent Mixing and Chemical Reaction in Stirred Tank André Bakker Julian B. Faano Blend time and chemical product ditribution in turbulent agitated veel can be predicted with the aid of Computational

More information

On the absolute continuity of one-dimensional SDE s driven by a fractional Brownian motion

On the absolute continuity of one-dimensional SDE s driven by a fractional Brownian motion On the abolute continuity of one-dimenional SDE driven by a fractional Brownian motion Ivan Nourdin Univerité Henri Poincaré, Intitut de Mathématique Élie Cartan, B.P. 239 5456 Vandœuvre-lè-Nancy Cédex,

More information

Managing Customer Arrivals in Service Systems with Multiple Servers

Managing Customer Arrivals in Service Systems with Multiple Servers Managing Cutomer Arrival in Service Sytem with Multiple Server Chrito Zacharia Department of Management Science, School of Buine Adminitration, Univerity of Miami, Coral Gable, FL 3346. czacharia@bu.miami.edu

More information

Review of Multiple Regression Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015

Review of Multiple Regression Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015 Review of Multiple Regreion Richard William, Univerity of Notre Dame, http://www3.nd.edu/~rwilliam/ Lat revied January 13, 015 Aumption about prior nowledge. Thi handout attempt to ummarize and yntheize

More information

HOMOTOPY PERTURBATION METHOD FOR SOLVING A MODEL FOR HIV INFECTION OF CD4 + T CELLS

HOMOTOPY PERTURBATION METHOD FOR SOLVING A MODEL FOR HIV INFECTION OF CD4 + T CELLS İtanbul icaret Üniveritei Fen Bilimleri Dergii Yıl: 6 Sayı: Güz 7/. 9-5 HOMOOPY PERURBAION MEHOD FOR SOLVING A MODEL FOR HIV INFECION OF CD4 + CELLS Mehmet MERDAN ABSRAC In thi article, homotopy perturbation

More information

Finite Automata. a) Reading a symbol, b) Transferring to a new instruction, and c) Advancing the tape head one square to the right.

Finite Automata. a) Reading a symbol, b) Transferring to a new instruction, and c) Advancing the tape head one square to the right. Finite Automata Let u begin by removing almot all of the Turing machine' power! Maybe then we hall have olvable deciion problem and till be able to accomplih ome computational tak. Alo, we might be able

More information

Chapter 10 Velocity, Acceleration, and Calculus

Chapter 10 Velocity, Acceleration, and Calculus Chapter 10 Velocity, Acceleration, and Calculu The firt derivative of poition i velocity, and the econd derivative i acceleration. Thee derivative can be viewed in four way: phyically, numerically, ymbolically,

More information

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu

More information

Is Mark-to-Market Accounting Destabilizing? Analysis and Implications for Policy

Is Mark-to-Market Accounting Destabilizing? Analysis and Implications for Policy Firt draft: 4/12/2008 I Mark-to-Market Accounting Detabilizing? Analyi and Implication for Policy John Heaton 1, Deborah Luca 2 Robert McDonald 3 Prepared for the Carnegie Rocheter Conference on Public

More information

Performance of a Browser-Based JavaScript Bandwidth Test

Performance of a Browser-Based JavaScript Bandwidth Test Performance of a Brower-Baed JavaScript Bandwidth Tet David A. Cohen II May 7, 2013 CP SC 491/H495 Abtract An exiting brower-baed bandwidth tet written in JavaScript wa modified for the purpoe of further

More information

The Nonlinear Pendulum

The Nonlinear Pendulum The Nonlinear Pendulum D.G. Simpon, Ph.D. Department of Phyical Science and Enineerin Prince Geore ommunity ollee December 31, 1 1 The Simple Plane Pendulum A imple plane pendulum conit, ideally, of a

More information

Growth and Sustainability of Managed Security Services Networks: An Economic Perspective

Growth and Sustainability of Managed Security Services Networks: An Economic Perspective Growth and Sutainability of Managed Security Service etwork: An Economic Perpective Alok Gupta Dmitry Zhdanov Department of Information and Deciion Science Univerity of Minneota Minneapoli, M 55455 (agupta,

