Math Chapter Seven Sample Exam


 Monica Baker
 2 years ago
 Views:
Transcription
1 Math Chapter Seven Sample Exam 1. The cereal boxes coming off an assembly line are each supposed to contain 12 ounces. It is reasonable to assume that the amount of cereal per box has an approximate normal distribution. A random sample of 16 boxes yields a mean of ounces and a standard deviation of 0.22 ounces. (d) Use the given data to find a 95% confidence interval for the mean amount of cereal per box. Based on the results in part, should we conclude that the assembly line equipment needs to be adjusted, and if so, how? What is the smallest sample size that could be used to estimate the mean amount of cereal per box with a 95% confidence interval so that the maximum error of the estimate is 0.03 ounces? Find a 95% confidence interval for the standard deviation of the amount of cereal per box on the assembly line.
2 2. Data is taken to compare the proportion of complaints at two airline terminals. In a random sample of 500 customers at the Transburg terminal, 51 have complaints. In a random sample of 400 customers at the Central City terminal, 48 have complaints. Use the given data to find a 90% confidence interval for the difference in proportion of complaints for the two terminals. Based on the results in part, should we conclude that the proportion of complaints is higher at one terminal than the other, and if so, which terminal has the higher proportion of complaints? 3. Suppose X 1, X 2,..., X n is a random sample from a distribution having p.d.f. f(x) = ( 1) / x if x > 1, where 1 <. Find the maximum likelihood estimator for (and don't forget to use the second derivative test to show that the likelihood function is maximized). Find the method of moments estimator for.
3 4. Data on rainfall is taken to compare a new cloud seeding technique and a standard cloud seeding technique. We are willing to assume that rainfall has an approximate normal distribution with the same variance for each technique. The mean and standard deviation for a random sample of 8 cloud seedings with the new technique are respectively 3.9 inches and 0.91 inches. The mean and standard deviation for a random sample of 12 cloud seedings with the standard technique are respectively 2.1 inches and 0.75 inches. Use the given data to find a 95% confidence interval for the difference in mean rainfall for the two cloud seeding techniques. Based on the results in part, should we conclude that one technique is better than the other, and if so, which one is better? Find a 95% confidence interval for the ratio of the variances of rainfall from the two techniques.
4 5. In a random sample of 1000 voters, 650 say that they will vote for Ms. Jones if she is a candidate in an upcoming election. Use the given data to find a 99% confidence interval for the true proportion of voters who will vote for Ms. Jones. Based on the results in part, should Ms. Jones conclude she will win the election? What is the smallest sample size that could be used to estimate the true proportion of voters who will vote for Ms. Jones with a 99% confidence interval so that the maximum error of the estimate is 0.01?
5 6. Suppose X 1, X 2,..., X n is a random sample from a distribution having p.d.f. f(x) = e x/(2 ) / (2 ) if x > 0. Prove that for each i, the moment generating function M(t) of X i / is the same as the moment generating function for a chisquare random variable (if t < 1/2), and state what the degrees of freedom is. Given the result in part, explain why it must be true that if Y = X 1 + X X n, then Y / has a chisquare distribution, and state what the degrees of freedom is. Suppose n = 6, and the following sample values are observed: , 3.399, , , 3.726, Use the result in part to derive a 95% confidence interval (based on Y) for the unknown parameter. (d) What must be done to shorten the length of the 95% confidence interval in part without lowering the confidence level?
6 7. Suppose X is a random variable having p.m.f. f(x) = if x = 1, 0, 1. Show that E(X) = 0. Find E(X 2 ), and state why X 2 is not an unbiased estimator of. Write a function of the statistic X 2 which is an unbiased estimator of. 8. Suppose X 1, X 2,..., X n is a random sample from a Poisson( ) distribution. Show that each of X ) and S 2 is an unbiased estimator of. Explain how you would decide which of the two estimators in part is better. (Note: you do not have to do anything except just explain.)
7 Here are some additional practice exercises from the textbook (with answers in the back of the textbook): 7.11, 7.15, 7.17, 7.19, , , 7.27, 7.39, , 7.41, , 7.57, , 7.61, , 7.75, , 7.93
Need for Sampling. Very large populations Destructive testing Continuous production process
Chapter 4 Sampling and Estimation Need for Sampling Very large populations Destructive testing Continuous production process The objective of sampling is to draw a valid inference about a population. 4
More informationUnit 26 Estimation with Confidence Intervals
Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference
More informationChapter 6: Point Estimation. Fall 2011.  Probability & Statistics
STAT355 Chapter 6: Point Estimation Fall 2011 Chapter Fall 2011 6: Point1 Estimat / 18 Chap 6  Point Estimation 1 6.1 Some general Concepts of Point Estimation Point Estimate Unbiasedness Principle of
More informationExact Confidence Intervals
Math 541: Statistical Theory II Instructor: Songfeng Zheng Exact Confidence Intervals Confidence intervals provide an alternative to using an estimator ˆθ when we wish to estimate an unknown parameter
More informationSampling Distribution of a Sample Proportion
Sampling Distribution of a Sample Proportion From earlier material remember that if X is the count of successes in a sample of n trials of a binomial random variable then the proportion of success is given
More informationMaximum Likelihood Estimation
Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for
More informationProbability and Statistics Lecture 9: 1 and 2Sample Estimation
Probability and Statistics Lecture 9: 1 and Sample Estimation to accompany Probability and Statistics for Engineers and Scientists Fatih Cavdur Introduction A statistic θ is said to be an unbiased estimator
More informationSampling and Hypothesis Testing
Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus
More informationStats Review Chapters 910
Stats Review Chapters 910 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test
More informationHypoTesting. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: Date: HypoTesting Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A Type II error is committed if we make: a. a correct decision when the
More informationChapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Geometric Distribution Negative Binomial Distribution Hypergeometric Distribution Sections 37, 38 The remaining discrete random
More informationMath 425 (Fall 08) Solutions Midterm 2 November 6, 2008
Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the
More informationBA 275 Review Problems  Week 6 (10/30/0611/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394398, 404408, 410420
BA 275 Review Problems  Week 6 (10/30/0611/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394398, 404408, 410420 1. Which of the following will increase the value of the power in a statistical test
More informationJoint Exam 1/P Sample Exam 1
Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question
More informationLecture 8. Confidence intervals and the central limit theorem
Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of
More informationMATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...
MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 20092016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................
More information( ) = P Z > = P( Z > 1) = 1 Φ(1) = 1 0.8413 = 0.1587 P X > 17
4.6 I company that manufactures and bottles of apple juice uses a machine that automatically fills 6 ounce bottles. There is some variation, however, in the amounts of liquid dispensed into the bottles
More informationHypothesis testing for µ:
University of California, Los Angeles Department of Statistics Statistics 13 Elements of a hypothesis test: Hypothesis testing Instructor: Nicolas Christou 1. Null hypothesis, H 0 (always =). 2. Alternative
More informationName: Math 29 Probability. Practice Second Midterm Exam 1. 1. Show all work. You may receive partial credit for partially completed problems.
Name: Math 29 Probability Practice Second Midterm Exam 1 Instructions: 1. Show all work. You may receive partial credit for partially completed problems. 2. You may use calculators and a onesided sheet
More informationCHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.
Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,
More informationImportant Probability Distributions OPRE 6301
Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in reallife applications that they have been given their own names.
More informationSufficient Statistics and Exponential Family. 1 Statistics and Sufficient Statistics. Math 541: Statistical Theory II. Lecturer: Songfeng Zheng
Math 541: Statistical Theory II Lecturer: Songfeng Zheng Sufficient Statistics and Exponential Family 1 Statistics and Sufficient Statistics Suppose we have a random sample X 1,, X n taken from a distribution
More informationSTAT 3502. x 0 < x < 1
Solution  Assignment # STAT 350 Total mark=100 1. A large industrial firm purchases several new word processors at the end of each year, the exact number depending on the frequency of repairs in the previous
More informationMeasuring the Power of a Test
Textbook Reference: Chapter 9.5 Measuring the Power of a Test An economic problem motivates the statement of a null and alternative hypothesis. For a numeric data set, a decision rule can lead to the rejection
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) ±1.88 B) ±1.645 C) ±1.96 D) ±2.
Ch. 6 Confidence Intervals 6.1 Confidence Intervals for the Mean (Large Samples) 1 Find a Critical Value 1) Find the critical value zc that corresponds to a 94% confidence level. A) ±1.88 B) ±1.645 C)
More informationMaster s Theory Exam Spring 2006
Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem
More informationPractice problems for Homework 11  Point Estimation
Practice problems for Homework 11  Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:
More informationChapter Additional: Standard Deviation and Chi Square
Chapter Additional: Standard Deviation and Chi Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret
More informationMath 251, Review Questions for Test 3 Rough Answers
Math 251, Review Questions for Test 3 Rough Answers 1. (Review of some terminology from Section 7.1) In a state with 459,341 voters, a poll of 2300 voters finds that 45 percent support the Republican candidate,
More information93.4 Likelihood ratio test. NeymanPearson lemma
93.4 Likelihood ratio test NeymanPearson lemma 91 Hypothesis Testing 91.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental
More informationHypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test...
Hypothesis Testing COMP 45 STATISTICS Dr N A Heard Contents 1 Hypothesis Testing 1.1 Introduction........................................ 1. Error Rates and Power of a Test.............................
More information7 Hypothesis testing  one sample tests
7 Hypothesis testing  one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X
More informationChapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 35, 36 Special discrete random variable distributions we will cover
More informationHow to Conduct a Hypothesis Test
How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some
More informationStatistical Inference
Statistical Inference Idea: Estimate parameters of the population distribution using data. How: Use the sampling distribution of sample statistics and methods based on what would happen if we used this
More informationWestern New England University Polling Institute
WESTERN NEW ENGLAND UNIVERSITY Western New England University Polling Institute Massachusetts Statewide Telephone Survey September 2028, 2014 Dr. Tim Vercellotti For Immediate Release TABLES Next, please
More informationExample: Find the expected value of the random variable X. X 2 4 6 7 P(X) 0.3 0.2 0.1 0.4
MATH 110 Test Three Outline of Test Material EXPECTED VALUE (8.5) Super easy ones (when the PDF is already given to you as a table and all you need to do is multiply down the columns and add across) Example:
More informationMath 108 Exam 3 Solutions Spring 00
Math 108 Exam 3 Solutions Spring 00 1. An ecologist studying acid rain takes measurements of the ph in 12 randomly selected Adirondack lakes. The results are as follows: 3.0 6.5 5.0 4.2 5.5 4.7 3.4 6.8
More informationBA 275 Review Problems  Week 5 (10/23/0610/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380394
BA 275 Review Problems  Week 5 (10/23/0610/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete
More informationThe Normal distribution
The Normal distribution The normal probability distribution is the most common model for relative frequencies of a quantitative variable. Bellshaped and described by the function f(y) = 1 2σ π e{ 1 2σ
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Open book and note Calculator OK Multiple Choice 1 point each MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the mean for the given sample data.
More informationWhen σ Is Known: Recall the Mystery Mean Activity where x bar = 240.79 and we have an SRS of size 16
8.3 ESTIMATING A POPULATION MEAN When σ Is Known: Recall the Mystery Mean Activity where x bar = 240.79 and we have an SRS of size 16 Task was to estimate the mean when we know that the situation is Normal
More informationAnswers: a. 87.5325 to 92.4675 b. 87.06 to 92.94
1. The average monthly electric bill of a random sample of 256 residents of a city is $90 with a standard deviation of $24. a. Construct a 90% confidence interval for the mean monthly electric bills of
More informationTests of Hypotheses Using Statistics
Tests of Hypotheses Using Statistics Adam Massey and Steven J. Miller Mathematics Department Brown University Providence, RI 0292 Abstract We present the various methods of hypothesis testing that one
More informationSTATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS
STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS 1. If two events (both with probability greater than 0) are mutually exclusive, then: A. They also must be independent. B. They also could
More informationMath 140 (4,5,6) Sample Exam II Fall 2011
Math 140 (4,5,6) Sample Exam II Fall 2011 Provide an appropriate response. 1) In a sample of 10 randomly selected employees, it was found that their mean height was 63.4 inches. From previous studies,
More informationPoint and Interval Estimates
Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number
More informationNormal distribution. ) 2 /2σ. 2π σ
Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a
More informationIntroduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.
Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.
More informationStat 704 Data Analysis I Probability Review
1 / 30 Stat 704 Data Analysis I Probability Review Timothy Hanson Department of Statistics, University of South Carolina Course information 2 / 30 Logistics: Tuesday/Thursday 11:40am to 12:55pm in LeConte
More informationChapter 7  Practice Problems 1
Chapter 7  Practice Problems 1 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) Define a point estimate. What is the
More informationExperimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test
Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely
More informationUniversity of Chicago Graduate School of Business. Business 41000: Business Statistics Solution Key
Name: OUTLINE SOLUTIONS University of Chicago Graduate School of Business Business 41000: Business Statistics Solution Key Special Notes: 1. This is a closedbook exam. You may use an 8 11 piece of paper
More informationReview #2. Statistics
Review #2 Statistics Find the mean of the given probability distribution. 1) x P(x) 0 0.19 1 0.37 2 0.16 3 0.26 4 0.02 A) 1.64 B) 1.45 C) 1.55 D) 1.74 2) The number of golf balls ordered by customers of
More informationCalculate and interpret confidence intervals for one population average and one population proportion.
Chapter 8 Confidence Intervals 8.1 Confidence Intervals 1 8.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Calculate and interpret confidence intervals for one
More informationWeek 4: Standard Error and Confidence Intervals
Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.
More informationMath 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 5 Solutions
Math 370/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 5 Solutions About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the
More informationMAS2317/3317. Introduction to Bayesian Statistics. More revision material
MAS2317/3317 Introduction to Bayesian Statistics More revision material Dr. Lee Fawcett, 2014 2015 1 Section A style questions 1. Describe briefly the frequency, classical and Bayesian interpretations
More informationPopulation Mean (Known Variance)
Confidence Intervals Solutions STATUB.0103 Statistics for Business Control and Regression Models Population Mean (Known Variance) 1. A random sample of n measurements was selected from a population with
More informationLecture 3 : Hypothesis testing and modelfitting
Lecture 3 : Hypothesis testing and modelfitting These dark lectures energy puzzle Lecture 1 : basic descriptive statistics Lecture 2 : searching for correlations Lecture 3 : hypothesis testing and modelfitting
More informationPower and Sample Size Determination
Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 Power 1 / 31 Experimental Design To this point in the semester,
More informationp ˆ (sample mean and sample
Chapter 6: Confidence Intervals and Hypothesis Testing When analyzing data, we can t just accept the sample mean or sample proportion as the official mean or proportion. When we estimate the statistics
More informationPROBABILITY AND STATISTICS. Ma 527. 1. To teach a knowledge of combinatorial reasoning.
PROBABILITY AND STATISTICS Ma 527 Course Description Prefaced by a study of the foundations of probability and statistics, this course is an extension of the elements of probability and statistics introduced
More informationStats on the TI 83 and TI 84 Calculator
Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and
More informationStatistics 641  EXAM II  1999 through 2003
Statistics 641  EXAM II  1999 through 2003 December 1, 1999 I. (40 points ) Place the letter of the best answer in the blank to the left of each question. (1) In testing H 0 : µ 5 vs H 1 : µ > 5, the
More informationMind on Statistics. Chapter 8
Mind on Statistics Chapter 8 Sections 8.18.2 Questions 1 to 4: For each situation, decide if the random variable described is a discrete random variable or a continuous random variable. 1. Random variable
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More informationMath 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions
Math 70, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the
More informationCurriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 20092010
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 20092010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different
More informationMargin of Error When Estimating a Population Proportion
Margin of Error When Estimating a Population Proportion Student Outcomes Students use data from a random sample to estimate a population proportion. Students calculate and interpret margin of error in
More informationSTATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4
STATISTICS 8, FINAL EXAM NAME: KEY Seat Number: Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 Make sure you have 8 pages. You will be provided with a table as well, as a separate
More informationSpecifications for this HLM2 run
One way ANOVA model 1. How much do U.S. high schools vary in their mean mathematics achievement? 2. What is the reliability of each school s sample mean as an estimate of its true population mean? 3. Do
More informationCHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING
CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING MULTIPLE CHOICE 56. In testing the hypotheses H 0 : µ = 50 vs. H 1 : µ 50, the following information is known: n = 64, = 53.5, and σ = 10. The standardized
