# Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties

Save this PDF as:

Size: px
Start display at page:

Download "Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties"

## Transcription

1 Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties

2 Addition: (1) (Associative law) If a, b, and c are any numbers, then ( ) ( ) (2) (Existence of an additive identity) If a is any number, then (3) (Existence of additive inverses) For every number a, there is a number a such that ( ) ( ) (4) (Commutative law) If a and b are any numbers, then

3 Multiplication: (5) (Associative law) If a, b, and c are any numbers, then ( ) ( ) (6) (Existence of an multiplicative identity) If a is any number, then (7) (Existence of multiplicative inverses) For every number, there is a number such that (Note: division by 0 is always undefined!) (8) (Commutative law) If a and b are any numbers, then (9) (Distributive law) If a, b, and c are any numbers, then ( )

4 Definition: The numbers a satisfying are called positive, while those numbers a satisfying are called negative. For any number a, we define the absolute value a of a as follows: { Note: a is always positive, except when Example:

5 Theorem (Triangle Inequality): For all numbers a and b, we have Proof: Note:

6 1. Prove the following: (a) ( )( ) Exercises (b) ( ) (c) ( )( )

7 2. What is wrong with the following «proof»? Let then ( )( ) ( )

8 What types of numbers are there?... The simplest numbers are the «counting numbers»: 1, 2, 3,... We call them natural numbers and denote by. The most basic property of is the principle of «mathematical induction».

9 Mathematical Induction: Suppose P(n) means that the property P holds for the number n. Then P(n) is true for all natural numbers n provided that (1) P(1) is true (2) Whenever P(k) is true, P(k + 1) is true. A standard analogy is a string of dominoes which are arranged in such a way that if any given domino is knocked over then it in turn knocks over the next one. This analogy is a good one but it is only an analogy, and we have to remember that in the domino situation there is only a finite number of dominoes.

10 Example: Show that ( ) Solution:

11 Exercise Prove by induction on n that if (note that if, you can easily calculate the sum)

12 Other numbers: Integers:..., -2, -1, 0, 1, 2,... This set is denoted by. Rational numbers:. This set is denoted by. Real numbers: denoted by. Real numbers include rational and irrational numbers (e.g. numbers that can be represented by infinite decimals). or, i.e.

13 Set notation and set operations Definition: A set A is a collection of objects which are called elements or members. Example: Symbols that we shall use: (x belongs to A) (x does not belong to A)

14 Subset: Venn Diagram: Complement:

15 Union: Intersection: Empty set:

16 Intervals: ( ) ) (

17 Example: ( ) ( ) ( ) ( ) (

18 Solving inequalities Example: Solve. Express the answer as an interval and graphically.

19 Example:

20 Example: Solve

21 Functions What is a function? - A function is a rule which assigns, to each of certain real numbers, some other real number. Notation: ( ).

22 Example: The rule which assigns to each number the cube of that number: ( )

23 Using notations: A function f is a rule that assigns to each element x from some set D exactly one element, ( ), in a set E. D is a set of real numbers, called the domain of the function. E is a set of real numbers, called the range of the function, it is the set of all possible values of ( ) defined for every x in the domain. We call x an independent variable, and ( ) a dependent variable. Examples: Find domain and range in interval notation. (1) ( ) (2) ( )

24 Visualizing a function There are different ways to picture a function. One of them is an arrow diagram: Each arrow connects an element of D to an element of E.

25 The most common way to picture a function is by drawing a graph. Definition: A graph is the set of ordered pairs ( ( )). Example: Given ( ), find ( ).

26 Example: Graph ( ) Example: Graph ( )

27 function? When you look at the graph, how do you know you are looking at a Vertical Line Test: A curve in the xy-plane is the graph of a function of x if and only if no vertical line intersects the curve more than once.

28 Example:

29 Mathematical models: What kind of functions are there? A mathematical model is a mathematical description (function or equation) of a real-world phenomenon. Example: There is a strong positive linear relationship between husband's age and wife's age. We can use a linear model to describe this relationship!

