10.3 Systems of Linear Equations: Determinants

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "10.3 Systems of Linear Equations: Determinants"

Transcription

1 758 CHAPTER 10 Systems of Equtions nd Inequlities 10.3 Systems of Liner Equtions: Determinnts OBJECTIVES 1 Evlute 2 y 2 Determinnts 2 Use Crmer s Rule to Solve System of Two Equtions Contining Two Vriles 3 Evlute 3 y 3 Determinnts 4 Use Crmer s Rule to Solve System of Three Equtions Contining Three Vriles 5 Know Properties of Determinnts In the preeding setion, we desried method of using mtries to solve system of liner equtions. This setion dels with yet nother method for solving systems of liner equtions; however, it n e used only when the numer of equtions equls the numer of vriles. Although the method will work for ny system (provided tht the numer of equtions equls the numer of vriles), it is most often used for systems of two equtions ontining two vriles or three equtions ontining three vriles. This method, lled Crmer s Rule, is sed on the onept of determinnt. 1 Evlute 2 y 2 Determinnts If,,, nd d re four rel numers, the symol D = d is lled 2 y 2 determinnt. Its vlue is the numer d - ; tht is, D = d = d - The following devie my e helpful for rememering the vlue of 2 y 2 determinnt: d Minus d d EXAMPLE 1 Evluting 2 : 2 Determinnt Evlute:

2 SECTION 10.3 Systems of Liner Equtions: Determinnts 759 Algeri Solution = = = 15 Grphing Solution First, we enter the mtrix whose entries re those of the determinnt into the grphing utility nd nme it A. Using the determinnt ommnd, we otin the result shown in Figure 10. Figure 10 NOW WORK PROBLEM 7. 2 Use Crmer s Rule to Solve System of Two Equtions Contining Two Vriles Let s now see the role tht 2 y 2 determinnt plys in the solution of system of two equtions ontining two vriles. Consider the system x + y = s x + dy = t We shll use the method of elimintion to solve this system. Provided d Z 0 nd Z 0, this system is equivlent to the system dx + dy = sd x + dy = t Multiply y d. Multiply y. On sutrting the seond eqution from the first eqution, we get 1d - 2x + 0 # y = sd - t x + dy = t Now the first eqution n e rewritten using determinnt nottion. d x = s t d If D = d = d - Z 0, we n solve for x to get s t d x = = d s t d D (3) Return now to the originl system. Provided tht Z 0 nd Z 0, the system is equivlent to x + y = s x + dy = t Multiply y. Multiply y.

3 760 CHAPTER 10 Systems of Equtions nd Inequlities On sutrting the first eqution from the seond eqution, we get x + y = s 0 # x + 1d - 2y = t - s The seond eqution n now e rewritten using determinnt nottion. d y = s t If D = d = d - Z 0, we n solve for y to get y = s t d = s t D (4) Equtions (3) nd (4) led us to the following result, lled Crmer s Rule. Crmer s Rule for Two Equtions Contining Two Vriles The solution to the system of equtions x + y = s x + dy = t (5) is given y x = s t d, y = d s t d (6) provided tht D = d = d - Z 0 In the derivtion given for Crmer s Rule ove, we ssumed tht none of the numers,,, nd d ws 0. In Prolem 60 you will e sked to omplete the proof under the less stringent ondition tht D = d - Z 0. Now look refully t the pttern in Crmer s Rule. The denomintor in the solution (6) is the determinnt of the oeffiients of the vriles. x + y = s D = x + dy = t d

4 SECTION 10.3 Systems of Liner Equtions: Determinnts 761 In the solution for x, the numertor is the determinnt, denoted y D x, formed y repling the entries in the first olumn (the oeffiients of x) of D y the onstnts on the right side of the equl sign. s D x = t In the solution for y, the numertor is the determinnt, denoted y D y, formed y repling the entries in the seond olumn (the oeffiients in y) of D y the onstnts on the right side of the equl sign. D y = Crmer s Rule then sttes tht, if D Z 0, d s t x = D x D, y = D y D (7) EXAMPLE 2 Solving System of Liner Equtions Using Determinnts Use Crmer s Rule, if pplile, to solve the system 3x - 2y = 4 6x + y = 13 Algeri Solution The determinnt D of the oeffiients of the vriles is 3-2 D = 6 1 = = 15 Beuse D Z 0, Crmer s Rule (7) n e used. 4-2 x = D x D = y = D y 15 D = = = = 30 = = 2 = 1 Grphing Solution We enter the oeffiient mtrix into our grphing utility. Cll it A nd evlute det3a4. Sine det3a4 Z 0, we n use Crmer s Rule. We enter the mtries D x nd D y into our grphing utility nd ll them B nd C, respetively. Finlly, we find x det3b4 det3c4 y lulting nd y y lulting det3a4 det3a4. The results re shown in Figure 11. Figure 11 The solution is x = 2, y = 1. In ttempting to use Crmer s Rule, if the determinnt D of the oeffiients of the vriles is found to equl 0 (so tht Crmer s Rule is not pplile), then the system either is inonsistent or hs infinitely mny solutions. NOW WORK PROBLEM 15.

5 762 CHAPTER 10 Systems of Equtions nd Inequlities 3 Evlute 3 y 3 Determinnts To use Crmer s Rule to solve system of three equtions ontining three vriles, we need to define 3 y 3 determinnt. A 3 y 3 determinnt is symolized y (8) in whih 11, 12, Á, re rel numers. As with mtries, we use doule susript to identify n entry y inditing its row nd olumn numers. For exmple, the entry 23 is in row 2, olumn 3. The vlue of 3 y 3 determinnt my e defined in terms of 2 y 2 determinnts y the following formul: Minus = q q q 2 y 2 2 y 2 2 y 2 determinnt determinnt determinnt left fter left fter left fter removing row removing row removing row nd olumn nd olumn nd olumn ontining ontining ontining (9) The 2 y 2 determinnts shown in formul (9) re lled minors of the 3 y 3 determinnt. For n n y n determinnt, the minor M ij of entry ij is the determinnt resulting from removing the ith row nd jth olumn. EXAMPLE 3 Finding Minors of 3 y 3 Determinnt For the determinnt A = , find: () M 12 () M 23 Solution () M 12 is the determinnt tht results from removing the first row nd seond olumn from A A = M 12 = = = () M 23 is the determinnt tht results from removing the seond row nd third olumn from A. A = M 23 = = = 12

6 SECTION 10.3 Systems of Liner Equtions: Determinnts 763 Referring k to formul (9), we see tht eh element is multiplied y its minor, ut sometimes this term is dded nd other times, sutrted. To determine whether to dd or sutrt term, we must onsider the oftor. For n n y n determinnt A, the oftor of entry ij, denoted y A ij, is given y ij where M ij is the minor of entry ij. A ij = 1-12 i + j M ij The exponent of 1-12 i + j is the sum of the row nd olumn of the entry ij, so if i + j is even, 1-12 i + j will equl 1, nd if i + j is odd, 1-12 i + j will equl -1. To find the vlue of determinnt, multiply eh entry in ny row or olumn y its oftor nd sum the results.this proess is referred to s expnding ross row or olumn. For exmple, the vlue of the 3 y 3 determinnt in formul (9) ws found y expnding ross row 1. If we hoose to expnd down olumn 2, we otin = æ Expnd down olumn 2. If we hoose to expnd ross row 3, we otin = æ Expnd ross row 3. It n e shown tht the vlue of determinnt does not depend on the hoie of the row or olumn used in the expnsion. However, expnding ross row or olumn tht hs n element equl to 0 redues the mount of work needed to ompute the vlue of the determinnt. EXAMPLE 4 Evluting 3 : 3 Determinnt Find the vlue of the 3 y 3 determinnt: Solution We hoose to expnd ross row = = = = = 138

7 764 CHAPTER 10 Systems of Equtions nd Inequlities We ould lso find the vlue of the 3 y 3 determinnt in Exmple 4 y expnding down olumn = = = = 138 Evluting 3 * 3 determinnts on grphing utility follows the sme proedure s evluting 2 * 2 determinnts. NOW WORK PROBLEM Use Crmer s Rule to Solve System of Three Equtions Contining Three Vriles Consider the following system of three equtions ontining three vriles. 11 x + 12 y + 13 z = 1 21 x + 22 y + 23 z = 2 31 x + 32 y + 33 z = 3 It n e shown tht if the determinnt D of the oeffiients of the vriles is not 0, tht is, if D = Z then the unique solution of system (10) is given y Crmer s Rule for Three Equtions Contining Three Vriles (10) x = D x y = D y z = D z D D D where D x = D y = D z = Do you see the similrity of this pttern nd the pttern oserved erlier for system of two equtions ontining two vriles? EXAMPLE 5 Using Crmer s Rule Use Crmer s Rule, if pplile, to solve the following system: 2x + y - z = 3 -x + 2y + 4z = -3 x - 2y - 3z = 4 (3)

8 Solution SECTION 10.3 Systems of Liner Equtions: Determinnts 765 The vlue of the determinnt D of the oeffiients of the vriles is D = = = Beuse D Z 0, we proeed to find the vlues of D x, D y, nd D z D y = = = = = D z = = As result, = = D x = = = = 15 = = 5 x = D x D = 15 5 = 3, y = D y D = The solution is x = 3, y = -2, z = If the determinnt of the oeffiients of the vriles of system of three liner equtions ontining three vriles is 0, then Crmer s Rule is not pplile. In suh se, the system either is inonsistent or hs infinitely mny solutions. Solving systems of three equtions ontining three vriles using Crmer s Rule on grphing utility follows the sme proedure s tht for solving systems of two equtions ontining two vriles. NOW WORK PROBLEM 33. = -2, z = D z D = 5 5 = 1 5 Know Properties of Determinnts Determinnts hve severl properties tht re sometimes helpful for otining their vlue. We list some of them here. The vlue of determinnt hnges sign if ny two rows (or ny two olumns) re interhnged. (11) Proof for 2 y 2 Determinnts d = d - nd d = - d = -1d - 2

9 766 CHAPTER 10 Systems of Equtions nd Inequlities EXAMPLE 6 Demonstrting (11) = 6-4 = = 4-6 = -2 If ll the entries in ny row (or ny olumn) equl 0, the vlue of the determinnt is 0. (12) Proof Expnd ross the row (or down the olumn) ontining the 0 s. If ny two rows (or ny two olumns) of determinnt hve orresponding entries tht re equl, the vlue of the determinnt is 0. (13) You re sked to prove this result for 3 y 3 determinnt in whih the entries in olumn 1 equl the entries in olumn 3 in Prolem 63. EXAMPLE 7 Demonstrting (13) = = = = 0 If ny row (or ny olumn) of determinnt is multiplied y nonzero numer k, the vlue of the determinnt is lso hnged y ftor of k. (14) You re sked to prove this result for 3 y 3 determinnt using row 2 in Prolem 62. EXAMPLE 8 Demonstrting (14) = 6-8 = -2 k 2k 4 6 = 6k - 8k = -2k = k1-22 = k If the entries of ny row (or ny olumn) of determinnt re multiplied y nonzero numer k nd the result is dded to the orresponding entries of nother row (or olumn), the vlue of the determinnt remins unhnged. (15) In Prolem 64, you re sked to prove this result for 3 y 3 determinnt using rows 1 nd 2.

10 SECTION 10.3 Systems of Liner Equtions: Determinnts 767 EXAMPLE 9 Demonstrting (15) = : = -14 æ Multiply row 2 y -2 nd dd to row 1.

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5. . Definition, Bsi onepts, Types. Addition nd Sutrtion of Mtries. Slr Multiplition. Assignment nd nswer key. Mtrix Multiplition. Assignment nd nswer key. Determinnt x x (digonl, minors, properties) summry

More information

Ratio and Proportion

Ratio and Proportion Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty

More information

Words Symbols Diagram. abcde. a + b + c + d + e

Words Symbols Diagram. abcde. a + b + c + d + e Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To

More information

Chapter. Contents: A Constructing decimal numbers

Chapter. Contents: A Constructing decimal numbers Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

The remaining two sides of the right triangle are called the legs of the right triangle.

The remaining two sides of the right triangle are called the legs of the right triangle. 10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right

More information

How to Graphically Interpret the Complex Roots of a Quadratic Equation

How to Graphically Interpret the Complex Roots of a Quadratic Equation Universit of Nersk - Linoln DigitlCommons@Universit of Nersk - Linoln MAT Em Epositor Ppers Mth in the Middle Institute Prtnership 7-007 How to Grphill Interpret the Comple Roots of Qudrti Eqution Crmen

More information

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent! MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more

More information

c b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00

c b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00 Chter 19, exmle rolems: (19.06) A gs undergoes two roesses. First: onstnt volume @ 0.200 m 3, isohori. Pressure inreses from 2.00 10 5 P to 5.00 10 5 P. Seond: Constnt ressure @ 5.00 10 5 P, isori. olume

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1. Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

More information

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

More information

MATH PLACEMENT REVIEW GUIDE

MATH PLACEMENT REVIEW GUIDE MATH PLACEMENT REVIEW GUIDE This guie is intene s fous for your review efore tking the plement test. The questions presente here my not e on the plement test. Although si skills lultor is provie for your

More information

If two triangles are perspective from a point, then they are also perspective from a line.

If two triangles are perspective from a point, then they are also perspective from a line. Mth 487 hter 4 Prtie Prolem Solutions 1. Give the definition of eh of the following terms: () omlete qudrngle omlete qudrngle is set of four oints, no three of whih re olliner, nd the six lines inident

More information

1 Fractions from an advanced point of view

1 Fractions from an advanced point of view 1 Frtions from n vne point of view We re going to stuy frtions from the viewpoint of moern lger, or strt lger. Our gol is to evelop eeper unerstning of wht n men. One onsequene of our eeper unerstning

More information

Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur

Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur Module 5 Three-hse A iruits Version EE IIT, Khrgur esson 8 Three-hse Blned Suly Version EE IIT, Khrgur In the module, ontining six lessons (-7), the study of iruits, onsisting of the liner elements resistne,

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

State the size of angle x. Sometimes the fact that the angle sum of a triangle is 180 and other angle facts are needed. b y 127

State the size of angle x. Sometimes the fact that the angle sum of a triangle is 180 and other angle facts are needed. b y 127 ngles 2 CHTER 2.1 Tringles Drw tringle on pper nd lel its ngles, nd. Ter off its orners. Fit ngles, nd together. They mke stright line. This shows tht the ngles in this tringle dd up to 180 ut it is not

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

Tallahassee Community College. Simplifying Radicals

Tallahassee Community College. Simplifying Radicals Tllhssee Communit College Simplifing Rdils The squre root of n positive numer is the numer tht n e squred to get the numer whose squre root we re seeking. For emple, 1 euse if we squre we get 1, whih is

More information

Section 5-5 Solving Right Triangles*

Section 5-5 Solving Right Triangles* 5-5 Solving Right Tringles 379 79. Geometry. The re of retngulr n-sided polygon irumsried out irle of rdius is given y A n tn 80 n (A) Find A for n 8, n 00, n,000, nd n 0,000. Compute eh to five deiml

More information

Clause Trees: a Tool for Understanding and Implementing Resolution in Automated Reasoning

Clause Trees: a Tool for Understanding and Implementing Resolution in Automated Reasoning Cluse Trees: Tool for Understnding nd Implementing Resolution in Automted Resoning J. D. Horton nd Brue Spener University of New Brunswik, Frederiton, New Brunswik, Cnd E3B 5A3 emil : jdh@un. nd spener@un.

More information

Assuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C;

Assuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C; B-26 Appendix B The Bsics of Logic Design Check Yourself ALU n [Arthritic Logic Unit or (rre) Arithmetic Logic Unit] A rndom-numer genertor supplied s stndrd with ll computer systems Stn Kelly-Bootle,

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

Regular Sets and Expressions

Regular Sets and Expressions Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite

More information

S-Parameters for Three and Four Two- Port Networks

S-Parameters for Three and Four Two- Port Networks the ehnology Interfe/pring 2007 Mus, diku, nd Akujuoi -Prmeters for hree nd Four wo- Port Networks rhn M. Mus, Mtthew N.O. diku, nd Cjetn M. Akujuoi Center of Exellene for Communition ystems ehnology Reserh

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

GRADE 4. Fractions WORKSHEETS

GRADE 4. Fractions WORKSHEETS GRADE Frtions WORKSHEETS Types of frtions equivlent frtions This frtion wll shows frtions tht re equivlent. Equivlent frtions re frtions tht re the sme mount. How mny equivlent frtions n you fin? Lel eh

More information

SOLVING EQUATIONS BY FACTORING

SOLVING EQUATIONS BY FACTORING 316 (5-60) Chpter 5 Exponents nd Polynomils 5.9 SOLVING EQUATIONS BY FACTORING In this setion The Zero Ftor Property Applitions helpful hint Note tht the zero ftor property is our seond exmple of getting

More information

Math Review for Algebra and Precalculus

Math Review for Algebra and Precalculus Copyrigt Jnury 00 y Stnley Oken. No prt of tis doument my e opied or reprodued in ny form wtsoever witout epress permission of te utor. Mt Review for Alger nd Prelulus Stnley Oken Deprtment of Mtemtis

More information

Calculus of variations with fractional derivatives and fractional integrals

Calculus of variations with fractional derivatives and fractional integrals Anis do CNMAC v.2 ISSN 1984-820X Clculus of vritions with frctionl derivtives nd frctionl integrls Ricrdo Almeid, Delfim F. M. Torres Deprtment of Mthemtics, University of Aveiro 3810-193 Aveiro, Portugl

More information

SECTION 7-2 Law of Cosines

SECTION 7-2 Law of Cosines 516 7 Additionl Topis in Trigonometry h d sin s () tn h h d 50. Surveying. The lyout in the figure t right is used to determine n inessile height h when seline d in plne perpendiulr to h n e estlished

More information

Quick Guide to Lisp Implementation

Quick Guide to Lisp Implementation isp Implementtion Hndout Pge 1 o 10 Quik Guide to isp Implementtion Representtion o si dt strutures isp dt strutures re lled S-epressions. The representtion o n S-epression n e roken into two piees, the

More information

Lecture 2: Matrix Algebra. General

Lecture 2: Matrix Algebra. General Lecture 2: Mtrix Algebr Generl Definitions Algebric Opertions Vector Spces, Liner Independence nd Rnk of Mtrix Inverse Mtrix Liner Eqution Systems, the Inverse Mtrix nd Crmer s Rule Chrcteristic Roots

More information

OUTLINE SYSTEM-ON-CHIP DESIGN. GETTING STARTED WITH VHDL August 31, 2015 GAJSKI S Y-CHART (1983) TOP-DOWN DESIGN (1)

OUTLINE SYSTEM-ON-CHIP DESIGN. GETTING STARTED WITH VHDL August 31, 2015 GAJSKI S Y-CHART (1983) TOP-DOWN DESIGN (1) August 31, 2015 GETTING STARTED WITH VHDL 2 Top-down design VHDL history Min elements of VHDL Entities nd rhitetures Signls nd proesses Dt types Configurtions Simultor sis The testenh onept OUTLINE 3 GAJSKI

More information

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

Mathematics Higher Level

Mathematics Higher Level Mthemtics Higher Level Higher Mthemtics Exmintion Section : The Exmintion Mthemtics Higher Level. Structure of the exmintion pper The Higher Mthemtics Exmintion is divided into two ppers s detiled below:

More information

Lecture 15 - Curve Fitting Techniques

Lecture 15 - Curve Fitting Techniques Lecture 15 - Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting - motivtion For root finding, we used given function to identify where it crossed zero where does fx

More information

Calculating Principal Strains using a Rectangular Strain Gage Rosette

Calculating Principal Strains using a Rectangular Strain Gage Rosette Clulting Prinipl Strins using Retngulr Strin Gge Rosette Strin gge rosettes re used often in engineering prtie to determine strin sttes t speifi points on struture. Figure illustrtes three ommonly used

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

CS 316: Gates and Logic

CS 316: Gates and Logic CS 36: Gtes nd Logi Kvit Bl Fll 27 Computer Siene Cornell University Announements Clss newsgroup reted Posted on we-pge Use it for prtner finding First ssignment is to find prtners P nd N Trnsistors PNP

More information

1. Area under a curve region bounded by the given function, vertical lines and the x axis.

1. Area under a curve region bounded by the given function, vertical lines and the x axis. Ares y Integrtion. Are uner urve region oune y the given funtion, vertil lines n the is.. Are uner urve region oune y the given funtion, horizontl lines n the y is.. Are etween urves efine y two given

More information

The invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism.

The invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism. Instrutor: Longfei Li Mth 43 Leture Notes 16. Line Integrls The invention of line integrls is motivted by solving problems in fluid flow, fores, eletriity nd mgnetism. Line Integrls of Funtion We n integrte

More information

Arc-Consistency for Non-Binary Dynamic CSPs

Arc-Consistency for Non-Binary Dynamic CSPs Ar-Consisteny for Non-Binry Dynmi CSPs Christin Bessière LIRMM (UMR C 9928 CNRS / Université Montpellier II) 860, rue de Sint Priest 34090 Montpellier, Frne Emil: essiere@rim.fr Astrt. Constrint stisftion

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

Heron s Formula for Triangular Area

Heron s Formula for Triangular Area Heron s Formul for Tringulr Are y Christy Willims, Crystl Holom, nd Kyl Gifford Heron of Alexndri Physiist, mthemtiin, nd engineer Tught t the museum in Alexndri Interests were more prtil (mehnis, engineering,

More information

MATLAB Workshop 13 - Linear Systems of Equations

MATLAB Workshop 13 - Linear Systems of Equations MATLAB: Workshop - Liner Systems of Equtions pge MATLAB Workshop - Liner Systems of Equtions Objectives: Crete script to solve commonly occurring problem in engineering: liner systems of equtions. MATLAB

More information

UNIVERSITY AND WORK-STUDY EMPLOYERS WEBSITE USER S GUIDE

UNIVERSITY AND WORK-STUDY EMPLOYERS WEBSITE USER S GUIDE UNIVERSITY AND WORK-STUDY EMPLOYERS WEBSITE USER S GUIDE Tble of Contents 1 Home Pge 1 2 Pge 2 3 Your Control Pnel 3 4 Add New Job (Three-Step Form) 4-6 5 Mnging Job Postings (Mnge Job Pge) 7-8 6 Additionl

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

Formal Languages and Automata Exam

Formal Languages and Automata Exam Forml Lnguges nd Automt Exm Fculty of Computers & Informtion Deprtment: Computer Science Grde: Third Course code: CSC 34 Totl Mrk: 8 Dte: 23//2 Time: 3 hours Answer the following questions: ) Consider

More information

PROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * challenge questions

PROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * challenge questions PROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * hllenge questions e The ll will strike the ground 1.0 s fter it is struk. Then v x = 20 m s 1 nd v y = 0 + (9.8 m s 2 )(1.0 s) = 9.8 m s 1 The speed

More information

MODULE 3. 0, y = 0 for all y

MODULE 3. 0, y = 0 for all y Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

More information

Chapter. Fractions. Contents: A Representing fractions

Chapter. Fractions. Contents: A Representing fractions Chpter Frtions Contents: A Representing rtions B Frtions o regulr shpes C Equl rtions D Simpliying rtions E Frtions o quntities F Compring rtion sizes G Improper rtions nd mixed numers 08 FRACTIONS (Chpter

More information

Review guide for the final exam in Math 233

Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

More information

Maximum area of polygon

Maximum area of polygon Mimum re of polygon Suppose I give you n stiks. They might e of ifferent lengths, or the sme length, or some the sme s others, et. Now there re lots of polygons you n form with those stiks. Your jo is

More information

One Minute To Learn Programming: Finite Automata

One Minute To Learn Programming: Finite Automata Gret Theoreticl Ides In Computer Science Steven Rudich CS 15-251 Spring 2005 Lecture 9 Fe 8 2005 Crnegie Mellon University One Minute To Lern Progrmming: Finite Automt Let me tech you progrmming lnguge

More information

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right. Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

More information

Volumes by Cylindrical Shells: the Shell Method

Volumes by Cylindrical Shells: the Shell Method olumes Clinril Shells: the Shell Metho Another metho of fin the volumes of solis of revolution is the shell metho. It n usull fin volumes tht re otherwise iffiult to evlute using the Dis / Wsher metho.

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH3432: Green s Functions, Integrl Equtions nd the Clculus of Vritions Section 3 Integrl Equtions Integrl Opertors nd Liner Integrl Equtions As we sw in Section on opertor nottion, we work with functions

More information

32. The Tangency Problem of Apollonius.

32. The Tangency Problem of Apollonius. . The Tngeny olem of Apollonius. Constut ll iles tngent to thee given iles. This eleted polem ws posed y Apollinius of eg (. 60-70 BC), the getest mthemtiin of ntiquity fte Eulid nd Ahimedes. His mjo wok

More information

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2 7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

More information

SOLVING QUADRATIC EQUATIONS BY FACTORING

SOLVING QUADRATIC EQUATIONS BY FACTORING 6.6 Solving Qudrti Equtions y Ftoring (6 31) 307 In this setion The Zero Ftor Property Applitions 6.6 SOLVING QUADRATIC EQUATIONS BY FACTORING The tehniques of ftoring n e used to solve equtions involving

More information

Math Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function.

Math Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function. Mth Review Vribles, Constnts nd Functions A vrible is mthemticl bbrevition for concept For emple in economics, the vrible Y usully represents the level of output of firm or the GDP of n economy, while

More information

Angles 2.1. Exercise 2.1... Find the size of the lettered angles. Give reasons for your answers. a) b) c) Example

Angles 2.1. Exercise 2.1... Find the size of the lettered angles. Give reasons for your answers. a) b) c) Example 2.1 Angles Reognise lternte n orresponing ngles Key wors prllel lternte orresponing vertilly opposite Rememer, prllel lines re stright lines whih never meet or ross. The rrows show tht the lines re prllel

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

control policies to be declared over by associating security

control policies to be declared over by associating security Seure XML Querying with Seurity Views Wenfei Fn University of Edinurgh & Bell Lortories wenfei@infeduk Chee-Yong Chn Ntionl University of Singpore hny@ompnusedusg Minos Groflkis Bell Lortories minos@reserhell-lsom

More information

Matrix Inverse and Condition

Matrix Inverse and Condition Mtrix Inverse nd Condition Berlin Chen Deprtment of Computer Science & Informtion Engineering Ntionl Tiwn Norml University Reference: 1. Applied Numericl Methods with MATLAB for Engineers, Chpter 11 &

More information

Teaching and Learning Guide 10: Matrices

Teaching and Learning Guide 10: Matrices Teching nd Lerning Guide : Mtrices Teching nd Lerning Guide : Mtrices Tle of Contents Section : Introduction to the guide. Section : Definitions nd Opertions.. The concept of definitions nd opertions.

More information

Angles and Triangles

Angles and Triangles nges nd Tringes n nge is formed when two rys hve ommon strting point or vertex. The mesure of n nge is given in degrees, with ompete revoution representing 360 degrees. Some fmiir nges inude nother fmiir

More information

HW 9. Problem 14.5. a. To Find:

HW 9. Problem 14.5. a. To Find: HW 9 Problem 14.5. To Find: ( The number-verge moleulr weight (b The weight-verge moleulr weight ( The degree of polymeriztion for the given polypropylene mteril Moleulr Weight Rnge (g/mol x i w i 8,000

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

Radius of the Earth - Radii Used in Geodesy James R. Clynch Naval Postgraduate School, 2002

Radius of the Earth - Radii Used in Geodesy James R. Clynch Naval Postgraduate School, 2002 dius of the Erth - dii Used in Geodesy Jmes. Clynh vl Postgrdute Shool, 00 I. Three dii of Erth nd Their Use There re three rdii tht ome into use in geodesy. These re funtion of ltitude in the ellipsoidl

More information

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

Rational Functions. Rational functions are the ratio of two polynomial functions. Qx bx b x bx b. x x x. ( x) ( ) ( ) ( ) and

Rational Functions. Rational functions are the ratio of two polynomial functions. Qx bx b x bx b. x x x. ( x) ( ) ( ) ( ) and Rtionl Functions Rtionl unctions re the rtio o two polynomil unctions. They cn be written in expnded orm s ( ( P x x + x + + x+ Qx bx b x bx b n n 1 n n 1 1 0 m m 1 m + m 1 + + m + 0 Exmples o rtionl unctions

More information

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

More information

1 GSW IPv4 Addressing

1 GSW IPv4 Addressing 1 For s long s I ve een working with the Internet protools, people hve een sying tht IPv6 will e repling IPv4 in ouple of yers time. While this remins true, it s worth knowing out IPv4 ddresses. Even when

More information

The Chain Rule. rf dx. t t lim " (x) dt " (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx

The Chain Rule. rf dx. t t lim  (x) dt  (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx The Chin Rule The Chin Rule In this section, we generlize the chin rule to functions of more thn one vrible. In prticulr, we will show tht the product in the single-vrible chin rule extends to n inner

More information

Practice Test 2. a. 12 kn b. 17 kn c. 13 kn d. 5.0 kn e. 49 kn

Practice Test 2. a. 12 kn b. 17 kn c. 13 kn d. 5.0 kn e. 49 kn Prtie Test 2 1. A highwy urve hs rdius of 0.14 km nd is unnked. A r weighing 12 kn goes round the urve t speed of 24 m/s without slipping. Wht is the mgnitude of the horizontl fore of the rod on the r?

More information

Square & Square Roots

Square & Square Roots Squre & Squre Roots Squre : If nuber is ultiplied by itself then the product is the squre of the nuber. Thus the squre of is x = eg. x x Squre root: The squre root of nuber is one of two equl fctors which

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

Lesson 2.1 Inductive Reasoning

Lesson 2.1 Inductive Reasoning Lesson.1 Inutive Resoning Nme Perio Dte For Eerises 1 7, use inutive resoning to fin the net two terms in eh sequene. 1. 4, 8, 1, 16,,. 400, 00, 100, 0,,,. 1 8, 7, 1, 4,, 4.,,, 1, 1, 0,,. 60, 180, 10,

More information

MATHEMATICS I & II DIPLOMA COURSE IN ENGINEERING FIRST SEMESTER

MATHEMATICS I & II DIPLOMA COURSE IN ENGINEERING FIRST SEMESTER MATHEMATICS I & II DIPLOMA COURSE IN ENGINEERING FIRST SEMESTER A Plition nder Government of Tmilnd Distrition of Free Tetook Progrmme ( NOT FOR SALE ) Untohilit is sin Untohilit is rime Untohilit is inhmn

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

50 MATHCOUNTS LECTURES (10) RATIOS, RATES, AND PROPORTIONS

50 MATHCOUNTS LECTURES (10) RATIOS, RATES, AND PROPORTIONS 0 MATHCOUNTS LECTURES (0) RATIOS, RATES, AND PROPORTIONS BASIC KNOWLEDGE () RATIOS: Rtios re use to ompre two or more numers For n two numers n ( 0), the rtio is written s : = / Emple : If 4 stuents in

More information

Vectors Summary. Projection vector AC = ( Shortest distance from B to line A C D [OR = where m1. and m

Vectors Summary. Projection vector AC = ( Shortest distance from B to line A C D [OR = where m1. and m . Slr prout (ot prout): = osθ Vetors Summry Lws of ot prout: (i) = (ii) ( ) = = (iii) = (ngle etween two ientil vetors is egrees) (iv) = n re perpeniulr Applitions: (i) Projetion vetor: B Length of projetion

More information

2 DIODE CLIPPING and CLAMPING CIRCUITS

2 DIODE CLIPPING and CLAMPING CIRCUITS 2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

More information

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful Pentominoes Bruce Bguley Cscde Mth Systems, LLC Astrct. Pentominoes nd their reltives the polyominoes, polycues, nd polyhypercues will e used to explore nd pply vrious importnt mthemticl concepts. In this

More information