Brownian Motion and Ito s Lemma

Size: px
Start display at page:

Download "Brownian Motion and Ito s Lemma"

Transcription

1 Brownian Motion and Ito s Lemma 1 Introduction 2 Geometric Brownian Motion 3 Ito s Product Rule 4 Some Properties of the Stochastic Integral 5 Correlated Stock Prices 6 The Ornstein-Uhlenbeck Process

2 Brownian Motion and Ito s Lemma 1 Introduction 2 Geometric Brownian Motion 3 Ito s Product Rule 4 Some Properties of the Stochastic Integral 5 Correlated Stock Prices 6 The Ornstein-Uhlenbeck Process

3 Samuelson s Model The Black-Scholes Assumption About Stock Prices The original paper by Black and Scholes assumes that the price of the underlying asset is a stochastic process {S t } which is solves the following stochastic differential equation (in the differential form): where ds t = S t [α dt + σ dz t ] α... denotes the continuously compounded expected return on the stock; σ... denotes the volatility; {Z t }... is a standard Brownian motion In other words, {S t } is a geometric Brownian motion

4 Samuelson s Model The Black-Scholes Assumption About Stock Prices The original paper by Black and Scholes assumes that the price of the underlying asset is a stochastic process {S t } which is solves the following stochastic differential equation (in the differential form): where ds t = S t [α dt + σ dz t ] α... denotes the continuously compounded expected return on the stock; σ... denotes the volatility; {Z t }... is a standard Brownian motion In other words, {S t } is a geometric Brownian motion

5 Samuelson s Model The Black-Scholes Assumption About Stock Prices The original paper by Black and Scholes assumes that the price of the underlying asset is a stochastic process {S t } which is solves the following stochastic differential equation (in the differential form): where ds t = S t [α dt + σ dz t ] α... denotes the continuously compounded expected return on the stock; σ... denotes the volatility; {Z t }... is a standard Brownian motion In other words, {S t } is a geometric Brownian motion

6 Samuelson s Model The Black-Scholes Assumption About Stock Prices The original paper by Black and Scholes assumes that the price of the underlying asset is a stochastic process {S t } which is solves the following stochastic differential equation (in the differential form): where ds t = S t [α dt + σ dz t ] α... denotes the continuously compounded expected return on the stock; σ... denotes the volatility; {Z t }... is a standard Brownian motion In other words, {S t } is a geometric Brownian motion

7 Samuelson s Model The Black-Scholes Assumption About Stock Prices The original paper by Black and Scholes assumes that the price of the underlying asset is a stochastic process {S t } which is solves the following stochastic differential equation (in the differential form): where ds t = S t [α dt + σ dz t ] α... denotes the continuously compounded expected return on the stock; σ... denotes the volatility; {Z t }... is a standard Brownian motion In other words, {S t } is a geometric Brownian motion

8 On the distribution of the stock price at a given time Recall the example from class to conclude that ( ln(s t ) N ln(s ) + (α 1 ) 2 )σ2 )t, σ 2 t, for every t In other words, at any time t the stock-price random variable S t is log-normal The above means that we assume that the continuously compounded returns are modeled by a normally distributed random variable.

9 On the distribution of the stock price at a given time Recall the example from class to conclude that ( ln(s t ) N ln(s ) + (α 1 ) 2 )σ2 )t, σ 2 t, for every t In other words, at any time t the stock-price random variable S t is log-normal The above means that we assume that the continuously compounded returns are modeled by a normally distributed random variable.

10 On the distribution of the stock price at a given time Recall the example from class to conclude that ( ln(s t ) N ln(s ) + (α 1 ) 2 )σ2 )t, σ 2 t, for every t In other words, at any time t the stock-price random variable S t is log-normal The above means that we assume that the continuously compounded returns are modeled by a normally distributed random variable.

11 Brownian Motion and Ito s Lemma 1 Introduction 2 Geometric Brownian Motion 3 Ito s Product Rule 4 Some Properties of the Stochastic Integral 5 Correlated Stock Prices 6 The Ornstein-Uhlenbeck Process

12 More Heuristics: Relative Importance of the Drift and Noise Recall the SDE which defines the geometric B.M. ds t = S t [α dt + σ dz t ] Consider a time period of length h and the ratio of the per-period standard deviation to the per-period drift, i.e., σs t h αs t h = σ α h For h infinitesimaly small the above ration diverges. We may interpret this by saying that for short time-periods the random component of the process {S t } is dominant. As the observed period grows longer, the drift (mean) of the stochastic process {S t } has a greater effect

13 More Heuristics: Relative Importance of the Drift and Noise Recall the SDE which defines the geometric B.M. ds t = S t [α dt + σ dz t ] Consider a time period of length h and the ratio of the per-period standard deviation to the per-period drift, i.e., σs t h αs t h = σ α h For h infinitesimaly small the above ration diverges. We may interpret this by saying that for short time-periods the random component of the process {S t } is dominant. As the observed period grows longer, the drift (mean) of the stochastic process {S t } has a greater effect

14 More Heuristics: Relative Importance of the Drift and Noise Recall the SDE which defines the geometric B.M. ds t = S t [α dt + σ dz t ] Consider a time period of length h and the ratio of the per-period standard deviation to the per-period drift, i.e., σs t h αs t h = σ α h For h infinitesimaly small the above ration diverges. We may interpret this by saying that for short time-periods the random component of the process {S t } is dominant. As the observed period grows longer, the drift (mean) of the stochastic process {S t } has a greater effect