30 Definition: We say y is a linear function of x if ( ) equation of a line, where is the slope of the line, the amount by which y changes when x increases by one unit. b is the y-intercept, the value of y when. Example:

31 Definition: A function f is a polynomial function if there are real numbers such that ( ) ( ), for all x, n is a nonnegative integer. The numbers are called coefficients of the polynomial. The highest power of x with a nonzero coefficient is called the degree of the polynomial. Examples: 1) A polynomial of degree 0 is a constant function ( ) e.g. 2) A polynomial of degree 1 is a linear function ( ).

32 3) A polynomial of degree 2 is a quadratic function ( ), e.g. The graph is called a parabola. 4) A polynomial of degree 3 is a cubic function ( ), e.g.

33 Definition: If ( ) ( ) for every, then f is called an even function. If ( ) ( ) for every, then f is called an odd function. Example: ( ) is an even polynomial function. The graph of an even function is symmetric with respect to the y-axis. ( ) is an odd polynomial function. The graph of an odd function is symmetric about the origin.

35 Definition: A function f is called increasing on an interval I if ( ) ( ) whenever in I It is called decreasing on I if ( ) ( ) whenever in I

36 Example: Given ( ), find the intervals where ( ) is increasing/decreasing.

37 Definition: A function of the form ( ), where a is a constant, is called a power function. We consider the following cases: If a = n, where n is a positive integer, then ( ) is a polynomial function. If a = 1/n, where n is a positive integer, then ( ) is a root function. Example:

38 If a =, then ( ) is a reciprocal function. The graph is called a hyperbola with the coordinate axes as its asymptotes.

39 Definition: A function f is called a rational function, if it can be written as a ratio of two polynomials: ( ) ( ) ( ) Example: ( )

40 Definition: A function f is called an algebraic function if it is constructed by applying algebraic operations (such as addition, subtraction, multiplication, division, and taking roots) to the polynomials. Examples: ( ) ( ) ( )

41 Trigonometric functions (review): ( ) ( )

42 ( ) The remaining functions: cosecant, secant, and cotangent, are the reciprocal of the ones above.

43 Partial table of values for trigonometric functions:

44 Identities

45 Exponential functions Definition: The function of the form ( ) constant, is called an exponential function. Let's recall what that means., where the base a is a positive

46 Laws of Exponents: If a and b are positive numbers and x and y are any real numbers, then ( ) 4. ( ) Example: Simplify

47 The number e

48 How can we get new functions from the ones we know? Transformations of functions Vertical and Horizontal Shifts: Suppose. To obtain the graph of ( ), shift the graph of ( ) a distance c units upward/downward ( ), shift the graph of ( ) a distance c units to the left/right Example: ( ) ( )

49 Vertical and Horizontal Stretching: Suppose. To obtain the graph of ( ), stretch the graph of ( ) vertically by a factor of c ( ), shrink the graph of ( ) vertically by a factor of c ( ), shrink the graph of ( ) horizontally by a factor of c ( ), stretch the graph of ( ) horizontally by a factor of c Example:

50 Reflecting: To obtain the graph of ( ), reflect the graph of ( ) about the x-axis ( ), reflect the graph of ( ) about the y-axis Example:

51 Combinations of functions ( )( ) ( ) ( ) (sum/defference) ( )( ) ( ) ( ) (product) ( ) ( ) ( ) ( ) ( ) (quotient) ( )( ) ( ( )) (composite function) Example: If ( ) and ( ), find,, and. What about?

52 Inverse functions Definition: A function f is called a one-to-one function if it never takes on the same value twice, i.e. ( ) ( ) whenever Example:. Is it one-to-one?

53 How to check? Horizontal line test: A function is one-to-one if and only if no horizontal line intersects its graph more than once.