More informationName: Date: Use the following to answer questions 34:
Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin
More informationNotes on Continuous Random Variables
Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes
More informationJoint Probability Distributions and Random Samples. Week 5, 2011 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage
5 Joint Probability Distributions and Random Samples Week 5, 2011 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Two Discrete Random Variables The probability mass function (pmf) of a single
More informationChapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
More informationTImath.com. F Distributions. Statistics
F Distributions ID: 9780 Time required 30 minutes Activity Overview In this activity, students study the characteristics of the F distribution and discuss why the distribution is not symmetric (skewed
More information1) What is the probability that the random variable has a value greater than 2? A) 0.750 B) 0.625 C) 0.875 D) 0.700
Practice for Chapter 6 & 7 Math 227 This is merely an aid to help you study. The actual exam is not multiple choice nor is it limited to these types of questions. Using the following uniform density curve,
More informationConfidence Intervals for One Standard Deviation Using Standard Deviation
Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from
More informationName: Date: D) 3141 3168
Name: Date: 1. A sample of 25 different payroll departments found that the employees worked an average of 310.3 days a year with a standard deviation of 23.8 days. What is the 90% confidence interval for
More information12.5: CHISQUARE GOODNESS OF FIT TESTS
125: ChiSquare Goodness of Fit Tests CD121 125: CHISQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability
More informationExam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR.
Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. 1. Urn A contains 6 white marbles and 4 red marbles. Urn B contains 3 red marbles and two white
More informationBasic Statistics Self Assessment Test
Basic Statistics Self Assessment Test Professor Douglas H. Jones PAGE 1 A sodadispensing machine fills 12ounce cans of soda using a normal distribution with a mean of 12.1 ounces and a standard deviation
More informationConstructing and Interpreting Confidence Intervals
Constructing and Interpreting Confidence Intervals Confidence Intervals In this power point, you will learn: Why confidence intervals are important in evaluation research How to interpret a confidence
More informationLecture 10: Depicting Sampling Distributions of a Sample Proportion
Lecture 10: Depicting Sampling Distributions of a Sample Proportion Chapter 5: Probability and Sampling Distributions 2/10/12 Lecture 10 1 Sample Proportion 1 is assigned to population members having a
More informationSolutions to Worksheet on Hypothesis Tests
s to Worksheet on Hypothesis Tests. A production line produces rulers that are supposed to be inches long. A sample of 49 of the rulers had a mean of. and a standard deviation of.5 inches. The quality
More informationPrinciple of Data Reduction
Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then
More informationMATH 2300 review problems for Exam 3 ANSWERS
MATH 300 review problems for Exam 3 ANSWERS. Check whether the following series converge or diverge. In each case, justify your answer by either computing the sum or by by showing which convergence test
More information**BEGINNING OF EXAMINATION** The annual number of claims for an insured has probability function: , 0 < q < 1.
**BEGINNING OF EXAMINATION** 1. You are given: (i) The annual number of claims for an insured has probability function: 3 p x q q x x ( ) = ( 1 ) 3 x, x = 0,1,, 3 (ii) The prior density is π ( q) = q,
More informationAP: LAB 8: THE CHISQUARE TEST. Probability, Random Chance, and Genetics
Ms. Foglia Date AP: LAB 8: THE CHISQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
More informationDefinition: Suppose that two random variables, either continuous or discrete, X and Y have joint density
HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,
More informationMultivariate Normal Distribution
Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #47/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues
More informationThe Math. P (x) = 5! = 1 2 3 4 5 = 120.
The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct
More informationStudy Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
More informationRecall this chart that showed how most of our course would be organized:
Chapter 4 OneWay ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
More informationMath 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 3 Solutions
Math 37/48, Spring 28 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 3 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,
More informationSimple Regression Theory II 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the
More informationNotes for STA 437/1005 Methods for Multivariate Data
Notes for STA 437/1005 Methods for Multivariate Data Radford M. Neal, 26 November 2010 Random Vectors Notation: Let X be a random vector with p elements, so that X = [X 1,..., X p ], where denotes transpose.
More informationMath 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions
Math 70/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 2 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,
More information