15 More Heuristics: Relative Importance of the Drift and Noise Recall the SDE which defines the geometric B.M. ds t = S t [α dt + σ dz t ] Consider a time period of length h and the ratio of the per-period standard deviation to the per-period drift, i.e., σs t h αs t h = σ α h For h infinitesimaly small the above ration diverges. We may interpret this by saying that for short time-periods the random component of the process {S t } is dominant. As the observed period grows longer, the drift (mean) of the stochastic process {S t } has a greater effect

16 More Heuristics: Relative Importance of the Drift and Noise Recall the SDE which defines the geometric B.M. ds t = S t [α dt + σ dz t ] Consider a time period of length h and the ratio of the per-period standard deviation to the per-period drift, i.e., σs t h αs t h = σ α h For h infinitesimaly small the above ration diverges. We may interpret this by saying that for short time-periods the random component of the process {S t } is dominant. As the observed period grows longer, the drift (mean) of the stochastic process {S t } has a greater effect

17 Brownian Motion and Ito s Lemma 1 Introduction 2 Geometric Brownian Motion 3 Ito s Product Rule 4 Some Properties of the Stochastic Integral 5 Correlated Stock Prices 6 The Ornstein-Uhlenbeck Process

18 Theorem [Ito s Product Rule] Consider two Ito proocesses {X t } and {Y t }. Then d(x t Y t ) = X t dy t + Y t dx t + dx t dy t. Note: We calculate the last term using the multiplication table with dt s and db t s

19 Theorem [Ito s Product Rule] Consider two Ito proocesses {X t } and {Y t }. Then d(x t Y t ) = X t dy t + Y t dx t + dx t dy t. Note: We calculate the last term using the multiplication table with dt s and db t s

20 Brownian Motion and Ito s Lemma 1 Introduction 2 Geometric Brownian Motion 3 Ito s Product Rule 4 Some Properties of the Stochastic Integral 5 Correlated Stock Prices 6 The Ornstein-Uhlenbeck Process

21 Martingality Under some integrability and regularity conditions on the integrand, the process {Y t } defined by Y t = ν s db S, where {B s } is a standard B.M. is a martingale. In particular [ ] E[Y t ] = E ν s db S =, for every t

22 Martingality Under some integrability and regularity conditions on the integrand, the process {Y t } defined by Y t = ν s db S, where {B s } is a standard B.M. is a martingale. In particular [ ] E[Y t ] = E ν s db S =, for every t

23 Ito Isometry Under some integrability and regularity conditions on the integrand ν, let us define the process {Y t } as Y t = where {B s } is a standard B.M. Then ν s db S, E[Yt 2 ] = E[ νs 2 ds]

24 Continuity Under some integrability and regularity conditions on the integrand ν, let us define the process {Y t } as Y t = ν s db S, where {B s } is a standard B.M. Then the paths of {Y t } are (almost surely) continuous.

25 Linearity Moreover, for a constant c, we have that cy t = (cν s ) db S, Additionally, if {A t } is a stochastic process given as A t = ξ s db s, for an integrand {ξ t } conforming to the integrability and regularity conditions necessary for the sotchastic integral to be well-defined, then Y t ± A t = (ν s ± ξ S ) db S

26 Linearity Moreover, for a constant c, we have that cy t = (cν s ) db S, Additionally, if {A t } is a stochastic process given as A t = ξ s db s, for an integrand {ξ t } conforming to the integrability and regularity conditions necessary for the sotchastic integral to be well-defined, then Y t ± A t = (ν s ± ξ S ) db S

27 Brownian Motion and Ito s Lemma 1 Introduction 2 Geometric Brownian Motion 3 Ito s Product Rule 4 Some Properties of the Stochastic Integral 5 Correlated Stock Prices 6 The Ornstein-Uhlenbeck Process

28 The Set-Up Consider two stock prices {S t } and {Q t }. Suppose that they satisfy the following system of SDEs ds t = α S dt + σ s dw t S t dq [ t = α Q dt + σ Q ρdw t + ] 1 ρ Q 2 dw t t where ρ [ 1, 1], α S, α Q, σ S > and σ Q > are given constants and {W t } and {W t } are independent standard Brownian motions. Theorem: If W and W are independent, then dw t dw t =. We can now add the above to our multiplication table.

29 The Set-Up Consider two stock prices {S t } and {Q t }. Suppose that they satisfy the following system of SDEs ds t = α S dt + σ s dw t S t dq [ t = α Q dt + σ Q ρdw t + ] 1 ρ Q 2 dw t t where ρ [ 1, 1], α S, α Q, σ S > and σ Q > are given constants and {W t } and {W t } are independent standard Brownian motions. Theorem: If W and W are independent, then dw t dw t =. We can now add the above to our multiplication table.

30 The Set-Up Consider two stock prices {S t } and {Q t }. Suppose that they satisfy the following system of SDEs ds t = α S dt + σ s dw t S t dq [ t = α Q dt + σ Q ρdw t + ] 1 ρ Q 2 dw t t where ρ [ 1, 1], α S, α Q, σ S > and σ Q > are given constants and {W t } and {W t } are independent standard Brownian motions. Theorem: If W and W are independent, then dw t dw t =. We can now add the above to our multiplication table.