54 Definition: Let inverse function be one-to-one function with domain A and range B. Then its has domain B and range A and is defined by ( ) ( ) for any Note: ( ) ( ) Example: Given that ( ) is one-to-one, and ( ) ( ) ( ) Find ( ) ( ), and ( ( )).

55 Note: Inverse functions have the unique property that, when composed with their original functions, both functions cancel out. Mathematically, this means that ( ( )) ( ( )) Since functions and inverse functions contain the same numbers in their ordered pair, just in reverse order, their graphs will be reflections of one another across the line y = x:

56 Example: ( )

57 How to find the inverse function? To find the inverse function for a one to one function, follow these steps: 1. Rewrite the function using y instead of f( x). 2. Solve the equation for x in term of y. 3. Switch the x and y variables 4. The resulting equation is ( ) 5. Make sure that your resulting inverse function is one to one. If it isn't, restrict the domain to pass the horizontal line test.

58 Example: Given ( ), find f 1 ( x). Note: x 0 for f 1 ( x). Without this restriction, f 1 ( x) would not pass the horizontal line test. It obviously must be one to one, since it must possess an inverse of f( x). You should use that portion of the graph because it is the reflection of f( x) across the line y = x, unlike the portion on x < 0.

59 Examples of inverse functions you need to know Logarithmic functions If and, the exponential function ( ) is one-to-one, so it has an inverse function called the logarithmic function with base a. Notation: Thus, Cancellation property: ( ) ( ) ( ( )) ( ) ( ( ))

60 Laws of logarithms: Given (positive integers) 1. ( ) Note: Example: Evaluate

61 Definition: The logarithm with base e is called the natural logarithm. Notation: So, Example: Solve

62 Change of base formula: Example: Evaluate

63 Inverse trigonimetric functions Inverse sine function or acrsine function: Domain: [-1,1] Range: is not one-to-one, but for it is.

64 So we have and ( ) ( ) Example: Evaluate (a) (b)

65 Similarly we can define inverse functions for other trigonometric functions: f (x) = cos -1 (x) f (x) = arccos(x) f (x) = tan -1 (x) f (x) = arctan(x) Domain: [-1,1] Range: Domain: Range:

66 ( ) ) ) ( (

67 Diagram

68 General solutions Note: trigonometric functions are periodic. This periodicity is reflected in the general inverses:, or or

69 Example: Solve equation

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

### South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.

### College Algebra. Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1

College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides

### MyMathLab ecourse for Developmental Mathematics

MyMathLab ecourse for Developmental Mathematics, North Shore Community College, University of New Orleans, Orange Coast College, Normandale Community College Table of Contents Module 1: Whole Numbers and

### MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

### Polynomial Operations and Factoring

Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

### BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University

### Algebra 1 Course Objectives

Course Objectives The Duke TIP course corresponds to a high school course and is designed for gifted students in grades seven through nine who want to build their algebra skills before taking algebra in

### List the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated

MATH 142 Review #1 (4717995) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Description This is the review for Exam #1. Please work as many problems as possible

### Developmental Math Course Outcomes and Objectives

Developmental Math Course Outcomes and Objectives I. Math 0910 Basic Arithmetic/Pre-Algebra Upon satisfactory completion of this course, the student should be able to perform the following outcomes and

### Understanding Basic Calculus

Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

### Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds

Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative

### Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

### Estimated Pre Calculus Pacing Timeline

Estimated Pre Calculus Pacing Timeline 2010-2011 School Year The timeframes listed on this calendar are estimates based on a fifty-minute class period. You may need to adjust some of them from time to

### ModuMath Algebra Lessons

ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

### Prentice Hall Mathematics: Algebra 1 2007 Correlated to: Michigan Merit Curriculum for Algebra 1

STRAND 1: QUANTITATIVE LITERACY AND LOGIC STANDARD L1: REASONING ABOUT NUMBERS, SYSTEMS, AND QUANTITATIVE SITUATIONS Based on their knowledge of the properties of arithmetic, students understand and reason

### Florida Math for College Readiness

Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

### MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### ALGEBRA I / ALGEBRA I SUPPORT

Suggested Sequence: CONCEPT MAP ALGEBRA I / ALGEBRA I SUPPORT August 2011 1. Foundations for Algebra 2. Solving Equations 3. Solving Inequalities 4. An Introduction to Functions 5. Linear Functions 6.

