Rechargeable Li-S Battery with Specific Energy 350 Wh/kg and Specific Power 3000 W/kg. Y. Mikhaylik*, I. Kovalev, J. Xu, R. Schock

Size: px
Start display at page:

Download "Rechargeable Li-S Battery with Specific Energy 350 Wh/kg and Specific Power 3000 W/kg. Y. Mikhaylik*, I. Kovalev, J. Xu, R. Schock"

Transcription

1 / The Electrochemical Society Rechargeable Li-S Battery with Specific Energy 35 Wh/kg and Specific Power 3 W/kg. Y. Mikhaylik*, I. Kovalev, J. Xu, R. Schock Sion Power Corporation 29 E. Elvira Rd., Tucson, AZ, U.S.A., Rate capability improvements of Li-S cells are reported. The main goal of this work, to achieve the maximum high power benefit from the liquid polysulfide cathode system, was realized. Higher rate capability has been achieved through reduction of the electrode stack Area Specific Resistance (ASR) to below 1 Ohm*cm 2, contact design improvements, and better current distribution uniformity along the electrodes and current collectors. Maximal specific power delivered by 2.5 Ah cells at 3 A pulses was 35 W/kg. At a continuous discharge, with specific power at ~15 W/kg, the 2.5 Ah cells delivered specific energy in excess of 2 Wh/kg. Introduction The theoretical specific energy for the Li-S system is 25 Wh/kg compared to 58 Wh/kg for lithium ion and lithium polymer systems. The theoretical energy density for Li-S is 26 Wh/l vs. 18 for lithium ion. The energy potential for Li-S is significantly higher than the best rechargeable system on the market today. However, technological development is still at an early stage. Still, critical problems have already been solved that have allowed Sion Power s lithium sulfur (Li-S) cell design to reach specific energy levels of 35 Wh/kg, surpassing any commercially available rechargeable batteries today. This high specific energy was demonstrated with multiple Unmanned Aerial Vehicles (UAV) flights of a 63 foot wingspan aircraft reaching heights of over 6, ft and remaining airborne for over 54 hours. The UAV cell, and battery pack, designs were optimized for applications with moderate rates and specific power of 1-2 W/kg. The work presented here was focused on improvement of the Li-S cell performance at continuous high current discharge, and delivering high power pulses to allow for a broader range of applications. The study addressed: 1. Component analysis of electrode Area Specific Resistance (ASR), and its improvement. 2. Current distribution uniformity along the electrodes, and its improvement. 3. High power tests of the cell and the impact of electrolyte nature and cell state of charge on high current pulse voltage profiles. 4. Ragone plot analysis for Li-S and other rechargeable systems

2 54 Electrode Area Specific Resistance component analysis and improvement. The Area Specific Resistance of the Anode/Separator/Cathode stack is a function of the electrochemical resistance of the electrodes as well as the electrolyte conductivity in the porous separator and the porous structure of the electrodes. Our study of Li-S cells showed the typical ASR for the porous separator, filled with electrolyte, was around 3 Ohm*cm 2. The ASR of the cathode and anode were in the ranges of 4-1 and 3-1 Ohm*cm 2 respectively. Our study also showed that solvent nature significantly affected Li anode and sulfur cathode electrochemical reaction resistance, changing them by a factor of 3-5 times. However, typical carbon-sulfur cathode electrochemical resistance was always an order of magnitude higher than the anode ASR. Nyqist plots in Figure 1 give examples of such behavior for a Li anode and a carbon-sulfur cathode in two solvents 1,2-Dimethoxyethane (DME) and 1,3-Dioxolane (DOL) Anode cycle #14 Cathode cycle # Charged DOL DME -3 Charged DOL DME Z'' (Ohm) Z (ohms) Z'' (Ohm) Z (ohms) Z' (Ohm) Z (ohms) Z' (Ohm) Z (ohms) Figure 1. Nyqist plots for Li anode and carbon-sulfur cathode in DME and DOL based electrolytes. Electrodes surface area ~ 3 cm 2. The cathode was a major contributor of the whole electrode stack ASR reaching over 1 Ohm*cm 2. Recently Sion Power has found a way of increasing the cathode electrochemical reaction rate by more then an order of magnitude. The ASR of the entire Cathode/Separator/Anode stack has been reduced to 1 Ohm*cm 2. Current distribution uniformity along the electrodes and its improvement. The Sion Power cell is based on a jellyroll design with electrode lengths exceeding 15 cm, utilizing relatively thin conductive cathode substrates (<1 µm) to keep cell weight low and specific energy high. The substrate conductivity, affected by thickness, hindered its ability to provide a desirable rate and uniform current distribution; this was strongly affected by the ASR. Significant ASR reduction required redesigning of the substrate connections.

3 55 Theoretical analysis of the current distribution uniformity along the electrodes typically had been performed through solving the Laplace equation for potential distribution in the electrolyte and considering the electrode polarization due to a limited rate electrochemical kinetics. Laplace s equation is not trivial to solve, even for relatively simple geometries (2). The two parallel strips of Sion Power s cell electrodes with a length L, significantly longer than their width W, allow for simplifying the geometry to one dimensional. The over-potential (η) distribution along the electrode substrates with square specific resistance r S, at steady state conditions, can be described through the Helmholtz equation: 2 d η = 2 dx rs η ASR [1] If the polarization of the electrodes is linear with respect to the current density, or in other words, when the ASR is not a function of overvoltage, equation [1] has a simple analytical solution. The local electrochemical reaction rate distribution, i(x), along the electrodes, with the tab located at one end (x = ), and overvoltage η is: L x Cosh( ) η i( x) = λ [2] ASR L Cosh( ) λ The characteristic length, λ, in equations [2] and [3] is the parameter governing penetration (distribution) of the electrochemical process along the electrodes. It is a function of the substrate resistance and ASR. ASR λ = [3} r S The ratio of λ/l dictates electrochemical rate distribution along the electrode. This dependence is shown in Figure 2 for different values of ASR and one tab connection centered on the electrode substrate. Figure 2 clearly shows that reduction of the ASR from 1 to 1 Ohm*cm 2 required more connection points to the substrate to keep current distribution more uniform. This helped avoid the electrode active material being over-used near the tab connection point. A multiple tab connection analysis showed that the solution for two tabs, one at each end is equivalent to the one tab in the center solution. This follows because segment length is twice shorter than the total electrode length L/2. For N tabs, the optimum design locates tabs, equally spaced along the electrode length, beginning at

