Chapter 3 Pulse Width Modulator

Size: px
Start display at page:

Download "Chapter 3 Pulse Width Modulator"

Transcription

1 Chapter 3 Pulse Width Modulator

2 Pulse Width Modulator 3-1: Curriculum Objectives 1. To implement the pulse width modulator by using µa To understand the characteristics and basic circuit of LM To implement the pulse width modulator by using LM To measure and analyze the pulse width modulation circuit. 3-2: Curriculum Theory Pulse width modulation (PWM) is a modulation method in between the digital and analog, which can be used to process the digital and analog data transmission. The amplitude of pulse width modulator is fixed, but the pulse width will be varied and controlled by the input audio signal amplitude. If we control the time variation of the electric level, then this means that we can control the width of the pulse. When the amplitude of the audio signal is getting larger, then the pulse width will become wide; on the' other hand, when the amplitude of the audio is getting smaller, then the pulse width will become narrow. Therefore, the PWM can be applied in the fast and slow of the rotation rate of the motor, the strong and weak of the light source of the light bulb and so on. The relationship between audio and pulse width modulation signal is shown in figure 3-1. Generally, pulse wave modulation can be classified as pulse amplitude modulation (PAM), pulse position modulation (PPM), pulse width modulation (PWM) and so on. Table 3-1 shows the comparison between each modulations and figure 3-2 shows the output characteristics diagram of PAM, PPM and PWM modulations. Figure 3-3 is a square wave oscillation circuit, the output signal pulse width is controlled by R 2, C 2 and V in (+) input terminal voltage. The op-amplifier μa741 is the comparator in this circuit. The V in (+) input (pin 3) reference voltage is decided by the resistor R 1 and variable resistor VR 1. R 2 and C 2 are constructed to become a charge/discharge path. When no signal supply to the audio signal input terminal, if we adjust VR 1, then the V in(+) input terminal operation voltage will

3 change, which means the reference voltage of comparator will change, thus, the output signal of pulse width will also change too. Figure 3-1 Signal waveforms of audio signal and PWM signal. Table 3-1 Comparisons between three different types of modulations. Modulation Types PAM PPM PWM Features Pulse amplitude will be varied with the amplitude of the input signal. Pulse position will be varied with the amplitudeof the input signal. Pulse width will bevaried with the amplitudeof the input signal. Pulse Amplitude Varied Constant Amplitude Pulse Width Constant Width Constant Width Pulse Interval Changeless Varied Constant Amplitude Varied Changeless

4 Figure 3-2 Output characteristics diagram of PAM, PPM and PWM modulations. Figure 3-3 Circuit diagram of PWM by using µa741.

5 Figure 3-4 Waveforms diagram of the charge and discharge of ua741. If the VR 1 is fixed, it means that the operation voltage of V in (+) input terminal is fixed. If input an audio signal to the audio signal input terminal, then the audio signal voltage will add to the operation voltage of the V in (+) input terminal. Besides, by following the path of charge and discharge of Rand C 2, the operation voltage of V in (-)will change as well, as shown in figure 3-4. However, when we change the bias point by tuning the variable resistor VR 1, we can change the level and the width of the output square wave of V in (+) and V in (-) at the same time. At this moment, the reference voltage of the comparator will be varied and controlled by the voltage of the audio signal. Therefore, the output signal of pulse width will also change with respect to the voltage of input audio signal,then the pulse width modulation signal is produced. The circuit diagram of LM555 astablemultivibrator is shown in figure 3-5. In figure 3-4, the circuit

6 can be divided into 5 important parts, which are lower comparator, upper comparator, flip-flop (FF), discharge transistor and output driver. If the controlled voltage terminal (pin 5) does not input any signal, then the upper comparator reference voltage is 2V CC /3 and the lower comparator reference voltage is V CC /3. If we add the controller voltage to the control voltage terminal (pin 5), the comparator reference voltage can be externally controlled. When the controlled voltage termingdoes not use, then we can make the controlled voltage terminal connects with a capacitor 0.01 μf to the ground to avoid the interference of noise. Figure 3-5 Circuit diagram of LM555 astablemultivibrator. Figure 3-5 is the circuit diagram of astablemultivibrator by using LM555 IC. The output signal of this circuit is a square wave. The oscillation frequency is determined by R 1, R 2 and C 1. The charge

7 time (t 1 ) of capacitor x(r 1 +R 2 ) x C 1 ; the discharge time (t 2 ) of capacitor C 1 is x R 2 xc 1. So the period T is the charge time t 1 plus the discharge time t 2 equals t o 0.693x( R 1 + 2xR 2 ) x C 1. Figure 3-6 sho ws t he o utput waveforms of LM555 astablemultivibrator at different points. Figure 3-7 is the circuit diagram of monostablemultivibrator by using LM555 IC. When the trigger input changes from high (+12 V) to low (0 V), the output terminal will produce a pulse. This pulse width T is determined by R 1 x C 1 actually is approximately 1.1 x R 1 x C 1. If R 1 = 10 kω and C 1 = 0.01 μf, then the pulse width is about 110 µs. If the frequency is less than 9.1 khz at the trigger signal input terminal (pin 2), (refer to the waveforms of astablemultivibrator in figure 3-6), then the output will be the 50 % duty cycle pulse signal. The audio signal is inputted by the controlled voltage terminal. Therefore, this will produce the PWM signal. Figure 3-8 is the circuit diagram of PWM by using two LM555 ICs, which U, which U 1 is the astablemultivibrator and U 2 is the monostablemultivibrator. By combining these two parts, we will obtain a PWM circuit. Monostablemultivibrator (U 2 )needs the trigger pulse from the astablemultivibrator (U 1 output terminal (pin 3), the audio signal is inputted at the controlled voltage (pin 5) of the monostablemultivibrator (U 2 ). The PWM signal is outputted at the output terminal (pin 3) of the monostablemultivibrator.

8 Figure 3-6 Output waveforms of LM555 astablemultivibrator at different points.

9 Figure 3-7 Circuit diagram of monostablemultivibrator by using LM555 IC. Figure 3-8 Circuit diagram of PAM by using two LM555 ICs.

10 3-3: Experiment Items Experiment 1: µa741 pulse width modulator 1. Refer to figure 3-3 or figure DCT3-1 on GOTT DCT module, let J1 be open circuit, that means R 1 is unused. 2. Adjust the variable resistor VR 1 so that V in (+) input terminal voltage is 0 V. Then let J1 be short circuit, that means let R 1 is used. 3. At the audio signal frequency input terminal (Audio I/P), input a 3 V amplitude and 500 Hz frequency waveform. 4. By using oscilloscope, observe on the signal waveform of audio signal. Input terminal and output terminal (pin 6). Then record the measured results in table Let J1 be open circuit, then record the audio input signal. Adjust VR 1 so that V in (+) voltage of input terminal is 6 V. 6. Let J1 be short circuit, that means let R 1 is used. Then input the audio signal terminal into the original audio signal. 7. By using oscilloscope, observe on the signal waveforms of the audio signal input terminal and output terminal (pin 6). Then record the measured results in table Let J1 be open circuit, that means R 1 is unused and record the audio input signal. Adjust VR 1 so that V in (+) voltage of input terminal is -6V. 9. Let J1 be short circuit, then input the original audio signal into the audio signal input terminal. 10. By using oscilloscope, observe on the signal waveforms of the audio signal input terminal and output terminal (pin 6). Then record the measured results in table Let J1 be open circuit and record the audio input signal. Adjust VR 1 so that V in (+) voltage of the input terminal is 0 V, then let J1 be open circuit. 12. Change the audio signal amplitude to 5 V, the others remain the same. Repeat step 4 to step 10 then record the measured results in table 3-3.

11 Experiment 2: LM555 pulse width modulator 1. Refer to figure 3-8 or figure DCT3-2 on GOTT DCT module. 2. By using oscilloscope, observe on the test point TP3 and the output Signal waveform, at the same time adjust variable resistor VR 1 until when the square wave signal of test point TP3 at differences voltage level, the output square wave signal has different pulse width. (i.e. different duty-cycle). 3. At the audio signal input terminal (Audio I/P), input a 2.5 V amplitude and 1 khz frequency square wave. Then record the measured results in table By using oscilloscope, observe on the output signal waveforms of the discharge capacitor TP1, critical point TP2, trigger signal TP3, critical point of the discharge capacitor TP4, and PWM O/P. 5. By using oscilloscope and switching to DC channel, observe on the output signal waveforms and record the measured results in table Change the input signal to triangular wave, the others remain the same, repeat step Change the input signal to sinusoidal wave, the others remain the same, repeat step Change the input signal amplitude to 1.5 V, the others remain the same, repeat step 6 to step 7, then record the measured results in table Repeat step 3 to step 5, then record the measured results in table 3-7.

12 3-4: Measured Result Table 3-2 Measured results of µa741 pulse width modulator. (V m = 3V, f m = 500 Hz) DC Bias Voltage at Input Signal Waveforms V in (+) Output Signal Waveforms 0V 6V -6V

13 Table 3-3 Measured results of μa741 pulse width modulator. (V m =5 V in, f m = 500 Hz) DC Bias Voltage at V in (+) Input Signal Waveforms Output Signal Waveforms 0V 6V -6V

14 Table 3-4 Measured results of LM555 pulse width modulator. (V m = 2.5 V, f m = I khz) Input Signals Input Signal Waveforms Square Wave Triangular wave Sinusoidal Wave

15 Table 3-5 Measured results of LM555 pulse width modulator. (V m = 2.5 V, f m =1 khz Square Wave) Input Signals Input Signal Waveforms Square Wave Triangular Wave Sinusoidal Wave

16 Table 3-5 Measured results of LM555 pulse width modulator. (V m = 2.5 V, f m =1 khz Triangular Wave) Test Points Output Signal Waveforms TP1 TP2 TP3 TP4 PWM O/P

17 Figure 3-5 Measured results of LM555 pulse width modulator. (Continue) (V m = 2.5 V, f m =1 khz Sinusoidal Wave) Test Points Output Signal Waveforms TP1 TP2 TP3 TP4 PWM O/P

18 Table 3-6 Measured results of LM555 pulse width modulator. (V m = 1.5 V, f m = 1kHz) Input Signals Input Signal Waveforms Square Wave Triangular Wave Sinusoidal Wave

19 Table 3-7 Measured results of LM555 pulse width modulator. (V m =1.5 V, fm = 1 khz Square Wave) Test Points Output Signal Waveforms TP1 TP2 TP3 TP4 PWM O/P

20 Table 3-7 Measured results of LM555 pulse width modulator. (Continue) (V m =1.5 V, f m =1 khz Triangular Wave) Test Points Output Signal Waveforms TP1 TP2 TP3 TP4 PWM O/P

21 3-5: Problems Discussion 1. What are the functions of VR 1 in figure 3-3 and figure 3-8? 2. If we change the capacitor C 6 to 0.1 µf in figure 3-8, the others remain the same, does the output still show the PWM waveform? Why? 3. For output voltage polarity, what are the differences of PWM signal between experiment 1 and experiment 2?

Experiment # (4) AM Demodulator

Experiment # (4) AM Demodulator Islamic University of Gaza Faculty of Engineering Electrical Department Experiment # (4) AM Demodulator Communications Engineering I (Lab.) Prepared by: Eng. Omar A. Qarmout Eng. Mohammed K. Abu Foul Experiment

More information

Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip

Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip Pulse Width Modulation (PWM) LED Dimmer Circuit Using a 555 Timer Chip Goals of Experiment Demonstrate the operation of a simple PWM circuit that can be used to adjust the intensity of a green LED by varying

More information

1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver

1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver Electronics Exercise 2: The 555 Timer and its Applications Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles Ume,

More information

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.