More information

Progress 8 and Attainment 8 measure in 2016, 2017, and 2018. Guide for maintained secondary schools, academies and free schools

Progress 8 and Attainment 8 measure in 2016, 2017, and 2018. Guide for maintained secondary schools, academies and free schools Progre 8 and Attainment 8 meaure in 2016, 2017, and 2018 Guide for maintained econdary chool, academie and free chool September 2016 Content Table of figure 4 Summary 5 A ummary of Attainment 8 and Progre

More information

Solvability of Fractional Dirichlet Problems with Supercritical Gradient Terms.

Solvability of Fractional Dirichlet Problems with Supercritical Gradient Terms. Solvability of Fractional Dirichlet Problems with Supercritical Gradient Terms. Erwin Topp P. Universidad de Santiago de Chile Conference HJ2016, Rennes, France May 31th, 2016 joint work with Gonzalo Dávila

More information

Stochastic House Appreciation and Optimal Mortgage Lending

Stochastic House Appreciation and Optimal Mortgage Lending Stochatic Houe Appreciation and Optimal Mortgage Lending Tomaz Pikorki Columbia Buine School tp2252@columbia.edu Alexei Tchityi UC Berkeley Haa tchityi@haa.berkeley.edu December 28 Abtract We characterize

More information

BUILT-IN DUAL FREQUENCY ANTENNA WITH AN EMBEDDED CAMERA AND A VERTICAL GROUND PLANE

BUILT-IN DUAL FREQUENCY ANTENNA WITH AN EMBEDDED CAMERA AND A VERTICAL GROUND PLANE Progre In Electromagnetic Reearch Letter, Vol. 3, 51, 08 BUILT-IN DUAL FREQUENCY ANTENNA WITH AN EMBEDDED CAMERA AND A VERTICAL GROUND PLANE S. H. Zainud-Deen Faculty of Electronic Engineering Menoufia

More information

1 - Introduction to hypergraphs

1 - Introduction to hypergraphs 1 - Introduction to hypergraph Jacque Vertraëte jacque@ucd.edu 1 Introduction In thi coure you will learn broad combinatorial method for addreing ome of the main problem in extremal combinatoric and then

More information

Stochastic House Appreciation and Optimal Subprime Lending

Stochastic House Appreciation and Optimal Subprime Lending Stochatic Houe Appreciation and Optimal Subprime Lending Tomaz Pikorki Columbia Buine School tp5@mail.gb.columbia.edu Alexei Tchityi NYU Stern atchity@tern.nyu.edu February 8 Abtract Thi paper tudie an

More information

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS Chritopher V. Kopek Department of Computer Science Wake Foret Univerity Winton-Salem, NC, 2709 Email: kopekcv@gmail.com

More information

INFORMATION Technology (IT) infrastructure management

INFORMATION Technology (IT) infrastructure management IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 1, MAY 214 1 Buine-Driven Long-term Capacity Planning for SaaS Application David Candeia, Ricardo Araújo Santo and Raquel Lope Abtract Capacity Planning

More information

Unobserved Heterogeneity and Risk in Wage Variance: Does Schooling Provide Earnings Insurance?

Unobserved Heterogeneity and Risk in Wage Variance: Does Schooling Provide Earnings Insurance? TI 011-045/3 Tinbergen Intitute Dicuion Paper Unoberved Heterogeneity and Rik in Wage Variance: Doe Schooling Provide Earning Inurance? Jacopo Mazza Han van Ophem Joop Hartog * Univerity of Amterdam; *

More information

Design of Compound Hyperchaotic System with Application in Secure Data Transmission Systems

Design of Compound Hyperchaotic System with Application in Secure Data Transmission Systems Deign of Compound Hyperchaotic Sytem with Application in Secure Data Tranmiion Sytem D. Chantov Key Word. Lyapunov exponent; hyperchaotic ytem; chaotic ynchronization; chaotic witching. Abtract. In thi