### http://www.aleks.com Access Code: RVAE4-EGKVN Financial Aid Code: 6A9DB-DEE3B-74F51-57304

MATH 1340.04 College Algebra Location: MAGC 2.202 Meeting day(s): TR 7:45a 9:00a, Instructor Information Name: Virgil Pierce Email: piercevu@utpa.edu Phone: 665.3535 Teaching Assistant Name: Indalecio

### Algebra 1-2. A. Identify and translate variables and expressions.

St. Mary's College High School Algebra 1-2 The Language of Algebra What is a variable? A. Identify and translate variables and expressions. The following apply to all the skills How is a variable used

### What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

### Multiplying Polynomials 5

Name: Date: Start Time : End Time : Multiplying Polynomials 5 (WS#A10436) Polynomials are expressions that consist of two or more monomials. Polynomials can be multiplied together using the distributive

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

### Mathematical Procedures

CHAPTER 6 Mathematical Procedures 168 CHAPTER 6 Mathematical Procedures The multidisciplinary approach to medicine has incorporated a wide variety of mathematical procedures from the fields of physics,

### Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

### Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below.

Infinite Algebra 1 Kuta Software LLC Common Core Alignment Software version 2.05 Last revised July 2015 Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below. High School

### HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

### Florida Department of Education/Office of Assessment January 2012. Algebra 1 End-of-Course Assessment Achievement Level Descriptions

Florida Department of Education/Office of Assessment January 2012 Algebra 1 End-of-Course Assessment Achievement Level Descriptions Algebra 1 EOC Assessment Reporting Category Functions, Linear Equations,

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### Roots and Coefficients of a Quadratic Equation Summary

Roots and Coefficients of a Quadratic Equation Summary For a quadratic equation with roots α and β: Sum of roots = α + β = and Product of roots = αβ = Symmetrical functions of α and β include: x = and

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### PowerTeaching i3: Algebra I Mathematics

PowerTeaching i3: Algebra I Mathematics Alignment to the Common Core State Standards for Mathematics Standards for Mathematical Practice and Standards for Mathematical Content for Algebra I Key Ideas and

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### MATHEMATICS (CLASSES XI XII)

MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

### Equations and Inequalities

Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.

### LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

### Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks

Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Algebra 2! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### Learning Objectives for Math 165

Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

### Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices.

Math Placement Test Study Guide General Characteristics of the Test 1. All items are to be completed by all students. The items are roughly ordered from elementary to advanced. The expectation is that

### Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks

Algebra 2 Year-at-a-Glance Leander ISD 2007-08 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks

1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal

### Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only

Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: A-APR.3: Identify zeros of polynomials

### Administrative - Master Syllabus COVER SHEET

Administrative - Master Syllabus COVER SHEET Purpose: It is the intention of this to provide a general description of the course, outline the required elements of the course and to lay the foundation for

### The Language of Mathematics

CHPTER 2 The Language of Mathematics 2.1. Set Theory 2.1.1. Sets. set is a collection of objects, called elements of the set. set can be represented by listing its elements between braces: = {1, 2, 3,

### Midterm 1. Solutions

Stony Brook University Introduction to Calculus Mathematics Department MAT 13, Fall 01 J. Viro October 17th, 01 Midterm 1. Solutions 1 (6pt). Under each picture state whether it is the graph of a function

### Larson, R. and Boswell, L. (2016). Big Ideas Math, Algebra 2. Erie, PA: Big Ideas Learning, LLC. ISBN

ALG B Algebra II, Second Semester #PR-0, BK-04 (v.4.0) To the Student: After your registration is complete and your proctor has been approved, you may take the Credit by Examination for ALG B. WHAT TO