31 Define A New Standard Brownian Motion W t = ρw t + 1 ρ 2 W t. { W t } is an almost everywhere continuous process with W = One can prove that W is a standard Brownian motion. Now, we can write dq t Q t = α Q dt + σ Q d W t According to Ito s Product Rule and the fact that W and W are independent d(w t Wt ) = W t d W t + W t dw t + ρ dt In the integral form the above reads as W t W t = W s d W s + W s dw s + ρt

32 Define A New Standard Brownian Motion W t = ρw t + 1 ρ 2 W t. { W t } is an almost everywhere continuous process with W = One can prove that W is a standard Brownian motion. Now, we can write dq t Q t = α Q dt + σ Q d W t According to Ito s Product Rule and the fact that W and W are independent d(w t Wt ) = W t d W t + W t dw t + ρ dt In the integral form the above reads as W t W t = W s d W s + W s dw s + ρt

33 Define A New Standard Brownian Motion W t = ρw t + 1 ρ 2 W t. { W t } is an almost everywhere continuous process with W = One can prove that W is a standard Brownian motion. Now, we can write dq t Q t = α Q dt + σ Q d W t According to Ito s Product Rule and the fact that W and W are independent d(w t Wt ) = W t d W t + W t dw t + ρ dt In the integral form the above reads as W t W t = W s d W s + W s dw s + ρt

34 Define A New Standard Brownian Motion W t = ρw t + 1 ρ 2 W t. { W t } is an almost everywhere continuous process with W = One can prove that W is a standard Brownian motion. Now, we can write dq t Q t = α Q dt + σ Q d W t According to Ito s Product Rule and the fact that W and W are independent d(w t Wt ) = W t d W t + W t dw t + ρ dt In the integral form the above reads as W t W t = W s d W s + W s dw s + ρt

35 Define A New Standard Brownian Motion W t = ρw t + 1 ρ 2 W t. { W t } is an almost everywhere continuous process with W = One can prove that W is a standard Brownian motion. Now, we can write dq t Q t = α Q dt + σ Q d W t According to Ito s Product Rule and the fact that W and W are independent d(w t Wt ) = W t d W t + W t dw t + ρ dt In the integral form the above reads as W t W t = W s d W s + W s dw s + ρt

36 On the Correlation of the two Brownian Motions For covenience, let us repeat that W t Wt = W s d W s + W s dw s + ρt Using the fact that the stochastic integral is a martingale, for every t, we have E[W t Wt ] = ρt. Recalling that the quadratic variaton of any standard B.M. is t, we see that ρ is the correlation between the Brownian motions W and W

37 On the Correlation of the two Brownian Motions For covenience, let us repeat that W t Wt = W s d W s + W s dw s + ρt Using the fact that the stochastic integral is a martingale, for every t, we have E[W t Wt ] = ρt. Recalling that the quadratic variaton of any standard B.M. is t, we see that ρ is the correlation between the Brownian motions W and W

38 On the Correlation of the two Brownian Motions For covenience, let us repeat that W t Wt = W s d W s + W s dw s + ρt Using the fact that the stochastic integral is a martingale, for every t, we have E[W t Wt ] = ρt. Recalling that the quadratic variaton of any standard B.M. is t, we see that ρ is the correlation between the Brownian motions W and W

39 Brownian Motion and Ito s Lemma 1 Introduction 2 Geometric Brownian Motion 3 Ito s Product Rule 4 Some Properties of the Stochastic Integral 5 Correlated Stock Prices 6 The Ornstein-Uhlenbeck Process

40 The Ornstein-Uhlenbeck Process Along with the processes we discussed so far, consider a stochastic process {X t } which satisfies dx t = [α x t ] dt + σ dz t, where α and σ are given constants and {Z t } is a standard Brownian motion. The process above is called the mean reverting process (Why??) In particular, if we set α =, the resulting process is called the Ornstein-Uhlenbeck process

41 The Ornstein-Uhlenbeck Process Along with the processes we discussed so far, consider a stochastic process {X t } which satisfies dx t = [α x t ] dt + σ dz t, where α and σ are given constants and {Z t } is a standard Brownian motion. The process above is called the mean reverting process (Why??) In particular, if we set α =, the resulting process is called the Ornstein-Uhlenbeck process

42 The Ornstein-Uhlenbeck Process Along with the processes we discussed so far, consider a stochastic process {X t } which satisfies dx t = [α x t ] dt + σ dz t, where α and σ are given constants and {Z t } is a standard Brownian motion. The process above is called the mean reverting process (Why??) In particular, if we set α =, the resulting process is called the Ornstein-Uhlenbeck process

Mathematical Finance

Mathematical Finance Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European

More information

The Black-Scholes Formula

The Black-Scholes Formula FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the

More information

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model 1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American

More information

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

More information

THE BLACK-SCHOLES MODEL AND EXTENSIONS

THE BLACK-SCHOLES MODEL AND EXTENSIONS THE BLAC-SCHOLES MODEL AND EXTENSIONS EVAN TURNER Abstract. This paper will derive the Black-Scholes pricing model of a European option by calculating the expected value of the option. We will assume that

More information

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.