4 56 position L/(2N), with subsequent tabs spaced L/N apart. This solution is equal to the one tab solution but considering the segment of electrode length as L/(2N) as shown in Figure 3. The N tab design current distribution uniformity, and the direct current resistance, R DC, for the entire N tab electrode stack are represented by equations [4] and [5]. i(min) 1 = [4] i(max) L Cosh 2Nλ R DC 1 rs ASR = [5] W L 2NTanh 2Nλ 2.5 Rate distribution along the electrode for various Area Specific Resistance 1 tab centered, 158 cm length, 2 mil Li, 12 µ Al foil 1 Ohm*cm2 Rate normilized to Average Current Uniform distribution 1 Ohm*cm Electrode Length (relative) Figure 2. Rate distribution along 158 cm electrode stack at various ASR. N = 4 L/8 Figure 3. Optimal tab connection scheme for 4 tabs.

5 57 By implementing improvements in ASR, cell chemistry and electrode connection design, direct current resistance of the entire cell has been reduced below 2 mohm. High power test and impact of electrolyte nature and cell state of charge on a high current pulse voltage profile. Optimized 2.5 Ah cell designs were able to deliver specific power of 15W/kg at a continuous discharge currents up to 15 A, and over 3 W/kg for 1 s duration high current pulses. It is important to note that pulse power was stable over a wide range of cell Depths of Discharge (DoD). For 1 s pulses the cells generated specific power in the range of 21 W/kg to 25 W/kg at 2 A, and in the range of 32 W/kg to 35 W/kg at 3 A (Figure 4). Specific Power, W/kg A 2 A % 2% 4% 6% 8% 1% Cell DoD Figure 4. Specific Power vs. Cell DoD for 2 and 3 A pulses. Pulse duration 1 s. The high current discharge profile was a function of the electrolyte nature and, particularly, the ability of the electrolyte to dissolve high amounts of polysulfides. At the beginning of the cell discharge, when solid elemental sulfur is transformed into soluble polysulfides, the high polysulfide soluble electrolytes lead to a voltage increase under high current pulses while the low soluble electrolytes lead to voltage reduction (Figure 5).

6 A x 1 s Discharge Pulse Profile Specific Power ~1.3 KW/kg S 8 + 2e - + 2Li + Li 2 S 8 Cell Voltage 2.1 High Li 2 S 8 Solubility Electrolyte 2.5 Lower Li 2 S 8 Solubility Electrolyte Pulse Duration, s Figure 5. 1 A pulse voltage profile for cells with high and low polysulfide soluble electrolytes. The high current pulse profile was also a function of the cell State of Charge (SOC), you may think of SOC as the degree of sulfur conversion. When all polysulfides were in the liquid state the voltage was very stable even at 2 A pulses (Curve 2, Figure 6). Generation of lower solubility polysulfides, particularly Li 2 S, at low SOC, leads to voltage decrease at the end of pulse (Curve 3, Figure 6) A x1s (~2.5KW/kg) Pulse Disharge Profiles at Various Stages of Sulfur Conversion 2 Li 2 S 8 +2e - +2Li + 2Li 2 S 4 Cell Voltage S 8 +2e - +2Li + Li 2 S 8 Solid Li 2 S 4 +6e - +6Li + 4Li 2 S Solid Pulse Duration Figure 6. 2 A pulse voltage profile for cells with various SOC.

7 59 Ragone plot analysis for Li-S and other rechargeable systems Specific energies delivered by Li-S cells at a wide range of discharge currents (specific powers) allowed us to generate a Ragone plot (Figure 7) and compare Sion Power Li-S cell with other commercially available rechargeable systems. Specific Energy, Wh/kg Li-ion 1865 Ni-MH Ni-Cd Sion Power Li-S Li-ion A Specific Power, W/kg Figure 7. Ragone Plots of Rechargeable Electrochemical Systems Ragone plot comparison showed that the Sion Power Li-S system over-performs all other rechargeable systems in terms of delivered power and energy. The substantial rate capability improvements, obtained through the above described modifications to Sion s previous Li-S cell design, opens up a wider range of applications for Li-S cells. Unlike high power Li-ion cells which deliver specific energy in the range of 64 W/kg to 18 Wh/kg (3, 4), Sion Power s Li-S high powered system offers specific energy exceeding 3 Wh/kg. References John Newman and Karen E. Thomas-Alyea,-3rd ed. Electrochemical Systems, p. 419, Wiley Interscience, NJ (24) _27.pdf 4.

High Energy Rechargeable Li-S Cells for EV Application. Status, Challenges and Solutions

High Energy Rechargeable Li-S Cells for EV Application. Status, Challenges and Solutions High Energy Rechargeable Li-S Cells for EV Application. Status, Challenges and Solutions Yuriy Mikhaylik, Igor Kovalev, Riley Schock, Karthikeyan Kumaresan, Jason Xu and John Affinito Sion Power Corporation

More information

鋰 電 池 技 術 及 產 業 發 展 趨 勢

鋰 電 池 技 術 及 產 業 發 展 趨 勢 鋰 電 池 技 術 及 產 業 發 展 趨 勢 潘 金 平 E-mail: jppan@itri.org.tw Tel: 035-915148 工 業 技 術 研 究 院 材 料 與 化 工 研 究 所 2011/3/22 鋰 電 池 電 動 車 生 產 狀 況 EV Benefits: Cost saving (fuel and maintenance) Reduce/eliminate CO2

More information

A Comparison of Lead Acid to Lithium-ion in Stationary Storage Applications

A Comparison of Lead Acid to Lithium-ion in Stationary Storage Applications A Comparison of Lead Acid to Lithium-ion in Stationary Storage Applications Published by AllCell Technologies LLC March 2012 Contributors: Greg Albright Jake Edie Said Al-Hallaj Table of Contents 1. Introduction

More information

Automotive Lithium-ion Batteries

Automotive Lithium-ion Batteries Automotive Lithium-ion Batteries 330 Automotive Lithium-ion Batteries Akihiko Maruyama Ryuji Kono Yutaka Sato Takenori Ishizu Mitsuru Koseki Yasushi Muranaka, Dr. Eng. OVERVIEW: A new of high-power lithium-ion

More information

The Lithium-Ion Battery. Service Life Parameters

The Lithium-Ion Battery. Service Life Parameters Advanced Rechargeable Batteries The Lithium-Ion Battery Service Life Parameters Geneva May, 2013 JP. Wiaux & C. Chanson RECHARGE aisbl 1 Li-ion battery ageing mechanisms The battery life duration is generally

More information

Electric Battery Actual and future Battery Technology Trends

Electric Battery Actual and future Battery Technology Trends Electric Battery Actual and future Battery Technology Trends Peter Birke Senior Technical Expert Battery Systems Business Unit Hybrid Electric Vehicles Continental AG Co-authors: Michael Keller, Michael

More information

Microstockage d énergie Les dernières avancées. S. Martin (CEA-LITEN / LCMS Grenoble)

Microstockage d énergie Les dernières avancées. S. Martin (CEA-LITEN / LCMS Grenoble) Microstockage d énergie Les dernières avancées S. Martin (CEA-LITEN / LCMS Grenoble) 1 Outline What is a microbattery? Microbatteries developped at CEA Description Performances Integration and Demonstrations

More information

State of Solid-State Batteries

State of Solid-State Batteries State of Solid-State Batteries Prof. Kevin S. Jones Department of Materials Science and Engineering University of Florida Acknowledgments Dave Danielson Program Director at ARPA-E Scott Faris, Richard

More information

Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model

Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model The 5th Intl. Symposium on Large Lithium-Ion Battery Technology and Application in Conjunction with AABC09 June 9-10, 2009,

More information

Practical Examples of Galvanic Cells

Practical Examples of Galvanic Cells 56 Practical Examples of Galvanic Cells There are many practical examples of galvanic cells in use in our everyday lives. We are familiar with batteries of all types. One of the most common is the lead-acid

More information

GAIA Li-Ion Batteries: Evolution or Revolution?

GAIA Li-Ion Batteries: Evolution or Revolution? GAIA Li-Ion Batteries: Evolution or Revolution? GAIA Europe Company Secretary Tim Schäfer Akkumulatorenwerke GmbH, Nordhausen,, Germany Lithium Technology Corporation, Plymouth Meeting, PA, USA November

More information

LITHIUM/AIR SEMI-FUEL CELLS: HIGH ENERGY DENSITY BATTERIES BASED ON LITHIUM METAL ELECTRODES

LITHIUM/AIR SEMI-FUEL CELLS: HIGH ENERGY DENSITY BATTERIES BASED ON LITHIUM METAL ELECTRODES LITHIUM/AIR SEMI-FUEL CELLS: HIGH ENERGY DENSITY BATTERIES BASED ON LITHIUM METAL ELECTRODES Steven J. Visco, Eugene Nimon, Bruce Katz, May-Ying Chu, and Lutgard De Jonghe PolyPlus Battery Company 2431

More information

Inside the Nickel Metal Hydride Battery

Inside the Nickel Metal Hydride Battery Inside the Nickel Metal Hydride Battery John J.C. Kopera Cobasys 5 June 004 Inside the NiMH Battery Introduction The Nickel Metal Hydride (NiMH) battery has become pervasive in today s technology climate,

More information

Planar ZEBRA Battery for Renewable Integration and Grid Applications

Planar ZEBRA Battery for Renewable Integration and Grid Applications Planar ZEBRA Battery for Renewable Integration and Grid Applications John P. Lemmon IBA Meeting Cape Town South Africa April 12-15th 2011 1 Acknowledgements ARPA-E Storage Program PNNL directed R&D fund

More information

Supercapacitors in Micro- and Mild Hybrids with Lithium Titanate Oxide Batteries: Vehicle Simulations and Laboratory Tests

Supercapacitors in Micro- and Mild Hybrids with Lithium Titanate Oxide Batteries: Vehicle Simulations and Laboratory Tests Research Report UCD-ITS-RR-15-20 Supercapacitors in Micro- and Mild Hybrids with Lithium Titanate Oxide Batteries: Vehicle Simulations and Laboratory Tests December 2015 Andrew Burke Jingyuan Zhao Institute

More information

DESIGN AND SIMULATION OF LITHIUM- ION BATTERY THERMAL MANAGEMENT SYSTEM FOR MILD HYBRID VEHICLE APPLICATION

DESIGN AND SIMULATION OF LITHIUM- ION BATTERY THERMAL MANAGEMENT SYSTEM FOR MILD HYBRID VEHICLE APPLICATION DESIGN AND SIMULATION OF LITHIUM- ION BATTERY THERMAL MANAGEMENT SYSTEM FOR MILD HYBRID VEHICLE APPLICATION Ahmed Imtiaz Uddin, Jerry Ku, Wayne State University Outline Introduction Model development Modeling

More information

Eveready Carbon Zinc (Zn/MnO ² ) Application Manual

Eveready Carbon Zinc (Zn/MnO ² ) Application Manual Page 1 of 13 Eveready Carbon Zinc (Zn/MnO ² ) Application Manual Eveready carbon zinc batteries are marketed in two basic categories--classic and Super Heavy Duty. The Classic category, our least expensive

More information

The Future of Battery Technologies Part I

The Future of Battery Technologies Part I Dr. Annika Ahlberg Tidblad This paper is the first in our ongoing series about batteries. This installment provides an overview of battery technologies. In future installments, we will spotlight lithium

More information

TRANSPORT OF DANGEROUS GOODS

TRANSPORT OF DANGEROUS GOODS Recommendations on the TRANSPORT OF DANGEROUS GOODS Manual of Tests and Criteria Fifth revised edition Amendment 1 UNITED NATIONS SECTION 38 38.3 Amend to read as follows: "38.3 Lithium metal and lithium

More information

Bi-directional FlipFET TM MOSFETs for Cell Phone Battery Protection Circuits

Bi-directional FlipFET TM MOSFETs for Cell Phone Battery Protection Circuits Bi-directional FlipFET TM MOSFETs for Cell Phone Battery Protection Circuits As presented at PCIM 2001 Authors: *Mark Pavier, *Hazel Schofield, *Tim Sammon, **Aram Arzumanyan, **Ritu Sodhi, **Dan Kinzer

More information

How Much Lithium does a LiIon EV battery really need?

How Much Lithium does a LiIon EV battery really need? How Much Lithium does a LiIon EV battery really need? by William Tahil Research Director Meridian International Research France Tel: +33 2 32 42 95 49 Fax: +33 2 32 41 39 98 www.meridian-int-res.com 5

More information

The full wave rectifier consists of two diodes and a resister as shown in Figure

The full wave rectifier consists of two diodes and a resister as shown in Figure The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached

More information

Galvanic Cells and the Nernst Equation

Galvanic Cells and the Nernst Equation Exercise 7 Page 1 Illinois Central College CHEMISTRY 132 Laboratory Section: Galvanic Cells and the Nernst Equation Name: Equipment Voltage probe wires 0.1 M solutions of Pb(NO 3, Fe(NO 3 ) 3, and KNO

More information

Second International Renewable Energy Storage Conference 19.-21. November 2007 Bonn/Germany. Overview on current status of lithium-ion batteries

Second International Renewable Energy Storage Conference 19.-21. November 2007 Bonn/Germany. Overview on current status of lithium-ion batteries Second International Renewable Energy Storage Conference 19.-21. November 2007 Bonn/Germany Overview on current status of lithium-ion batteries Andreas Jossen, Margret Wohlfahrt-Mehrens Zentrum für Sonnenenergie-

More information

LEAD-ACID STORAGE CELL

LEAD-ACID STORAGE CELL 3.14 MATERIALS LABORATORY MODULE BETA 1 NOVEMBER 13 17, 26 GEETHA P. BERERA LEAD-ACID STORAGE CELL OBJECTIVES: Understand the relationship between Gibbs Free Energy and Electrochemical Cell Potential.

More information

Hybrid reformulation based on a new hybrid Ohm s law for an electrical energy hybrid systems

Hybrid reformulation based on a new hybrid Ohm s law for an electrical energy hybrid systems Hybrid reformulation based on a new hybrid Ohm s law for an electrical energy hybrid systems SANG C. LEE* Division of IoT-Robot convergence research DGIST 333, Techno jungang, Dalseong-Gun, Daegu Republic

More information

o Electrons are written in half reactions but not in net ionic equations. Why? Well, let s see.

o Electrons are written in half reactions but not in net ionic equations. Why? Well, let s see. REDOX REACTION EQUATIONS AND APPLICATIONS Overview of Redox Reactions: o Change in Oxidation State: Loses Electrons = Oxidized (Oxidation number increases) Gains Electrons = Reduced (Oxidation Number Reduced)

More information

Testing and Evaluation of Energy Storage Devices

Testing and Evaluation of Energy Storage Devices Testing and Evaluation of Energy Storage Devices DOE Energy Storage Systems Research Program Annual Peer Review This work was funded by the DOE Energy Storage Program November 2-3, 2006 Washington, DC

More information

Baterías de flujo: conceptos y aplicación futura. Catalonia Institute for Energy Research

Baterías de flujo: conceptos y aplicación futura. Catalonia Institute for Energy Research Baterías de flujo: conceptos y aplicación futura Cristina Flox Catalonia Institute for Energy Research 26 de Mayo del 2016, Barcelona ÍNDICE 1. DEFINICIÓN: Conceptos y arquitectura 2. VENTAJAS 3. APLICACIÓN

More information

Battery Cell Balancing: What to Balance and How

Battery Cell Balancing: What to Balance and How Battery Cell Balancing: What to Balance and How Yevgen Barsukov, Texas Instruments ABSTRACT Different algorithms of cell balancing are often discussed when multiple serial cells are used in a battery pack

More information

Alkaline-Manganese Dioxide

Alkaline-Manganese Dioxide Performance Characteristics The performance characteristics described in Sections. through.9 are those characteristics specific to the alkaline-manganese dioxide products manufactured and distributed by

More information

Lithium Iron Phosphate High Current Rechargeable Lithium Ion Batteries

Lithium Iron Phosphate High Current Rechargeable Lithium Ion Batteries 1 of 5 8/21/2006 2:37 PM Lithium Iron Phosphate High Current Rechargeable Lithium Ion Batteries Lithium Iron phosphate batteries are safer than Lithium-ion cells, and are available in 10 and 20 AH packs

More information

Through-mask Electro-etching for Fabrication of Metal Bipolar Plate Gas Flow Field Channels

Through-mask Electro-etching for Fabrication of Metal Bipolar Plate Gas Flow Field Channels 991 Downloaded 23 Dec 21 to 24.16.113.125. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp ECS Transactions, 33 (1) 991-16 (21) 1.1149/1.3484593 The Electrochemical