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### DRAFT. Algebra 1 EOC Item Specifications

DRAFT Algebra 1 EOC Item Specifications The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as

### Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework

Provider York County School Division Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx Course Title Algebra I AB Last Updated 2010 - A.1 The student will represent verbal

This assignment will help you to prepare for Algebra 1 by reviewing some of the things you learned in Middle School. If you cannot remember how to complete a specific problem, there is an example at the

### CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide

Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are

### SAT Subject Math Level 2 Facts & Formulas

Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses

### Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

### Items related to expected use of graphing technology appear in bold italics.

- 1 - Items related to expected use of graphing technology appear in bold italics. Investigating the Graphs of Polynomial Functions determine, through investigation, using graphing calculators or graphing

### Extra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam.

Extra Credit Assignment Lesson plan The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. The extra credit assignment is to create a typed up lesson

### Section 1.1 Linear Equations: Slope and Equations of Lines

Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

### Lecture 7 : Inequalities 2.5

3 Lecture 7 : Inequalities.5 Sometimes a problem may require us to find all numbers which satisfy an inequality. An inequality is written like an equation, except the equals sign is replaced by one of

### Norwalk La Mirada Unified School District. Algebra Scope and Sequence of Instruction

1 Algebra Scope and Sequence of Instruction Instructional Suggestions: Instructional strategies at this level should include connections back to prior learning activities from K-7. Students must demonstrate

### Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry

Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible

### Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.

Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:

### 2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

### 4.1 Radian and Degree Measure

Date: 4.1 Radian and Degree Measure Syllabus Objective: 3.1 The student will solve problems using the unit circle. Trigonometry means the measure of triangles. Terminal side Initial side Standard Position

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### Properties of Real Numbers

16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

### MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!

MATH BOOK OF PROBLEMS SERIES New from Pearson Custom Publishing! The Math Book of Problems Series is a database of math problems for the following courses: Pre-algebra Algebra Pre-calculus Calculus Statistics

### Math Rational Functions

Rational Functions Math 3 Rational Functions A rational function is the algebraic equivalent of a rational number. Recall that a rational number is one that can be epressed as a ratio of integers: p/q.

### Algebra 1 Course Information

Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

### EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

### SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31

### APPLICATIONS OF DIFFERENTIATION

4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,

### The program also provides supplemental modules on topics in geometry and probability and statistics.

Algebra 1 Course Overview Students develop algebraic fluency by learning the skills needed to solve equations and perform important manipulations with numbers, variables, equations, and inequalities. Students

### Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

### TOPIC 3: CONTINUITY OF FUNCTIONS

TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let

### Math 1. Month Essential Questions Concepts/Skills/Standards Content Assessment Areas of Interaction

Binghamton High School Rev.9/21/05 Math 1 September What is the unknown? Model relationships by using Fundamental skills of 2005 variables as a shorthand way Algebra Why do we use variables? What is a

### Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

### MTH124: Honors Algebra I

MTH124: Honors Algebra I This course prepares students for more advanced courses while they develop algebraic fluency, learn the skills needed to solve equations, and perform manipulations with numbers,

### ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals

ALGEBRA REVIEW LEARNING SKILLS CENTER The "Review Series in Algebra" is taught at the beginning of each quarter by the staff of the Learning Skills Center at UC Davis. This workshop is intended to be an

### Prompt Students are studying multiplying binomials (factoring and roots) ax + b and cx + d. A student asks What if we divide instead of multiply?

Prompt Students are studying multiplying binomials (factoring and roots) ax + b and cx + d. A student asks What if we divide instead of multiply? Commentary In our foci, we are assuming that we have a

### Utah Core Curriculum for Mathematics

Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions

### Some Lecture Notes and In-Class Examples for Pre-Calculus:

Some Lecture Notes and In-Class Examples for Pre-Calculus: Section.7 Definition of a Quadratic Inequality A quadratic inequality is any inequality that can be put in one of the forms ax + bx + c < 0 ax

### FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x

### Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES

Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations