# Common and Uncommon Standard Number Sets

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Common and Uncommon Standard Number Sets W. Blaine Dowler July 8, 2010 Abstract There are a number of important (and interesting unimportant) sets in mathematics. Sixteen of those sets are detailed here. Contents 1 Natural Numbers 2 2 Whole Numbers 2 3 Prime Numbers 3 4 Composite Numbers 3 5 Perfect Numbers 3 6 Integers 4 7 Rational Numbers 4 8 Algebraic Numbers 5 9 Real Numbers 5 10 Irrational Numbers 6 11 Transcendental Numbers 6 12 Normal Numbers 6 13 Schizophrenic Numbers 7 14 Imaginary Numbers 7 15 Complex Numbers 8 16 Quaternions 8 1

2 1 Natural Numbers The first set of numbers to be defined is the set of natural numbers. The set is usually labeled N. This set is the smallest set that satisfies the following two conditions: 1. 1 is a natural number, usually written compactly as 1 N. 2. If n N, then n + 1 N. As this is the smallest set that satisfies these conditions, it is constructed by starting with 1, adding 1 to 1, adding 1 to that, and so forth, such that N = {1, 2, 3, 4,...} Note that set theorists will often include 0 in the natural numbers. The set of natural numbers was defined formally starting with 1 long before set theorists developed a rigorous way to define numbers as sets. In that formalism, it makes more sense to start with 0, but 1 is the more common standard because it long predates modern set theory. More advanced mathematicians may have encountered proof by induction. This is a method of completing proofs. The proof that this method of doing proofs is valid is based on matching logical statements up with the natural number system. Every natural number is also whole, an integer, rational, algebraic, real, complex and quaternionic. 2 Whole Numbers The set of whole numbers, denoted W, is defined as the union of 0 (or the set containing 0) with the natural numbers. As such, it is represented as W = {0, 1, 2, 3, 4,...} Every whole number is also an integer, rational, algebraic, real, complex and quaternionic. 2

3 3 Prime Numbers The prime numbers are the whole numbers which have exactly two positive whole number divisors. The set is then P = {2, 3, 5, 7, 11, 13, 17, 19, 23,...} They are often first defined for students as numbers which are only divisible by themselves and one, but that leads to an ambiguity: is 1 a prime number? There are a number of theorems that apply to all prime numbers, but which would not apply if 1 were included. For example, the prime factorization of a number is unique up to reordering. For example, 30 = = etc. However, if 1 were prime, then this would no longer be the case. Instead of having the same three factors in different orders, we would have 30 = = = = = and so forth. Making 1 an exception to almost every theorem involving prime numbers in this manner gets cumbersome. It is far more logical to define the group as the set of numbers with exactly two factors, which conforms to the common definition while neatly excluding 1. Every prime number is also whole, an integer, rational, algebraic, real, complex and quaternionic. 4 Composite Numbers The composite numbers are those whole numbers which have more than two divisors. While they have no consistent symbol, the set is {0, 4, 6, 8, 9, 10,...}. Note that 0 is divisible by everything, and that 1 is not in this set. 1 is neither prime nor composite, and as it is the only whole number which does not belong in either of those sets, it receives no special label for this distinction. Every composite number is also whole, an integer, rational, algebraic, real, complex and quaternionic. 5 Perfect Numbers The perfect numbers are those numbers whose factors (aside from themselves) add up to the number. The smallest perfect number is 6. The factors of 6 are 1, 2, 3 and 6. If we take 6 itself off the list, we are left with 1, 2 and 3. Well, 3

4 = 6, so 6 is a perfect number. These numbers are well spread out; the first four perfect numbers are 6, 28, 496 and Every perfect number is also natural, whole, composite, an integer, rational, algebraic, real, complex and quaternionic. 6 Integers The integers are the numbers defined as the whole numbers and the set of additive inverses (negatives) of the whole numbers. The entire professional mathematical community uses the label Z for the set, after the German word Zahlen. However, many North American high schools use I instead, dating back to the second World War, when it was decided that students should be distanced from German influence, so a more intuitive symbol was used. The academic community did not follow suit, especially since I was a symbol reserved for another set entirely. As a result, many North American high school students receive quite a shock when they first enter post-secondary mathematics and lose marks for using the wrong symbol when it is the only symbol they have ever known. The set of integers is Z = {..., 4, 3, 2, 1, 0, 1, 2, 3, 4,...} Every integer is also rational, algebraic, real, complex and quaternionic. 7 Rational Numbers The rational numbers are any numbers which can be represented as a ratio of the form q = z n where q is a rational number, z is an integer and n is a natural number. It is often defined as the ratio of two integers, but that definition requires the explicit exclusion of the zero denominator. The definition presented here can be used to represent any rational number without need for that exception. If n = 1, then we can see that the set of rational numbers includes all integers, and by extension, all whole and natural numbers. The standard symbol is Q, because R was assigned to something else and there was no expectation to find a set of numbers whose name began with the letter q. Because the rational numbers 4

5 include any numbers that can be written in fractional form, they include those whose decimal representations either terminate or repeat. Non-terminating, non-repeating decimals are not rational numbers. Every rational number is also algebraic, real, complex and quaternionic. 8 Algebraic Numbers The algebraic numbers are all of the numbers which can be the roots of a polynomial 1 with integer coefficients. This includes all rationals, since q = z n is the root of the simple polynomial nx z. This also includes some irrationals, including (but not limited to) all simple radical numbers. (The number n a is a root of polynomial x n a.) Somewhat counterintuitively, there are algebraic numbers which can only be expressed in terms of the polynomial(s) for whom they act as roots. This is a side effect of the fact that there is no general algorithm which can be applied to find all roots of an arbitrary polynomial of degree five or higher. (i.e. there is no method which will lead you to the roots of ax 5 + bx 4 + cx 3 + dx 2 + ex + f for every possible value of a, b, c, d, e and f.) Every algebraic number is also real, complex and quaternionic. 9 Real Numbers The set of real numbers, denoted R, is defined formally in relation to the rational numbers, as the closure of that set. Informally, the real numbers are any numbers you can put on a one-dimensional number line. All sets of numbers described so far will fit on such a number line, but they do not fill the number line. For example, 2 fits on the number line, but it is not rational, though it is algebraic. π is neither rational nor algebraic, but it does fit on the number line. The formal definition, as a closure of another set, in this case the rationals, means you put all of your rational numbers on the number line, and close the gaps between them by filling in all of the extra numbers. A formal definition of a closure comes from real analysis, which will be the topic of Bureau 42 s summer school in Every real number is also complex and quaternionic The roots of a polynomial in variable x are the values of x for which the polynomial equals 5

6 10 Irrational Numbers The set of irrational numbers, denoted Q, is also defined in relation to the rational numbers. Note that the symbol for the irrational numbers is the symbol for the rational numbers with a line over it. In mathematical logic terms, a line over a variable means not that variable. In this case, the symbol for the irrational numbers literally means not rational numbers. That is how they are defined: the irrational numbers are the real numbers which are not rational, so these are the numbers which you add to the number line to close the gaps in the rational numbers when forming the real numbers. These include all nonterminating, non-repeating decimals. There are common examples, such as 2 and π, as well as less common examples, such as , which has a definite pattern, but which is not an exact repetition. Interestingly, there are far more irrational numbers than rational numbers. Both sets are infinitely large, but there are relative sizes of infinity, and the infinity that corresponds to the size of this set is much larger than the infinity that corresponds to the other sets. Every irrational number is also real, complex and quaternionic. 11 Transcendental Numbers The transcendental numbers are similar to the irrational numbers in that they are defined in relation to another subset of the real numbers. The transcendental numbers are those you need to close the gaps between the algebraic numbers on the number line. This set, then, is a subset of the irrational numbers, as it includes all irrational numbers which do not act as roots to polynomials with integer coefficients. Every transcendental number is also irrational, real, complex and quaternionic. 12 Normal Numbers The normal numbers may be the numbers with the least intuitive name on the list. These are also irrational numbers, but they are those whose non-repeating decimal representations show an equal distribution of values. In other words, when writing out the decimal representation, any single digit is just as likely to appear as any other digit. Likewise, any pair of digits is just as likely as any 6

7 other pair, and so forth. This must be true in every base; the irrational number represented as in binary is in our normal decimal representation. This appears to have a random digit distribution in base 10 (which we are used to), but not in binary (base 2, which most of us are not used to.) For example, in binary, two consecutive 1s will not appear. Therefore, this is not a normal number. It is exceedingly difficult to prove that any given number is normal. It is believed, though not proven, that 2, e and π are all normal numbers. If a number truly is normal, then it has an infinitely long binary representation, and this representation is equally likely to contain any finite string of digits as any other finite string. Thus, it is believed (but also not proven) that a normal number represented in binary would contain any and every possible finite string of 0s and 1s in it somewhere. In other words, if we understand normal numbers as well as we think we do, then every normal number contains anything and everything that could possibly be stored on a computer s hard drive, including the complete works of Shakespeare, your favorite movie in high definition format, and the most popular video game of the year There s no guarantee that there are a finite number of digits preceding such strings, which means you may not necessarily be able to ever find them, but they re probably in there somewhere. Every normal number is also irrational, real, complex and quaternionic. 13 Schizophrenic Numbers The schizophrenic numbers are the numbers which initially appear to be rational for some finite number of decimal places, but eventually reveal their irrational character. For example, π 10 is schizophrenic, as it appears to 10 repeat for the first ten decimal places before revealing its irrational character. Every schizophrenic number is also real, irrational, complex and quaternionic. 14 Imaginary Numbers The set of imaginary numbers, which is the set that is correctly labeled I, is the set formed by the square roots of negative numbers. Beginning with the 7

8 definition 2 1 = i, we have 9 = 3i, 64 = 8i, and so forth. It was this set which inadvertently led to the naming of the real numbers. When first proposed, many mathematicians found imaginary numbers difficult to accept. (They are well accepted now, and have actually been measured in laboratory situations.) Thus, the real and imaginary numbers were actually named as a form of professional mocking: you can work with your imaginary numbers if you like, but I work with real numbers. Imaginary numbers have their own number line, which is perpendicular to the usual number line, and intersects the usual number line at 0 = 0i. Every imaginary number is also complex and quaternionic. 15 Complex Numbers Complex numbers are the combinations of real and imaginary numbers. For example, = 3 + 2i is a complex number. If a complex number x + yi is the root of a polynomial with integer coefficients, then x yi is also a root of that polynomial. x yi is the complex conjugate of x + yi, and (x + yi) (x yi) = x 2 + xyi xyi y 2 i 2 = x 2 y = x 2 + y 2 is a real number. Every complex number is also quaternionic. 16 Quaternions The set of quaternions is denoted H, because Q was taken and they were discovered by Sir William Rowan Hamilton, so the label is the first letter of his last name. These are very much like complex numbers, but instead of having one number which squares to -1 (i), there are three: i 2 = j 2 = k 2 = 1. Strangely, i, j and k anticommute under multiplication, meaning ij = ji, and so forth. Furthermore, ij = k, jk = i and ki = j, such that ijk = 1. These counterintuitive numbers have applications to physics through special relativity, and (if you set the appropriate coefficients of i, j and k to zero) you will find that this set includes every set of numbers listed in this document. 2 Note that electrical engineers were already using i for a current when they starting applying imaginary numbers to their work. In that field, 1 = j. 8

9 These sixteen are not the only sets of numbers by any means, but they are some of the most important and/or interesting sets of numbers out there. 9

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

### Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 1 Real Numbers

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 1 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### Square Roots. Learning Objectives. Pre-Activity

Section 1. Pre-Activity Preparation Square Roots Our number system has two important sets of numbers: rational and irrational. The most common irrational numbers result from taking the square root of non-perfect

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions

MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

### Zeros of Polynomial Functions

Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is

QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### Homework 5 Solutions

Homework 5 Solutions 4.2: 2: a. 321 = 256 + 64 + 1 = (01000001) 2 b. 1023 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (1111111111) 2. Note that this is 1 less than the next power of 2, 1024, which

### Lesson on Repeating and Terminating Decimals. Dana T. Johnson 6/03 College of William and Mary dtjohn@wm.edu

Lesson on Repeating and Terminating Decimals Dana T. Johnson 6/03 College of William and Mary dtjohn@wm.edu Background: This lesson would be embedded in a unit on the real number system. The set of real

### Fractions and Decimals

Fractions and Decimals Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles December 1, 2005 1 Introduction If you divide 1 by 81, you will find that 1/81 =.012345679012345679... The first

### MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

### Set Theory Basic Concepts and Definitions

Set Theory Basic Concepts and Definitions The Importance of Set Theory One striking feature of humans is their inherent need and ability to group objects according to specific criteria. Our prehistoric

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

### 5. Factoring by the QF method

5. Factoring by the QF method 5.0 Preliminaries 5.1 The QF view of factorability 5.2 Illustration of the QF view of factorability 5.3 The QF approach to factorization 5.4 Alternative factorization by the

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### 3.4 Complex Zeros and the Fundamental Theorem of Algebra

86 Polynomial Functions.4 Complex Zeros and the Fundamental Theorem of Algebra In Section., we were focused on finding the real zeros of a polynomial function. In this section, we expand our horizons and

### Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

### CHAPTER 3 Numbers and Numeral Systems

CHAPTER 3 Numbers and Numeral Systems Numbers play an important role in almost all areas of mathematics, not least in calculus. Virtually all calculus books contain a thorough description of the natural,

### MTH124: Honors Algebra I

MTH124: Honors Algebra I This course prepares students for more advanced courses while they develop algebraic fluency, learn the skills needed to solve equations, and perform manipulations with numbers,

### Equations and Inequalities

Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.

### MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

### The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen

CONTINUED FRACTIONS AND FACTORING Niels Lauritzen ii NIELS LAURITZEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF AARHUS, DENMARK EMAIL: niels@imf.au.dk URL: http://home.imf.au.dk/niels/ Contents

Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

### Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below.

Infinite Algebra 1 Kuta Software LLC Common Core Alignment Software version 2.05 Last revised July 2015 Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below. High School

### 0.8 Rational Expressions and Equations

96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

### a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### The program also provides supplemental modules on topics in geometry and probability and statistics.

Algebra 1 Course Overview Students develop algebraic fluency by learning the skills needed to solve equations and perform important manipulations with numbers, variables, equations, and inequalities. Students

### Pythagorean Triples. Chapter 2. a 2 + b 2 = c 2

Chapter Pythagorean Triples The Pythagorean Theorem, that beloved formula of all high school geometry students, says that the sum of the squares of the sides of a right triangle equals the square of the

### 13 Infinite Sets. 13.1 Injections, Surjections, and Bijections. mcs-ftl 2010/9/8 0:40 page 379 #385

mcs-ftl 2010/9/8 0:40 page 379 #385 13 Infinite Sets So you might be wondering how much is there to say about an infinite set other than, well, it has an infinite number of elements. Of course, an infinite

### Math 3000 Section 003 Intro to Abstract Math Homework 2

Math 3000 Section 003 Intro to Abstract Math Homework 2 Department of Mathematical and Statistical Sciences University of Colorado Denver, Spring 2012 Solutions (February 13, 2012) Please note that these

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### 9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role

### 1 Number System. Introduction. Face Value and Place Value of a Digit. Categories of Numbers

RMAT Success Master 3 1 Number System Introduction In the decimal number system, numbers are expressed by means of symbols 0, 1,, 3, 4, 5, 6, 7, 8, 9, called digits. Here, 0 is called an insignificant

### A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

### Irrational Numbers. A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers.

Irrational Numbers A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers. Definition: Rational Number A rational number is a number that

### Algebra 1 Course Objectives

Course Objectives The Duke TIP course corresponds to a high school course and is designed for gifted students in grades seven through nine who want to build their algebra skills before taking algebra in

CONTENTS Introduction...iv. Number Systems... 2. Algebraic Expressions.... Factorising...24 4. Solving Linear Equations...8. Solving Quadratic Equations...0 6. Simultaneous Equations.... Long Division

### Today s Topics. Primes & Greatest Common Divisors

Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime

9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

### PART I. THE REAL NUMBERS

PART I. THE REAL NUMBERS This material assumes that you are already familiar with the real number system and the representation of the real numbers as points on the real line. I.1. THE NATURAL NUMBERS

### College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran

College Algebra - MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or x-intercept) of a polynomial is identical to the process of factoring a polynomial.

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### C H A P T E R Regular Expressions regular expression

7 CHAPTER Regular Expressions Most programmers and other power-users of computer systems have used tools that match text patterns. You may have used a Web search engine with a pattern like travel cancun

### Computer Algebra for Computer Engineers

p.1/14 Computer Algebra for Computer Engineers Preliminaries Priyank Kalla Department of Electrical and Computer Engineering University of Utah, Salt Lake City p.2/14 Notation R: Real Numbers Q: Fractions

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### Developmental Math Course Outcomes and Objectives

Developmental Math Course Outcomes and Objectives I. Math 0910 Basic Arithmetic/Pre-Algebra Upon satisfactory completion of this course, the student should be able to perform the following outcomes and

### CS 3719 (Theory of Computation and Algorithms) Lecture 4

CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### ALGEBRA I / ALGEBRA I SUPPORT

Suggested Sequence: CONCEPT MAP ALGEBRA I / ALGEBRA I SUPPORT August 2011 1. Foundations for Algebra 2. Solving Equations 3. Solving Inequalities 4. An Introduction to Functions 5. Linear Functions 6.

### Lesson Plan. N.RN.3: Use properties of rational and irrational numbers.

N.RN.3: Use properties of rational irrational numbers. N.RN.3: Use Properties of Rational Irrational Numbers Use properties of rational irrational numbers. 3. Explain why the sum or product of two rational

### Continued Fractions. Darren C. Collins

Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history

### ModuMath Algebra Lessons

ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

### Number Systems I. CIS008-2 Logic and Foundations of Mathematics. David Goodwin. 11:00, Tuesday 18 th October

Number Systems I CIS008-2 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 11:00, Tuesday 18 th October 2011 Outline 1 Number systems Numbers Natural numbers Integers Rational

### God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)

Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work

### Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

### Unit 1 Review Part 1 3 combined Handout KEY.notebook. September 26, 2013

Math 10c Unit 1 Factors, Powers and Radicals Key Concepts 1.1 Determine the prime factors of a whole number. 650 3910 1.2 Explain why the numbers 0 and 1 have no prime factors. 0 and 1 have no prime factors

### 8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

### Proofs are short works of prose and need to be written in complete sentences, with mathematical symbols used where appropriate.

Advice for homework: Proofs are short works of prose and need to be written in complete sentences, with mathematical symbols used where appropriate. Even if a problem is a simple exercise that doesn t

### So let us begin our quest to find the holy grail of real analysis.

1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

### NUMBER SYSTEMS. William Stallings

NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html

### Lecture 5 : Solving Equations, Completing the Square, Quadratic Formula

Lecture 5 : Solving Equations, Completing the Square, Quadratic Formula An equation is a mathematical statement that two mathematical expressions are equal For example the statement 1 + 2 = 3 is read as

### Extra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam.

Extra Credit Assignment Lesson plan The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. The extra credit assignment is to create a typed up lesson

### 47 Numerator Denominator

JH WEEKLIES ISSUE #22 2012-2013 Mathematics Fractions Mathematicians often have to deal with numbers that are not whole numbers (1, 2, 3 etc.). The preferred way to represent these partial numbers (rational

### Section 1.1 Real Numbers

. Natural numbers (N):. Integer numbers (Z): Section. Real Numbers Types of Real Numbers,, 3, 4,,... 0, ±, ±, ±3, ±4, ±,... REMARK: Any natural number is an integer number, but not any integer number is

### 2 Complex Functions and the Cauchy-Riemann Equations

2 Complex Functions and the Cauchy-Riemann Equations 2.1 Complex functions In one-variable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)

### Theory of Computation Prof. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras

Theory of Computation Prof. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture No. # 31 Recursive Sets, Recursively Innumerable Sets, Encoding

### CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### Functions and Equations

Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

### MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

### Situation: Dividing Linear Expressions

Situation: Dividing Linear Expressions Date last revised: June 4, 203 Michael Ferra, Nicolina Scarpelli, Mary Ellen Graves, and Sydney Roberts Prompt: An Algebra II class has been examining the product

### Chapter 4 -- Decimals

Chapter 4 -- Decimals \$34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789

### 1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

### 2.1 Sets, power sets. Cartesian Products.

Lecture 8 2.1 Sets, power sets. Cartesian Products. Set is an unordered collection of objects. - used to group objects together, - often the objects with similar properties This description of a set (without

### How many numbers there are?

How many numbers there are? RADEK HONZIK Radek Honzik: Charles University, Department of Logic, Celetná 20, Praha 1, 116 42, Czech Republic radek.honzik@ff.cuni.cz Contents 1 What are numbers 2 1.1 Natural

### Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

### CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce

### This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### Reading 13 : Finite State Automata and Regular Expressions

CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model

### Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00

18.781 Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00 Throughout this assignment, f(x) always denotes a polynomial with integer coefficients. 1. (a) Show that e 32 (3) = 8, and write down a list

### Basics of Polynomial Theory

3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where

### Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

### Section 2-5 Quadratic Equations and Inequalities

-5 Quadratic Equations and Inequalities 5 a bi 6. (a bi)(c di) 6. c di 63. Show that i k, k a natural number. 6. Show that i k i, k a natural number. 65. Show that i and i are square roots of 3 i. 66.

### 6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

### PowerTeaching i3: Algebra I Mathematics

PowerTeaching i3: Algebra I Mathematics Alignment to the Common Core State Standards for Mathematics Standards for Mathematical Practice and Standards for Mathematical Content for Algebra I Key Ideas and