More information

How Enterprises Can Build Integrated Digital Marketing Experiences Using Drupal

How Enterprises Can Build Integrated Digital Marketing Experiences Using Drupal How Enterprie Can Build Integrated Digital Marketing Experience Uing Drupal acquia.com 888.922.7842 1.781.238.8600 25 Corporate Drive, Burlington, MA 01803 How Enterprie Can Build Integrated Digital Marketing

More information

Unusual Option Market Activity and the Terrorist Attacks of September 11, 2001*

Unusual Option Market Activity and the Terrorist Attacks of September 11, 2001* Allen M. Potehman Univerity of Illinoi at Urbana-Champaign Unuual Option Market Activity and the Terrorit Attack of September 11, 2001* I. Introduction In the aftermath of the terrorit attack on the World

More information

Progress 8 measure in 2016, 2017, and 2018. Guide for maintained secondary schools, academies and free schools

Progress 8 measure in 2016, 2017, and 2018. Guide for maintained secondary schools, academies and free schools Progre 8 meaure in 2016, 2017, and 2018 Guide for maintained econdary chool, academie and free chool July 2016 Content Table of figure 4 Summary 5 A ummary of Attainment 8 and Progre 8 5 Expiry or review

More information

Simulation of Sensorless Speed Control of Induction Motor Using APFO Technique

Simulation of Sensorless Speed Control of Induction Motor Using APFO Technique International Journal of Computer and Electrical Engineering, Vol. 4, No. 4, Augut 2012 Simulation of Senorle Speed Control of Induction Motor Uing APFO Technique T. Raghu, J. Sriniva Rao, and S. Chandra

More information

A Duality Model of TCP and Queue Management Algorithms

A Duality Model of TCP and Queue Management Algorithms A Duality Model of TCP and Queue Management Algorithm Steven H. Low CS and EE Department California Intitute of Technology Paadena, CA 95 low@caltech.edu May 4, Abtract We propoe a duality model of end-to-end

More information

DUE to the small size and low cost of a sensor node, a

DUE to the small size and low cost of a sensor node, a 1992 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015 A Networ Coding Baed Energy Efficient Data Bacup in Survivability-Heterogeneou Senor Networ Jie Tian, Tan Yan, and Guiling Wang

More information

Transient turbulent flow in a pipe

Transient turbulent flow in a pipe Tranient turbulent flow in a pipe M. S. Ghidaoui A. A. Kolyhkin Rémi Vaillancourt CRM-3176 January 25 Thi work wa upported in part by the Latvian Council of Science, project 4.1239, the Natural Science

More information

CHARACTERISTICS OF WAITING LINE MODELS THE INDICATORS OF THE CUSTOMER FLOW MANAGEMENT SYSTEMS EFFICIENCY

CHARACTERISTICS OF WAITING LINE MODELS THE INDICATORS OF THE CUSTOMER FLOW MANAGEMENT SYSTEMS EFFICIENCY Annale Univeritati Apuleni Serie Oeconomica, 2(2), 200 CHARACTERISTICS OF WAITING LINE MODELS THE INDICATORS OF THE CUSTOMER FLOW MANAGEMENT SYSTEMS EFFICIENCY Sidonia Otilia Cernea Mihaela Jaradat 2 Mohammad

More information

Research in Economics

Research in Economics Reearch in Economic 64 (2010) 137 145 Content lit available at ScienceDirect Reearch in Economic journal homepage: www.elevier.com/locate/rie Health inurance: Medical treatment v diability payment Geir

More information

Some remarks on Phragmén-Lindelöf theorems for weak solutions of the stationary Schrödinger operator

Some remarks on Phragmén-Lindelöf theorems for weak solutions of the stationary Schrödinger operator Wan Boundary Value Problems (2015) 2015:239 DOI 10.1186/s13661-015-0508-0 R E S E A R C H Open Access Some remarks on Phragmén-Lindelöf theorems for weak solutions of the stationary Schrödinger operator

More information

Bi-Objective Optimization for the Clinical Trial Supply Chain Management

Bi-Objective Optimization for the Clinical Trial Supply Chain Management Ian David Lockhart Bogle and Michael Fairweather (Editor), Proceeding of the 22nd European Sympoium on Computer Aided Proce Engineering, 17-20 June 2012, London. 2012 Elevier B.V. All right reerved. Bi-Objective

More information

When Are Variety Gains from Trade Important? Comparative Advantage and the Cost of Protectionism *

When Are Variety Gains from Trade Important? Comparative Advantage and the Cost of Protectionism * When Are Variety Gain from Trade Important? Comparative Advantage and the Cot of Protectionim * Abtract: Adina Ardelean ** Santa Clara Univerity, Beacon Economic Volodymyr Lugovkyy *** Georgia Intitute

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science aachuett Intitute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric achinery Cla Note 10: Induction achine Control and Simulation c 2003 Jame L. Kirtley Jr. 1 Introduction

More information

Resource allocation, productivity and growth in Portugal 1

Resource allocation, productivity and growth in Portugal 1 Article 61 Reource allocation, productivity and growth in Portugal 1 Daniel A. Dia 2 Carlo Robalo Marque 3 Chritine Richmond 4 Abtract Allocative efficiency in the Portuguee economy trongly deteriorated

More information

Existence de solutions à support compact pour un problème elliptique quasilinéaire

Existence de solutions à support compact pour un problème elliptique quasilinéaire Existence de solutions à support compact pour un problème elliptique quasilinéaire Jacques Giacomoni, Habib Mâagli, Paul Sauvy Université de Pau et des Pays de l Adour, L.M.A.P. Faculté de sciences de

More information

A Life Contingency Approach for Physical Assets: Create Volatility to Create Value

A Life Contingency Approach for Physical Assets: Create Volatility to Create Value A Life Contingency Approach for Phyical Aet: Create Volatility to Create Value homa Emil Wendling 2011 Enterprie Rik Management Sympoium Society of Actuarie March 14-16, 2011 Copyright 2011 by the Society

More information

A New Optimum Jitter Protection for Conversational VoIP

A New Optimum Jitter Protection for Conversational VoIP Proc. Int. Conf. Wirele Commun., Signal Proceing (Nanjing, China), 5 pp., Nov. 2009 A New Optimum Jitter Protection for Converational VoIP Qipeng Gong, Peter Kabal Electrical & Computer Engineering, McGill

More information

Global Imbalances or Bad Accounting? The Missing Dark Matter in the Wealth of Nations. Ricardo Hausmann and Federico Sturzenegger

Global Imbalances or Bad Accounting? The Missing Dark Matter in the Wealth of Nations. Ricardo Hausmann and Federico Sturzenegger Global Imbalance or Bad Accounting? The Miing Dark Matter in the Wealth of Nation Ricardo Haumann and Federico Sturzenegger CID Working Paper No. 124 January 2006 Copyright 2006 Ricardo Haumann, Federico

More information

INTERACTIVE TOOL FOR ANALYSIS OF TIME-DELAY SYSTEMS WITH DEAD-TIME COMPENSATORS

INTERACTIVE TOOL FOR ANALYSIS OF TIME-DELAY SYSTEMS WITH DEAD-TIME COMPENSATORS INTERACTIVE TOOL FOR ANALYSIS OF TIMEDELAY SYSTEMS WITH DEADTIME COMPENSATORS Joé Lui Guzmán, Pedro García, Tore Hägglund, Sebatián Dormido, Pedro Alberto, Manuel Berenguel Dep. de Lenguaje y Computación,

More information

Stochasticity in Transcriptional Regulation: Origins, Consequences, and Mathematical Representations

Stochasticity in Transcriptional Regulation: Origins, Consequences, and Mathematical Representations 36 Biophyical Journal Volume 8 December 200 36 336 Stochaticity in Trancriptional Regulation: Origin, Conequence, and Mathematical Repreentation Thoma B. Kepler* and Timothy C. Elton *Santa Fe Intitute,

More information