More information

Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D

Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D Exam MFE Spring 2007 FINAL ANSWER KEY Question # Answer 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D **BEGINNING OF EXAMINATION** ACTUARIAL MODELS FINANCIAL ECONOMICS

More information

Black-Scholes Equation for Option Pricing

Black-Scholes Equation for Option Pricing Black-Scholes Equation for Option Pricing By Ivan Karmazin, Jiacong Li 1. Introduction In early 1970s, Black, Scholes and Merton achieved a major breakthrough in pricing of European stock options and there

More information

A Martingale System Theorem for Stock Investments

A Martingale System Theorem for Stock Investments A Martingale System Theorem for Stock Investments Robert J. Vanderbei April 26, 1999 DIMACS New Market Models Workshop 1 Beginning Middle End Controversial Remarks Outline DIMACS New Market Models Workshop

More information

Monte Carlo Methods in Finance

Monte Carlo Methods in Finance Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction

More information

Notes on Black-Scholes Option Pricing Formula

Notes on Black-Scholes Option Pricing Formula . Notes on Black-Scholes Option Pricing Formula by De-Xing Guan March 2006 These notes are a brief introduction to the Black-Scholes formula, which prices the European call options. The essential reading

More information

Introduction to Arbitrage-Free Pricing: Fundamental Theorems

Introduction to Arbitrage-Free Pricing: Fundamental Theorems Introduction to Arbitrage-Free Pricing: Fundamental Theorems Dmitry Kramkov Carnegie Mellon University Workshop on Interdisciplinary Mathematics, Penn State, May 8-10, 2015 1 / 24 Outline Financial market

More information

Simulating Stochastic Differential Equations

Simulating Stochastic Differential Equations Monte Carlo Simulation: IEOR E473 Fall 24 c 24 by Martin Haugh Simulating Stochastic Differential Equations 1 Brief Review of Stochastic Calculus and Itô s Lemma Let S t be the time t price of a particular

More information

Lecture. S t = S t δ[s t ].

Lecture. S t = S t δ[s t ]. Lecture In real life the vast majority of all traded options are written on stocks having at least one dividend left before the date of expiration of the option. Thus the study of dividends is important

More information

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t. LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing

More information

The Black-Scholes-Merton Approach to Pricing Options

The Black-Scholes-Merton Approach to Pricing Options he Black-Scholes-Merton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the Black-Scholes-Merton approach to determining

More information

LECTURE 9: A MODEL FOR FOREIGN EXCHANGE

LECTURE 9: A MODEL FOR FOREIGN EXCHANGE LECTURE 9: A MODEL FOR FOREIGN EXCHANGE 1. Foreign Exchange Contracts There was a time, not so long ago, when a U. S. dollar would buy you precisely.4 British pounds sterling 1, and a British pound sterling

More information

Vanna-Volga Method for Foreign Exchange Implied Volatility Smile. Copyright Changwei Xiong 2011. January 2011. last update: Nov 27, 2013

Vanna-Volga Method for Foreign Exchange Implied Volatility Smile. Copyright Changwei Xiong 2011. January 2011. last update: Nov 27, 2013 Vanna-Volga Method for Foreign Exchange Implied Volatility Smile Copyright Changwei Xiong 011 January 011 last update: Nov 7, 01 TABLE OF CONTENTS TABLE OF CONTENTS...1 1. Trading Strategies of Vanilla

More information

CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options

CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common

More information

Jung-Soon Hyun and Young-Hee Kim

Jung-Soon Hyun and Young-Hee Kim J. Korean Math. Soc. 43 (2006), No. 4, pp. 845 858 TWO APPROACHES FOR STOCHASTIC INTEREST RATE OPTION MODEL Jung-Soon Hyun and Young-Hee Kim Abstract. We present two approaches of the stochastic interest

More information

A Genetic Algorithm to Price an European Put Option Using the Geometric Mean Reverting Model

A Genetic Algorithm to Price an European Put Option Using the Geometric Mean Reverting Model Applied Mathematical Sciences, vol 8, 14, no 143, 715-7135 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/11988/ams144644 A Genetic Algorithm to Price an European Put Option Using the Geometric Mean Reverting

More information

Merton-Black-Scholes model for option pricing. Peter Denteneer. 22 oktober 2009

Merton-Black-Scholes model for option pricing. Peter Denteneer. 22 oktober 2009 Merton-Black-Scholes model for option pricing Instituut{Lorentz voor Theoretische Natuurkunde, LION, Universiteit Leiden 22 oktober 2009 With inspiration from: J. Tinbergen, T.C. Koopmans, E. Majorana,

More information

The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models

The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models 780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon

More information

ELECTRICITY REAL OPTIONS VALUATION

ELECTRICITY REAL OPTIONS VALUATION Vol. 37 (6) ACTA PHYSICA POLONICA B No 11 ELECTRICITY REAL OPTIONS VALUATION Ewa Broszkiewicz-Suwaj Hugo Steinhaus Center, Institute of Mathematics and Computer Science Wrocław University of Technology

More information

Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15

Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15 Hedging Options In The Incomplete Market With Stochastic Volatility Rituparna Sen Sunday, Nov 15 1. Motivation This is a pure jump model and hence avoids the theoretical drawbacks of continuous path models.