More information

MAKING LITHIUM-ION SAFE THROUGH THERMAL MANAGEMENT

MAKING LITHIUM-ION SAFE THROUGH THERMAL MANAGEMENT MAKING LITHIUM-ION SAFE THROUGH THERMAL MANAGEMENT Greg Albright, Director of Product Development Said Al-Hallaj, CEO AllCell Technologies, Chicago, IL Abstract Lithium-ion batteries have revolutionized

More information

Steve Harris. UC Berkeley

Steve Harris. UC Berkeley Li Ion Batteries Steve Harris General MotorsR&D UC Berkeley 1 Outline Li battery basics Samples from my research What are the problems? Whither h Li batteries? 2 Some Basics AB + C A + BC G 3 Some Basics

More information

III. Reaction Kinetics

III. Reaction Kinetics III. Reaction Kinetics Lecture 13: Butler-Volmer equation Notes by ChangHoon Lim (and MZB) 1. Interfacial Equilibrium At lecture 11, the reaction rate R for the general Faradaic half-cell reaction was

More information

Application Note: Use of Low Resistivity Surface Mount PPTC in Li-ion Polymer Battery Packs

Application Note: Use of Low Resistivity Surface Mount PPTC in Li-ion Polymer Battery Packs Application Note: Introduction to Li-ion Battery Technology Lithium-ion batteries (LIB) have now become part of the standard battery pack of choice used in most notebook, smartphone, e-reader, and tablet

More information

UN Manual of Tests and Criteria, Sub-section 38.3, Amendments to the 5 th edition, effective 2014 January 1 st

UN Manual of Tests and Criteria, Sub-section 38.3, Amendments to the 5 th edition, effective 2014 January 1 st 1 UN Manual of Tests and Criteria, Sub-section 38.3, Amendments to the 5 th edition, effective 2014 January 1 st 38.3 Lithium metal and lithium ion batteries 38.3.1 Purpose This section presents the procedures

More information

Supercapacitors. Advantages Power density Recycle ability Environmentally friendly Safe Light weight

Supercapacitors. Advantages Power density Recycle ability Environmentally friendly Safe Light weight Supercapacitors Supercapacitors also called ultracapacitors and electric double layer capacitors (EDLC) are capacitors with capacitance values greater than any other capacitor type available today. Capacitance

More information

Hands-on electrochemical impedance spectroscopy Discussion session. Literature:

Hands-on electrochemical impedance spectroscopy Discussion session. Literature: Hands-on electrochemical impedance spectroscopy Discussion session Literature: Program for the day 10.00-10.30 General electrochemistry (shjj) 11.10-11.20 Relationship between EIS and electrochemical processes

More information

Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) R f = k f * C A (2) R b = k b * C B (3)

Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) R f = k f * C A (2) R b = k b * C B (3) Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) 1. Background Consider the reaction given below: A B (1) If k f and k b are the rate constants of the forward

More information

Working Towards Protection Guidance for Warehouse Storage Li-ion Batteries

Working Towards Protection Guidance for Warehouse Storage Li-ion Batteries Working Towards Protection Guidance for Warehouse Storage Li-ion Batteries Benjamin Ditch, FM Global Tom Long, Exponent Inc. SUPDET 2016, March 1 4, San Antonio TX Experimental Knowledge Timeline Reducedcommodity

More information

The Electrical Control of Chemical Reactions E3-1

The Electrical Control of Chemical Reactions E3-1 Experiment 3 The Electrical Control of Chemical Reactions E3-1 E3-2 The Task In this experiment you will explore the processes of oxidation and reduction, in which electrons flow between materials, and

More information

IAA Commercial Vehicles Battery Technology. September 29 th, 2010

IAA Commercial Vehicles Battery Technology. September 29 th, 2010 IAA Commercial Vehicles Battery Technology September 29 th, 2010 Table of contents Introduction of SB LiMotive Li-Ion cells Automotive Li-Ion batteries Conclusion Page 2 Introduction of SB LiMotive JV

More information

Mylar polyester film. Electrical Properties. Product Information. Dielectric Strength. Electrode Size. Film Thickness

Mylar polyester film. Electrical Properties. Product Information. Dielectric Strength. Electrode Size. Film Thickness Product Information Mylar polyester film Electrical Properties Mylar offers unique design capabilities to the electrical industry due to the excellent balance of its electrical properties with its chemical,

More information

How To Understand The Chemistry Of A Lithium Ion Battery

How To Understand The Chemistry Of A Lithium Ion Battery SuperLIB DELIVERABLE Cell Specification with Cell Data Deliverable number: D4.1 Due date: 31.01.2012 Nature 1 : R Dissemination Level 1 : CO Work Package: WP4 Lead Beneficiary: European Batteries OY Contributing

More information

- Founded in Dec. 2004 by Dr. Volker Klein and Dipl.-Ing. Gerd Sievert.

- Founded in Dec. 2004 by Dr. Volker Klein and Dipl.-Ing. Gerd Sievert. 1 - Founded in Dec. 2004 by Dr. Volker Klein and Dipl.-Ing. Gerd Sievert. - Roots are Emmerich AG, cell manufacturer of batteries and rechargeable batteries 40 years of batteries experience - Headquarter

More information

Ni-Cd Memory: myth or fact?

Ni-Cd Memory: myth or fact? This article reproduced by permission from the author Ni-Cd Memory: myth or fact? Isidor Buchmann Cadex Electronics Inc. isidor.buchmann@cadex.com www.buchmann.ca April 2001 The word memory was originally

More information

"Charging Lithium-Ion Batteries: Not All Charging Systems Are Created Equal"

Charging Lithium-Ion Batteries: Not All Charging Systems Are Created Equal "Charging Lithium-Ion Batteries: Not All Charging Systems Are Created Equal" By Scott Dearborn Principal Applications Engineer Microchip Technology Inc. 2355 West Chandler Blvd Chandler, AZ 85224 www.microchip.com

More information

Storage technologies/research, from physics and chemistry to engineering

Storage technologies/research, from physics and chemistry to engineering Storage technologies/research, from physics and chemistry to engineering Professor Nigel Brandon OBE FREng Director, Sustainable Gas Institute Director Energy Storage Research Network Co-Director, ENERGY

More information

Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part I

Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part I Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part I Jekanthan Thangavelautham Postdoctoral Associate Field and Space Robotics Laboratory Motivation Conventional Power

More information

Capacitors for Power Grid Storage

Capacitors for Power Grid Storage Capacitors for Power Grid Storage (Multi-Hour Bulk Energy Storage using Capacitors) John R. Miller, Inc. and Case Western Reserve University Trans-Atlantic Workshop on Storage Technologies

More information

Managing A123 Cells with FMA Cell Balancing Technologies

Managing A123 Cells with FMA Cell Balancing Technologies Managing A123 Cells with FMA Cell Balancing Technologies By FMA Staff Latest revision: March 23, 2007 Document provided by FMA, Inc. 5716A Industry Lane Frederick, MD 21704 U.S.A. Phone: (800) 343-2934

More information

Performance Testing of Lithium-ion Batteries of Various Chemistries for EV and PHEV Applications

Performance Testing of Lithium-ion Batteries of Various Chemistries for EV and PHEV Applications Performance Testing of Lithium-ion Batteries of Various Chemistries for EV and PHEV Applications Andrew Burke University of California-Davis Institute of Transportation Studies 2009 ZEV Symposium Sacramento,

More information

ES Program ORNL. Michael R. Starke, PhD Oak Ridge National Laboratory Power and Energy Systems Energy & Transportation Science Division

ES Program ORNL. Michael R. Starke, PhD Oak Ridge National Laboratory Power and Energy Systems Energy & Transportation Science Division ES Program ORNL Michael R. Starke, PhD Oak Ridge National Laboratory Power and Energy Systems Energy & Transportation Science Division Non Aqueous Organic Radical Redox Flow Batteries Develop Na-ion conducting

More information

Smart Batteries and Lithium Ion Voltage Profiles

Smart Batteries and Lithium Ion Voltage Profiles Smart Batteries and Lithium Ion Voltage Profiles Louis W. Hruska, Director Rechargeable Batteries Duracell Worldwide Technology Center, 37A Street, Needham MA 02194 Abstract: This paper addresses how the

More information

Development of a Long-Range Underwater Vehicle

Development of a Long-Range Underwater Vehicle DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Development of a Long-Range Underwater Vehicle Russ E. Davis Scripps Institution of Oceanography, University of California

More information

Chapter 1. Introduction of Electrochemical Concepts

Chapter 1. Introduction of Electrochemical Concepts Chapter 1. Introduction of Electrochemical Concepts Electrochemistry concerned with the interrelation of electrical and chemical effects. Reactions involving the reactant the electron. Chemical changes

More information

Advanced Secondary Batteries And Their Applications for Hybrid and Electric Vehicles Su-Chee Simon Wang

Advanced Secondary Batteries And Their Applications for Hybrid and Electric Vehicles Su-Chee Simon Wang Advanced Secondary Batteries And Their Applications for Hybrid and Electric Vehicles Su-Chee Simon Wang IEEE (Dec. 5, 2011) 1 Outline Introduction to batteries Equilibrium and kinetics Various secondary

More information

Reaction Engineering of Polymer Electrolyte Membrane Fuel Cells

Reaction Engineering of Polymer Electrolyte Membrane Fuel Cells Reaction Engineering of Polymer Electrolyte Membrane Fuel Cells A new approach to elucidate the operation and control of Polymer Electrolyte Membrane (PEM) fuel cells is being developed. A global reactor

More information

Determination of Capacitor Life as a Function of Operating Voltage and Temperature David Evans Evans Capacitor Company

Determination of Capacitor Life as a Function of Operating Voltage and Temperature David Evans Evans Capacitor Company Determination of Capacitor Life as a Function of Operating Voltage and Temperature David Evans Evans Capacitor Company Background Potentiostatically charged Hybrid capacitors age predictably by a mechanism

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

High pulse drain impact on CR2032 coin cell battery capacity

High pulse drain impact on CR2032 coin cell battery capacity High pulse drain impact on CR2032 coin cell battery capacity By Kjartan Furset, Strategic Applications Manager, Nordic Semiconductor Peter Hoffman, Energizer ABSTRACT Ultra low power wireless connectivity

More information

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy.

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy. Chapter 13: Electrochemistry Redox Reactions Galvanic Cells Cell Potentials Cell Potentials and Equilbrium Batteries Electrolysis Electrolysis and Stoichiometry Corrosion Prevention Electrochemistry The

More information

Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications

Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications Ahmad Pesaran, Ph.D. Shriram Santhanagopalan, Gi-Heon Kim National Renewable Energy Laboratory Golden,

More information

12 Appendix 12 Earth Electrodes And Earth Electrode

12 Appendix 12 Earth Electrodes And Earth Electrode 12 Appendix 12 Earth Electrodes And Earth Electrode Testing 12.1 Introduction This appendix provides guidance and background information an earth electrode testing and some limited information on earth

More information

Coating Technology: Evaporation Vs Sputtering

Coating Technology: Evaporation Vs Sputtering Satisloh Italy S.r.l. Coating Technology: Evaporation Vs Sputtering Gianni Monaco, PhD R&D project manager, Satisloh Italy 04.04.2016 V1 The aim of this document is to provide basic technical information

More information

Lithium-ion energy storage systems. for large defense applications

Lithium-ion energy storage systems. for large defense applications Lithium-ion energy storage systems for large defense applications 01 Saft, expert battery systems capability Saft, designing and building complete energy storage systems Saft is a recognized leader in

More information

Experimental Analysis of Batteries under Continuous and Intermittent Operations

Experimental Analysis of Batteries under Continuous and Intermittent Operations Experimental Analysis of Batteries under Continuous and Intermittent Operations S. Castillo, N. K. Samala, K. Manwaring, B. Izadi and D. Radhakrishnan Department of Electrical and Computer Engineering

More information

The Lithium/Iodine-Polyvinylpyridine Battery 35 years of Successful Clinical Use

The Lithium/Iodine-Polyvinylpyridine Battery 35 years of Successful Clinical Use 10.1149/1.2790382, The Electrochemical Society The Lithium/Iodine-Polyvinylpyridine Battery 35 years of Successful Clinical Use Curtis F. Holmes Greatbatch, Incorporated 9650 Wehrle Drive Clarence, NY

More information

reduction ore = metal oxides metal oxidation

reduction ore = metal oxides metal oxidation Cathodic Protection and Interferences René Gregoor Madrid, June 18 th and 19 th 2009 1 Cathodic protection and interferences Corrosion Cathodic protection Protection criterion ON potential measurements

More information

Electrochemical Impedance Spectroscopy (EIS): A Powerful and Cost- Effective Tool for Fuel Cell Diagnostics

Electrochemical Impedance Spectroscopy (EIS): A Powerful and Cost- Effective Tool for Fuel Cell Diagnostics Electrochemical Impedance Spectroscopy (EIS): A Powerful and Cost- Effective Tool for Fuel Cell Diagnostics Electrochemical Impedance Spectroscopy (EIS) is a powerful diagnostic tool that you can use to

More information

Designing Applications with Lithium-Ion Batteries

Designing Applications with Lithium-Ion Batteries Application Note Roland van Roy AN025 Sep 2014 Designing Applications with Lithium-Ion Batteries Contents 1. Introduction...1 2. Single Li-Ion Cell as Power Source...2 3. Battery Charging...6 4. Battery

More information

Microstockage d énergie Les dernières avancées. S. Martin (CEA-LITEN / Grenoble)

Microstockage d énergie Les dernières avancées. S. Martin (CEA-LITEN / Grenoble) Microstockage d énergie Les dernières avancées S. Martin (CEA-LITEN / Grenoble) 1 Outline What is a microbattery? Microbatteries developped at CEA Description Performances Integration and Demonstrations

More information

State-of-Health Estimation of Li-ion Batteries: Cycle Life Test Methods JENS GROOT

State-of-Health Estimation of Li-ion Batteries: Cycle Life Test Methods JENS GROOT State-of-Health Estimation of Li-ion Batteries: Cycle Life Test Methods JENS GROOT Division of Electric Power Engineering Department of Energy and Environment CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg,

More information

How Batteries Work by Marshall Brain

How Batteries Work by Marshall Brain How Batteries Work by Marshall Brain Batteries are all over the place -- in our cars, our PCs, laptops, portable MP3 players and cell phones. A battery is essentially a can full of chemicals that produce

More information

Energy Storage Systems Li-ion Philippe ULRICH

Energy Storage Systems Li-ion Philippe ULRICH Energy Storage Systems Li-ion Philippe ULRICH Manila - June 15 th, 2015 Agenda 1. Battery market Li-ion perspectives 2. Li-ion in the consumer market 3. Li-ion for Automotive 4. Li-ion in stationary applications

More information

Advanced Energy Storage Materials for Battery Applications. Advanced Materials December 12 th, 2012. Peter H.L. Notten

Advanced Energy Storage Materials for Battery Applications. Advanced Materials December 12 th, 2012. Peter H.L. Notten Advanced Energy Storage Materials for Battery Applications Advanced Materials December 12 th, 2012 Peter H.L. Notten Eindhoven University of Technology p.h.l.notten@tue.nl >> Focus on sustainability, innovation

More information

Experimental Measurements of LiFePO 4 Battery Thermal Characteristics

Experimental Measurements of LiFePO 4 Battery Thermal Characteristics Experimental Measurements of LiFePO 4 Battery Thermal Characteristics by Scott Mathewson A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master

More information

The Theory of HPLC. Gradient HPLC

The Theory of HPLC. Gradient HPLC The Theory of HPLC Gradient HPLC i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this reference manual. Aims

More information

Fabrication of Complex Circuit Using Electrochemical Micromachining on Printed Circuit Board (PCB)

Fabrication of Complex Circuit Using Electrochemical Micromachining on Printed Circuit Board (PCB) 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Fabrication of Complex Circuit Using Electrochemical

More information

ELECTROCHEMICAL CELLS

ELECTROCHEMICAL CELLS 1 ELECTROCHEMICAL CELLS Allessandra Volta (1745-1827) invented the electric cell in 1800 A single cell is also called a voltaic cell, galvanic cell or electrochemical cell. Volta joined several cells together

More information

EXPERIMENT #9 CORROSION OF METALS

EXPERIMENT #9 CORROSION OF METALS EXPERIMENT #9 CORROSION OF METALS Objective The objective of this experiment is to measure the corrosion rate of two different metals and to show the effectiveness of the use of inhibitors to protect metals

More information

ENERGY CARRIERS AND CONVERSION SYSTEMS Vol. I - Alkaline Water Electrolysis - Isao Abe

ENERGY CARRIERS AND CONVERSION SYSTEMS Vol. I - Alkaline Water Electrolysis - Isao Abe ALKALINE WATER ELECTROLYSIS Isao Abe Office Tera, Chiba, Japan Keywords: Water electrolysis, alkaline, hydrogen, electrode, diaphragm, high pressure high temperature electrolyser, cell, electrocatalyst

More information

Electrochemistry - ANSWERS

Electrochemistry - ANSWERS Electrochemistry - ANSWERS 1. Using a table of standard electrode potentials, predict if the following reactions will occur spontaneously as written. a) Al 3+ + Ni Ni 2+ + Al Al 3+ + 3e - Al E = -1.68

More information

lithium iron phosphate

lithium iron phosphate S a y G o o d b y e t o o l d b at t e r y t e c h n o l o g y. Say hello to the Hipower LiFePo4 battery. Presents the latest power solution...hipower LiFePo4 Through exciting innovation and research,

More information

IEC 62133 2 nd Edition: All you need to know about the new standard

IEC 62133 2 nd Edition: All you need to know about the new standard IEC 62133 2 nd Edition: All you need to know about the new standard Laurie Florence Principal Engineer Batteries, Fuel Cells & Capacitors UL LLC THESE UPDATES ARE FOR INFORMATION PURPOSES ONLY AND ARE

More information

IV.H.2 New York State Hi-Way Initiative*

IV.H.2 New York State Hi-Way Initiative* IV.H.2 New York State Hi-Way Initiative* Richard Bourgeois, P.E. General Electric Global Research 1 Research Circle Niskayuna NY 12309 Phone: (518) 387-4550; E-mail: richard.bourgeois@crd.ge.com DOE Technology

More information

Development of Grid-stabilization Power-storage Systems Using Lithium-ion Rechargeable Batteries

Development of Grid-stabilization Power-storage Systems Using Lithium-ion Rechargeable Batteries 48 Development of Grid-stabilization Power-storage Systems Using Lithium-ion Rechargeable Batteries TSUTOMU HASHIMOTO *1 AKIO KURITA *2 MASAAKI MINAMI *3 MASAHIRO YOSHIOKA *2 KATSUAKI KOBAYASHI *4 MASAYUKI

More information

Certification Requirements for Battery System Compliance to IEEE 1725

Certification Requirements for Battery System Compliance to IEEE 1725 Certification Requirements for Battery System Compliance to IEEE 1725 April 213 Revision 2.5 CTIA Certification Program CTIA Certification Program 14 16 th Street, NW, Suite 6 Washington, DC 236 E-mail:

More information

2006 Honda Civic-8725 Hybrid Battery Test Results

2006 Honda Civic-8725 Hybrid Battery Test Results 2006 Honda Civic-8725 Hybrid Battery Test Results HEVAMERICA U.S. DEPARTMENT OF ENERGY ADVANCED VEHICLE TESTING ACTIVITY Hybrid System Specifications Battery Specifications Manufacturer: Panasonic Battery

More information

POWER GENERATION AND DISTRIBUTION SYSTEM DESIGN FOR THE LEONIDAS CUBESAT NETWORK

POWER GENERATION AND DISTRIBUTION SYSTEM DESIGN FOR THE LEONIDAS CUBESAT NETWORK POWER GENERATION AND DISTRIBUTION SYSTEM DESIGN FOR THE LEONIDAS CUBESAT NETWORK Justin M. Akagi Department of Electrical Engineering University of Hawai`i at Manoa Honolulu, HI 96822 ABSTRACT The Power

More information

Chem 1721 Brief Notes: Chapter 19

Chem 1721 Brief Notes: Chapter 19 Chem 1721 Brief Notes: Chapter 19 Chapter 19: Electrochemistry Consider the same redox reaction set up 2 different ways: Cu metal in a solution of AgNO 3 Cu Cu salt bridge electrically conducting wire

More information

Technical Info Sheet. Ionic contamination testing in a no-clean soldering process. Scope

Technical Info Sheet. Ionic contamination testing in a no-clean soldering process. Scope Scope This document provides information about ionic contamination testing and its relevance in a no-clean. Also so-called C3 testing and ROSE (Resistivity of Solvent Extract) testing are forms of ionic

More information

Abuse Testing of Lithium Ion Cells: Internal Short Circuit, Accelerated Rate Calorimetry and Nail Penetration in Large Cells (1-20 Ah)

Abuse Testing of Lithium Ion Cells: Internal Short Circuit, Accelerated Rate Calorimetry and Nail Penetration in Large Cells (1-20 Ah) Abuse Testing of Lithium Ion Cells: Internal Short Circuit, Accelerated Rate Calorimetry and Nail Penetration in Large Cells (1-20 Ah) Battery Safety 2011, Nov 9-10, Las Vegas, NV Ann Edwards, PhD Kirby

More information

Battery Thermal Management and Design. Scott Stanton Xiao Hu. 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

Battery Thermal Management and Design. Scott Stanton Xiao Hu. 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Battery Thermal Management and Design Scott Stanton Xiao Hu ANSYS, Inc. 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Outline Battery thermal management using CFD Battery system thermal

More information

Parameter Identification for State of Discharge Estimation of Li-ion Batteries

Parameter Identification for State of Discharge Estimation of Li-ion Batteries Parameter Identification for State of Discharge Estimation of Li-ion Batteries * Suchart Punpaisarn ) and Thanatchai Kulworawanichpong 2) ), 2) Power System Research Unit, School of Electrical Engineering

More information

Planar versus conventional transformer

Planar versus conventional transformer Planar versus conventional transformer Majid Dadafshar, Principal Engineer Gerard Healy, Field Application Engineer Pulse, a Technitrol Company Power Division Usually the first step on any power supply

More information

Electrochemistry Revised 04/29/15

Electrochemistry Revised 04/29/15 INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, BATTERIES, & THE NERNST EQUATION Experiment partially adapted from J. Chem. Educ., 2008, 85 (8), p 1116 Introduction Electrochemical cell In this experiment,

More information

Hybrid Electrical Energy Storage Systems

Hybrid Electrical Energy Storage Systems Hybrid Electrical Energy Storage Systems Naehyuck Chang and Massoud Pedram Seoul National University University of Southern California Outline Electrical energy storage systems Energy storage elements

More information