More information

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic mean-variance problems in

More information

Online Appendix. Supplemental Material for Insider Trading, Stochastic Liquidity and. Equilibrium Prices. by Pierre Collin-Dufresne and Vyacheslav Fos

Online Appendix. Supplemental Material for Insider Trading, Stochastic Liquidity and. Equilibrium Prices. by Pierre Collin-Dufresne and Vyacheslav Fos Online Appendix Supplemental Material for Insider Trading, Stochastic Liquidity and Equilibrium Prices by Pierre Collin-Dufresne and Vyacheslav Fos 1. Deterministic growth rate of noise trader volatility

More information

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial

More information

Four Derivations of the Black-Scholes Formula by Fabrice Douglas Rouah www.frouah.com www.volopta.com

Four Derivations of the Black-Scholes Formula by Fabrice Douglas Rouah www.frouah.com www.volopta.com Four Derivations of the Black-Scholes Formula by Fabrice Douglas Rouah www.frouah.com www.volota.com In this note we derive in four searate ways the well-known result of Black and Scholes that under certain

More information

The Black-Scholes pricing formulas

The Black-Scholes pricing formulas The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock

More information

On Market-Making and Delta-Hedging

On Market-Making and Delta-Hedging On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing What to market makers do? Provide

More information

How To Price A Call Option

How To Price A Call Option Now by Itô s formula But Mu f and u g in Ū. Hence τ θ u(x) =E( Mu(X) ds + u(x(τ θ))) 0 τ θ u(x) E( f(x) ds + g(x(τ θ))) = J x (θ). 0 But since u(x) =J x (θ ), we consequently have u(x) =J x (θ ) = min

More information

Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.

Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13. Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.

More information

A spot price model feasible for electricity forward pricing Part II

A spot price model feasible for electricity forward pricing Part II A spot price model feasible for electricity forward pricing Part II Fred Espen Benth Centre of Mathematics for Applications (CMA) University of Oslo, Norway Wolfgang Pauli Institute, Wien January 17-18

More information

Chapter 2: Binomial Methods and the Black-Scholes Formula

Chapter 2: Binomial Methods and the Black-Scholes Formula Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the

More information

Markovian projection for volatility calibration

Markovian projection for volatility calibration cutting edge. calibration Markovian projection for volatility calibration Vladimir Piterbarg looks at the Markovian projection method, a way of obtaining closed-form approximations of European-style option

More information

Lecture 15. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 6

Lecture 15. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 6 Lecture 15 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 6 Lecture 15 1 Black-Scholes Equation and Replicating Portfolio 2 Static

More information

Diusion processes. Olivier Scaillet. University of Geneva and Swiss Finance Institute

Diusion processes. Olivier Scaillet. University of Geneva and Swiss Finance Institute Diusion processes Olivier Scaillet University of Geneva and Swiss Finance Institute Outline 1 Brownian motion 2 Itô integral 3 Diusion processes 4 Black-Scholes 5 Equity linked life insurance 6 Merton

More information

A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model

A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model Fabio Mercurio Financial Models, Banca IMI Abstract In this document we derive some fundamental relationships

More information

QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS

QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS L. M. Dieng ( Department of Physics, CUNY/BCC, New York, New York) Abstract: In this work, we expand the idea of Samuelson[3] and Shepp[,5,6] for

More information

More Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options

More Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options Definition; Some types The payoff of a Barrier option is path

More information

Volatility Index: VIX vs. GVIX

Volatility Index: VIX vs. GVIX I. II. III. IV. Volatility Index: VIX vs. GVIX "Does VIX Truly Measure Return Volatility?" by Victor Chow, Wanjun Jiang, and Jingrui Li (214) An Ex-ante (forward-looking) approach based on Market Price

More information

HPCFinance: New Thinking in Finance. Calculating Variable Annuity Liability Greeks Using Monte Carlo Simulation

HPCFinance: New Thinking in Finance. Calculating Variable Annuity Liability Greeks Using Monte Carlo Simulation HPCFinance: New Thinking in Finance Calculating Variable Annuity Liability Greeks Using Monte Carlo Simulation Dr. Mark Cathcart, Standard Life February 14, 2014 0 / 58 Outline Outline of Presentation

More information

Understanding Options and Their Role in Hedging via the Greeks

Understanding Options and Their Role in Hedging via the Greeks Understanding Options and Their Role in Hedging via the Greeks Bradley J. Wogsland Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 Options are priced assuming that

More information

1 IEOR 4700: Introduction to stochastic integration

1 IEOR 4700: Introduction to stochastic integration Copyright c 7 by Karl Sigman 1 IEOR 47: Introduction to stochastic integration 1.1 Riemann-Stieltjes integration Recall from calculus how the Riemann integral b a h(t)dt is defined for a continuous function

More information

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL Exit Time problems and Escape from a Potential Well Escape From a Potential Well There are many systems in physics, chemistry and biology that exist

More information

Stochastic calculus applied to the estimation of loss reserves in Mortgage insurances. Oscar Armando Pérez González

Stochastic calculus applied to the estimation of loss reserves in Mortgage insurances. Oscar Armando Pérez González Stochastic calculus applied to the estimation of loss reserves in Mortgage insurances. Oscar Armando Pérez González Colegio Nacional de Actuarios, Mexico. Asociación Mexicana de Actuarios. operezg@telcel.blackberry.net

More information

Numerical Methods for Pricing Exotic Options

Numerical Methods for Pricing Exotic Options Imperial College London Department of Computing Numerical Methods for Pricing Exotic Options by Hardik Dave - 00517958 Supervised by Dr. Daniel Kuhn Second Marker: Professor Berç Rustem Submitted in partial

More information

Asian Option Pricing Formula for Uncertain Financial Market

Asian Option Pricing Formula for Uncertain Financial Market Sun and Chen Journal of Uncertainty Analysis and Applications (215) 3:11 DOI 1.1186/s4467-15-35-7 RESEARCH Open Access Asian Option Pricing Formula for Uncertain Financial Market Jiajun Sun 1 and Xiaowei

More information

Black-Scholes and the Volatility Surface

Black-Scholes and the Volatility Surface IEOR E4707: Financial Engineering: Continuous-Time Models Fall 2009 c 2009 by Martin Haugh Black-Scholes and the Volatility Surface When we studied discrete-time models we used martingale pricing to derive

More information

LogNormal stock-price models in Exams MFE/3 and C/4

LogNormal stock-price models in Exams MFE/3 and C/4 Making sense of... LogNormal stock-price models in Exams MFE/3 and C/4 James W. Daniel Austin Actuarial Seminars http://www.actuarialseminars.com June 26, 2008 c Copyright 2007 by James W. Daniel; reproduction

More information

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13 Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The Black-Scholes-Merton Random Walk Assumption

More information

Stephane Crepey. Financial Modeling. A Backward Stochastic Differential Equations Perspective. 4y Springer

Stephane Crepey. Financial Modeling. A Backward Stochastic Differential Equations Perspective. 4y Springer Stephane Crepey Financial Modeling A Backward Stochastic Differential Equations Perspective 4y Springer Part I An Introductory Course in Stochastic Processes 1 Some Classes of Discrete-Time Stochastic

More information

Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson and Linear Approximation

Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson and Linear Approximation EPJ Web of Conferences 68, 0 00 06 (2014) DOI: 10.1051/ epjconf/ 20146800006 C Owned by the authors, published by EDP Sciences, 2014 Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson

More information

The Constant Elasticity of Variance Option Pricing Model

The Constant Elasticity of Variance Option Pricing Model The Constant Elasticity of Variance Option Pricing Model John Randal A thesis submitted to the Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science

More information

Alternative Price Processes for Black-Scholes: Empirical Evidence and Theory

Alternative Price Processes for Black-Scholes: Empirical Evidence and Theory Alternative Price Processes for Black-Scholes: Empirical Evidence and Theory Samuel W. Malone April 19, 2002 This work is supported by NSF VIGRE grant number DMS-9983320. Page 1 of 44 1 Introduction This

More information

A liability driven approach to asset allocation

A liability driven approach to asset allocation A liability driven approach to asset allocation Xinliang Chen 1, Jan Dhaene 2, Marc Goovaerts 2, Steven Vanduffel 3 Abstract. We investigate a liability driven methodology for determining optimal asset

More information

Math 526: Brownian Motion Notes

Math 526: Brownian Motion Notes Math 526: Brownian Motion Notes Definition. Mike Ludkovski, 27, all rights reserved. A stochastic process (X t ) is called Brownian motion if:. The map t X t (ω) is continuous for every ω. 2. (X t X t

More information

Derivation of Local Volatility by Fabrice Douglas Rouah www.frouah.com www.volopta.com

Derivation of Local Volatility by Fabrice Douglas Rouah www.frouah.com www.volopta.com Derivation of Local Volatility by Fabrice Douglas Rouah www.frouah.com www.volopta.com The derivation of local volatility is outlined in many papers and textbooks (such as the one by Jim Gatheral []),

More information

Option Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013

Option Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013 Option Pricing Chapter 4 Including dividends in the BS model Stefan Ankirchner University of Bonn last update: 6th November 2013 Stefan Ankirchner Option Pricing 1 Dividend payments So far: we assumed

More information

Some remarks on two-asset options pricing and stochastic dependence of asset prices

Some remarks on two-asset options pricing and stochastic dependence of asset prices Some remarks on two-asset options pricing and stochastic dependence of asset prices G. Rapuch & T. Roncalli Groupe de Recherche Opérationnelle, Crédit Lyonnais, France July 16, 001 Abstract In this short

More information

BINOMIAL OPTIONS PRICING MODEL. Mark Ioffe. Abstract

BINOMIAL OPTIONS PRICING MODEL. Mark Ioffe. Abstract BINOMIAL OPTIONS PRICING MODEL Mark Ioffe Abstract Binomial option pricing model is a widespread numerical method of calculating price of American options. In terms of applied mathematics this is simple

More information

Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com

Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com In this Note we derive the Black Scholes PDE for an option V, given by @t + 1 + rs @S2 @S We derive the

More information

Introduction to Stochastic Differential Equations (SDEs) for Finance

Introduction to Stochastic Differential Equations (SDEs) for Finance Introduction to Stochastic Differential Equations (SDEs) for Finance Andrew Papanicolaou January, 013 Contents 1 Financial Introduction 3 1.1 A Market in Discrete Time and Space..................... 3

More information

BROWNIAN MOTION DEVELOPMENT FOR MONTE CARLO METHOD APPLIED ON EUROPEAN STYLE OPTION PRICE FORECASTING

BROWNIAN MOTION DEVELOPMENT FOR MONTE CARLO METHOD APPLIED ON EUROPEAN STYLE OPTION PRICE FORECASTING International journal of economics & law Vol. 1 (2011), No. 1 (1-170) BROWNIAN MOTION DEVELOPMENT FOR MONTE CARLO METHOD APPLIED ON EUROPEAN STYLE OPTION PRICE FORECASTING Petar Koĉović, Fakultet za obrazovanje

More information

EC3070 FINANCIAL DERIVATIVES

EC3070 FINANCIAL DERIVATIVES BINOMIAL OPTION PRICING MODEL A One-Step Binomial Model The Binomial Option Pricing Model is a simple device that is used for determining the price c τ 0 that should be attributed initially to a call option

More information

A power series about x = a is the series of the form

A power series about x = a is the series of the form POWER SERIES AND THE USES OF POWER SERIES Elizabeth Wood Now we are finally going to start working with a topic that uses all of the information from the previous topics. The topic that we are going to

More information

Master s Thesis. Pricing Constant Maturity Swap Derivatives

Master s Thesis. Pricing Constant Maturity Swap Derivatives Master s Thesis Pricing Constant Maturity Swap Derivatives Thesis submitted in partial fulfilment of the requirements for the Master of Science degree in Stochastics and Financial Mathematics by Noemi

More information

Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas

Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas James R. Garven Latest Revision: 27 April, 2015 Abstract This paper provides an alternative derivation of the

More information

Analytic Approximations for Multi-Asset Option Pricing

Analytic Approximations for Multi-Asset Option Pricing Analytic Approximations for Multi-Asset Option Pricing Carol Alexander ICMA Centre, University of Reading Aanand Venkatramanan ICMA Centre, University of Reading First Version: March 2008 This Version:

More information

Option Pricing. Chapter 9 - Barrier Options - Stefan Ankirchner. University of Bonn. last update: 9th December 2013

Option Pricing. Chapter 9 - Barrier Options - Stefan Ankirchner. University of Bonn. last update: 9th December 2013 Option Pricing Chapter 9 - Barrier Options - Stefan Ankirchner University of Bonn last update: 9th December 2013 Stefan Ankirchner Option Pricing 1 Standard barrier option Agenda What is a barrier option?

More information

Volatility at Karachi Stock Exchange

Volatility at Karachi Stock Exchange The Pakistan Development Review 34 : 4 Part II (Winter 1995) pp. 651 657 Volatility at Karachi Stock Exchange ASLAM FARID and JAVED ASHRAF INTRODUCTION Frequent crashes of the stock market reported during

More information

Binomial lattice model for stock prices

Binomial lattice model for stock prices Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }

More information

TABLE OF CONTENTS. A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13

TABLE OF CONTENTS. A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13 TABLE OF CONTENTS 1. McDonald 9: "Parity and Other Option Relationships" A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13 2. McDonald 10: "Binomial Option Pricing:

More information

Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena

Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model

More information

Pricing of an Exotic Forward Contract

Pricing of an Exotic Forward Contract Pricing of an Exotic Forward Contract Jirô Akahori, Yuji Hishida and Maho Nishida Dept. of Mathematical Sciences, Ritsumeikan University 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan E-mail: {akahori,

More information

arxiv:0706.1300v1 [q-fin.pr] 9 Jun 2007

arxiv:0706.1300v1 [q-fin.pr] 9 Jun 2007 THE QUANTUM BLACK-SCHOLES EQUATION LUIGI ACCARDI AND ANDREAS BOUKAS arxiv:0706.1300v1 [q-fin.pr] 9 Jun 2007 Abstract. Motivated by the work of Segal and Segal in [16] on the Black-Scholes pricing formula

More information

Mean Reversion versus Random Walk in Oil and Natural Gas Prices

Mean Reversion versus Random Walk in Oil and Natural Gas Prices Mean Reversion versus Random Walk in Oil and Natural Gas Prices Hélyette Geman Birkbeck, University of London, United Kingdom & ESSEC Business School, Cergy-Pontoise, France hgeman@ems.bbk.ac.uk Summary.

More information

3. Monte Carlo Simulations. Math6911 S08, HM Zhu

3. Monte Carlo Simulations. Math6911 S08, HM Zhu 3. Monte Carlo Simulations Math6911 S08, HM Zhu References 1. Chapters 4 and 8, Numerical Methods in Finance. Chapters 17.6-17.7, Options, Futures and Other Derivatives 3. George S. Fishman, Monte Carlo:

More information

ON DETERMINANTS AND SENSITIVITIES OF OPTION PRICES IN DELAYED BLACK-SCHOLES MODEL

ON DETERMINANTS AND SENSITIVITIES OF OPTION PRICES IN DELAYED BLACK-SCHOLES MODEL ON DETERMINANTS AND SENSITIVITIES OF OPTION PRICES IN DELAYED BLACK-SCHOLES MODEL A. B. M. Shahadat Hossain, Sharif Mozumder ABSTRACT This paper investigates determinant-wise effect of option prices when

More information

Goal Problems in Gambling and Game Theory. Bill Sudderth. School of Statistics University of Minnesota

Goal Problems in Gambling and Game Theory. Bill Sudderth. School of Statistics University of Minnesota Goal Problems in Gambling and Game Theory Bill Sudderth School of Statistics University of Minnesota 1 Three problems Maximizing the probability of reaching a goal. Maximizing the probability of reaching

More information

Switching Volatility in Target Stocks During Takeover Bids

Switching Volatility in Target Stocks During Takeover Bids Switching Volatility in Target Stocks During Takeover Bids Sergey Gelman (a), Bernd Wilfling (b) (a) International College of Economics and Finance Moscow (b) Westfälische Wilhelms-Universität Münster

More information

Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week

Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week Lectures Sergei Fedotov 20912 - Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics

More information

Sensitivity analysis of utility based prices and risk-tolerance wealth processes

Sensitivity analysis of utility based prices and risk-tolerance wealth processes Sensitivity analysis of utility based prices and risk-tolerance wealth processes Dmitry Kramkov, Carnegie Mellon University Based on a paper with Mihai Sirbu from Columbia University Math Finance Seminar,

More information

American Capped Call Options on Dividend-Paying Assets

American Capped Call Options on Dividend-Paying Assets American Capped Call Options on Dividend-Paying Assets Mark Broadie Columbia University Jerome Detemple McGill University and CIRANO This article addresses the problem of valuing American call options

More information

On the Use of Numeraires in Option Pricing

On the Use of Numeraires in Option Pricing On the Use of Numeraires in Option Pricing Simon Benninga Faculty of Management Tel-Aviv University ISRAEL University of Groningen HOLLAND e-mail: benninga@post.tau.ac.il Tomas Björk Department of Finance

More information

LOGNORMAL MODEL FOR STOCK PRICES

LOGNORMAL MODEL FOR STOCK PRICES LOGNORMAL MODEL FOR STOCK PRICES MICHAEL J. SHARPE MATHEMATICS DEPARTMENT, UCSD 1. INTRODUCTION What follows is a simple but important model that will be the basis for a later study of stock prices as

More information

Article from: Risk Management. June 2009 Issue 16

Article from: Risk Management. June 2009 Issue 16 Article from: Risk Management June 2009 Issue 16 CHAIRSPERSON S Risk quantification CORNER Structural Credit Risk Modeling: Merton and Beyond By Yu Wang The past two years have seen global financial markets

More information

Black-Scholes model under Arithmetic Brownian Motion

Black-Scholes model under Arithmetic Brownian Motion Black-Scholes model under Arithmetic Brownian Motion Marek Kolman Uniersity of Economics Prague December 22 23 Abstract Usually in the Black-Scholes world it is assumed that a stock follows a Geometric

More information

Finite Differences Schemes for Pricing of European and American Options

Finite Differences Schemes for Pricing of European and American Options Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the Black-Scholes

More information

3 Results. σdx. df =[µ 1 2 σ 2 ]dt+ σdx. Integration both sides will form

3 Results. σdx. df =[µ 1 2 σ 2 ]dt+ σdx. Integration both sides will form Appl. Math. Inf. Sci. 8, No. 1, 107-112 (2014) 107 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/080112 Forecasting Share Prices of Small Size Companies

More information

INTERNATIONAL COMPARISON OF INTEREST RATE GUARANTEES IN LIFE INSURANCE

INTERNATIONAL COMPARISON OF INTEREST RATE GUARANTEES IN LIFE INSURANCE INTERNATIONAL COMPARISON OF INTEREST RATE GUARANTEES IN LIFE INSURANCE J. DAVID CUMMINS, KRISTIAN R. MILTERSEN, AND SVEIN-ARNE PERSSON Abstract. Interest rate guarantees seem to be included in life insurance

More information

Risk-Neutral Valuation of Participating Life Insurance Contracts

Risk-Neutral Valuation of Participating Life Insurance Contracts Risk-Neutral Valuation of Participating Life Insurance Contracts DANIEL BAUER with R. Kiesel, A. Kling, J. Russ, and K. Zaglauer ULM UNIVERSITY RTG 1100 AND INSTITUT FÜR FINANZ- UND AKTUARWISSENSCHAFTEN

More information

The Heston Model. Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ May 6, 2014

The Heston Model. Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ May 6, 2014 Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ May 6, 2014 Generalized SV models Vanilla Call Option via Heston Itô s lemma for variance process Euler-Maruyama scheme Implement in Excel&VBA 1.

More information

Valuation of the Surrender Option Embedded in Equity-Linked Life Insurance. Brennan Schwartz (1976,1979) Brennan Schwartz

Valuation of the Surrender Option Embedded in Equity-Linked Life Insurance. Brennan Schwartz (1976,1979) Brennan Schwartz Valuation of the Surrender Option Embedded in Equity-Linked Life Insurance Brennan Schwartz (976,979) Brennan Schwartz 04 2005 6. Introduction Compared to traditional insurance products, one distinguishing

More information

On the Existence of a Unique Optimal Threshold Value for the Early Exercise of Call Options

On the Existence of a Unique Optimal Threshold Value for the Early Exercise of Call Options On the Existence of a Unique Optimal Threshold Value for the Early Exercise of Call Options Patrick Jaillet Ehud I. Ronn Stathis Tompaidis July 2003 Abstract In the case of early exercise of an American-style

More information

CHAPTER 3 Pricing Models for One-Asset European Options

CHAPTER 3 Pricing Models for One-Asset European Options CHAPTER 3 Pricing Models for One-Asset European Options The revolution on trading and pricing derivative securities in financial markets and academic communities began in early 1970 s. In 1973, the Chicago

More information

Option Pricing in ARCH-type Models: with Detailed Proofs. Nr. 10 März 1995

Option Pricing in ARCH-type Models: with Detailed Proofs. Nr. 10 März 1995 Option Pricing in ARCH-type Models: with Detailed Proofs Jan Kallsen Universität Freiburg Murad S. Taqqu Boston University Nr. 1 März 1995 Universität Freiburg i. Br. Institut für Mathematische Stochastik

More information

Pricing of a worst of option using a Copula method M AXIME MALGRAT

Pricing of a worst of option using a Copula method M AXIME MALGRAT Pricing of a worst of option using a Copula method M AXIME MALGRAT Master of Science Thesis Stockholm, Sweden 2013 Pricing of a worst of option using a Copula method MAXIME MALGRAT Degree Project in Mathematical

More information

Maximum likelihood estimation of mean reverting processes

Maximum likelihood estimation of mean reverting processes Maximum likelihood estimation of mean reverting processes José Carlos García Franco Onward, Inc. jcpollo@onwardinc.com Abstract Mean reverting processes are frequently used models in real options. For

More information