More information

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

More information

Experiment 8 : Pulse Width Modulation

Experiment 8 : Pulse Width Modulation Name/NetID: Teammate/NetID: Experiment 8 : Pulse Width Modulation Laboratory Outline In experiment 5 we learned how to control the speed of a DC motor using a variable resistor. This week, we will learn

More information

LINEAR INTEGRATED-CIRCUIT FUNCTION GENERATOR

LINEAR INTEGRATED-CIRCUIT FUNCTION GENERATOR ~. c EXPERIMENT 9 Name: LINEAR INTEGRATED-CIRCUIT FUNCTION GENERATOR OBJECTIVES: INTRODUCTION: 1. To observe the operation of a linear integrated-circuit function generator. 2. To observe the frequency-versus-timing

More information

LOW COST MOTOR PROTECTION FILTERS FOR PWM DRIVE APPLICATIONS STOPS MOTOR DAMAGE

LOW COST MOTOR PROTECTION FILTERS FOR PWM DRIVE APPLICATIONS STOPS MOTOR DAMAGE LOW COST MOTOR PROTECTION FILTERS FOR PWM DRIVE APPLICATIONS STOPS MOTOR DAMAGE Karl M. Hink, Executive Vice President Originally presented at the Power Quality 99 Conference ABSTRACT Motor protection

More information

TLI4946. Datasheet TLI4946K, TLI4946-2K, TLI4946-2L. Sense and Control. May 2009

TLI4946. Datasheet TLI4946K, TLI4946-2K, TLI4946-2L. Sense and Control. May 2009 May 2009 TLI4946 High Precision Hall Effect Latches for Industrial and Consumer Applications TLI4946K, TLI4946-2K, TLI4946-2L Datasheet Rev. 1.0 Sense and Control Edition 2009-05-04 Published by Infineon

More information

Series AMLDL-Z Up to 1000mA LED Driver

Series AMLDL-Z Up to 1000mA LED Driver FEATURES: Click on Series name for product info on aimtec.com Series Up to ma LED Driver Models Single output Model Input Voltage (V) Step Down DC/DC LED driver Operating Temperature range 4ºC to 85ºC

More information

Physics 120 Lab 6: Field Effect Transistors - Ohmic region

Physics 120 Lab 6: Field Effect Transistors - Ohmic region Physics 120 Lab 6: Field Effect Transistors - Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS - V

More information

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

More information

XR-2206 Monolithic Function Generator

XR-2206 Monolithic Function Generator ...the analog plus company TM XR-0 Monolithic Function Generator FEATURES Low-Sine Wave Distortion, 0.%, Typical Excellent Temperature Stability, 0ppm/ C, Typ. Wide Sweep Range, 000:, Typical Low-Supply

More information

Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015

Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015 Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) The standard tuning values used in ADVANCED Motion Controls drives are conservative and work well in over 90%

More information

Simulation and Analysis of PWM Inverter Fed Induction Motor Drive

Simulation and Analysis of PWM Inverter Fed Induction Motor Drive Simulation and Analysis of PWM Inverter Fed Induction Motor Drive C.S.Sharma, Tali Nagwani Abstract Sinusoidal Pulse Width Modulation variable speed drives are increasingly applied in many new industrial

More information

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff Supply voltage Supervisor TL77xx Series Author: Eilhard Haseloff Literature Number: SLVAE04 March 1997 i IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to

More information

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP 1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose

More information

3-Phase DC Brushless Motor Pre-Drivers Technical Information NJM2625A

3-Phase DC Brushless Motor Pre-Drivers Technical Information NJM2625A 3Phase DC Brushless Motor PreDrivers 1.FEATURE NJM2625 is a controller and predriver for speed control 3phase blushless DC motor. The device provides the proper sequencing of 3phase drive output with external

More information

A-145 LFO. 1. Introduction. doepfer System A - 100 LFO A-145

A-145 LFO. 1. Introduction. doepfer System A - 100 LFO A-145 doepfer System A - 100 FO A-145 1. Introduction A-145 FO Module A-145 (FO) is a low frequency oscillator, which produces cyclical control voltages in a very wide range of frequencies. Five waveforms are

More information

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND

More information

Adding Heart to Your Technology

Adding Heart to Your Technology RMCM-01 Heart Rate Receiver Component Product code #: 39025074 KEY FEATURES High Filtering Unit Designed to work well on constant noise fields SMD component: To be installed as a standard component to

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

More information

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS. 1996 Jan 08

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS. 1996 Jan 08 INTEGRATED CIRCUITS DATA SHEET power amplifier with diagnostic facility Supersedes data of March 1994 File under Integrated Circuits, IC01 1996 Jan 08 FEATURES Requires very few external components High

More information

Properties of electrical signals

Properties of electrical signals DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier

More information

LogicLab s.r.l Via della valle 67 20048 Carate Brianza (MI) Tel. +39 0362 805287 Fax. +39 0362 1914102 www.logiclab.it

LogicLab s.r.l Via della valle 67 20048 Carate Brianza (MI) Tel. +39 0362 805287 Fax. +39 0362 1914102 www.logiclab.it Test system DV1512A2NCI Single Current Generator Maximum current 15 Arms in continuity and 30 Arms per 1 s Single Voltage generator 150 Vrms Programmable phase between Current and Voltage Programmable

More information

Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

More information

APPLICATION NOTES: Dimming InGaN LED

APPLICATION NOTES: Dimming InGaN LED APPLICATION NOTES: Dimming InGaN LED Introduction: Indium gallium nitride (InGaN, In x Ga 1-x N) is a semiconductor material made of a mixture of gallium nitride (GaN) and indium nitride (InN). Indium

More information

Features. Applications

Features. Applications LM555 Timer General Description The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the

More information

Pulse Width Modulation

Pulse Width Modulation Pulse Width Modulation Pulse width modulation (PWM) is a powerful technique for controlling analog circuits with a microprocessor's digital outputs. PWM is employed in a wide variety of applications, ranging

More information

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Programmable Single-/Dual-/Triple- Tone Gong SAE 800 Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones

More information

Lock - in Amplifier and Applications

Lock - in Amplifier and Applications Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS 8 TO 35 V OPERATION 5.1 V REFERENCE TRIMMED TO ± 1 % 100 Hz TO 500 KHz OSCILLATOR RANGE SEPARATE OSCILLATOR SYNC TERMINAL ADJUSTABLE DEADTIME CONTROL INTERNAL

More information

Lab Unit 4: Oscillators, Timing and the Phase Locked Loop

Lab Unit 4: Oscillators, Timing and the Phase Locked Loop Chemistry 8 University of WisconsinMadison Lab Unit : Oscillators, Timing and the Phase Locked Loop Oscillators and timing circuits are very widely used in electronic measurement instrumentation. In this

More information

ETEC 421 - Digital Controls PIC Lab 10 Pulse Width Modulation

ETEC 421 - Digital Controls PIC Lab 10 Pulse Width Modulation ETEC 421 - Digital Controls PIC Lab 10 Pulse Width Modulation Program Definition: Write a program to control the speed of a dc motor using pulse width modulation. Discussion: The speed of a dc motor is

More information

Study Guide for the Electronics Technician Pre-Employment Examination

Study Guide for the Electronics Technician Pre-Employment Examination Bay Area Rapid Transit District Study Guide for the Electronics Technician Pre-Employment Examination INTRODUCTION The Bay Area Rapid Transit (BART) District makes extensive use of electronics technology

More information

EET272 Worksheet Week 9

EET272 Worksheet Week 9 EET272 Worksheet Week 9 answer questions 1-5 in preparation for discussion for the quiz on Monday. Finish the rest of the questions for discussion in class on Wednesday. Question 1 Questions AC s are becoming

More information

Pulse Width Modulation Applications

Pulse Width Modulation Applications Pulse Width Modulation Applications Lecture 21 EE 383 Microcomputers Learning Objectives What is DTMF? How to use PWM to generate DTMF? How to use PWM to control a servo motor? How to use PWM to control

More information

DESIGN AND IMPLMENTATION OF INTELLIGENT MOBILE PHONE DETECTOR

DESIGN AND IMPLMENTATION OF INTELLIGENT MOBILE PHONE DETECTOR DESIGN AND IMPLMENTATION OF INTELLIGENT MOBILE PHONE DETECTOR Christian C. Mbaocha Department of Electrical/Electronic Engineering, Federal University of Technology, NIGERIA. christian_ij@yahoo.com ABSTRACT

More information

Low Cost Pure Sine Wave Solar Inverter Circuit

Low Cost Pure Sine Wave Solar Inverter Circuit Low Cost Pure Sine Wave Solar Inverter Circuit Final Report Members: Cameron DeAngelis and Luv Rasania Professor: Yicheng Lu Advisor: Rui Li Background Information: Recent rises in electrical energy costs

More information

Lab 5 Operational Amplifiers

Lab 5 Operational Amplifiers Lab 5 Operational Amplifiers By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC. Purpose The purpose of this lab is to examine the properties

More information

Op Amp Circuit Collection

Op Amp Circuit Collection Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference

More information

Frequency Response of Filters

Frequency Response of Filters School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

More information

1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal.

1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. CHAPTER 3: OSCILLOSCOPE AND SIGNAL GENERATOR 3.1 Introduction to oscilloscope 1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. 2. The graph show signal change

More information

OPERATIONAL AMPLIFIERS. o/p

OPERATIONAL AMPLIFIERS. o/p OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A

More information

unit : mm With heat sink (see Pd Ta characteristics)

unit : mm With heat sink (see Pd Ta characteristics) Ordering number: EN1321E Monolithic Linear IC LA4261 3.5 W 2-Channel AF Power Amplifier for Home Stereos and Music Centers Features. Minimum number of external parts required (No input capacitor, bootstrap

More information

Switch Mode Power Supply Topologies

Switch Mode Power Supply Topologies Switch Mode Power Supply Topologies The Buck Converter 2008 Microchip Technology Incorporated. All Rights Reserved. WebSeminar Title Slide 1 Welcome to this Web seminar on Switch Mode Power Supply Topologies.

More information

Operational Amplifier as mono stable multi vibrator

Operational Amplifier as mono stable multi vibrator Page 1 of 5 Operational Amplifier as mono stable multi vibrator Aim :- To construct a monostable multivibrator using operational amplifier 741 and to determine the duration of the output pulse generated

More information

Contents. Preface. xiii. Part I 1

Contents. Preface. xiii. Part I 1 Contents Preface xiii Part I 1 Chapter 1 Introduction to Frequency-Modulated Continuous-Wave 3 Radar 1.1 Brief History 3 1.2 Examples of Use of FMCW Radar 5 1.2.1 Radio Altimeters 5 1.2.2 Level-Measuring

More information

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder Robert W. Erickson University of Colorado, Boulder 1 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction

More information

Voltage. Oscillator. Voltage. Oscillator

Voltage. Oscillator. Voltage. Oscillator fpa 147 Week 6 Synthesis Basics In the early 1960s, inventors & entrepreneurs (Robert Moog, Don Buchla, Harold Bode, etc.) began assembling various modules into a single chassis, coupled with a user interface

More information

LM386 Low Voltage Audio Power Amplifier

LM386 Low Voltage Audio Power Amplifier Low Voltage Audio Power Amplifier General Description The LM386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count

More information

HIGH VOLTAGE POWER SUPPLY FOR ELECTRO-OPTICS APPLICATIONS

HIGH VOLTAGE POWER SUPPLY FOR ELECTRO-OPTICS APPLICATIONS HIGH VOLTAGE POWER SUPPLY FOR ELECTRO-OPTICS APPLICATIONS A. R. Tamuri, N. Bidin & Y. M. Daud Laser Technology Laboratory, Physics Department Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai,

More information

AMZ-FX Guitar effects. (2007) Mosfet Body Diodes. http://www.muzique.com/news/mosfet-body-diodes/. Accessed 22/12/09.

AMZ-FX Guitar effects. (2007) Mosfet Body Diodes. http://www.muzique.com/news/mosfet-body-diodes/. Accessed 22/12/09. Pulse width modulation Pulse width modulation is a pulsed DC square wave, commonly used to control the on-off switching of a silicon controlled rectifier via the gate. There are many types of SCR s, most

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Center-Tapped Full-wave Rectifier The center-tapped (CT) full-wave rectifier

More information

VCO Phase noise. Characterizing Phase Noise

VCO Phase noise. Characterizing Phase Noise VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which

More information

VOLTAGE-TO-FREQUENCY CONVERTER

VOLTAGE-TO-FREQUENCY CONVERTER VOTAGE-TO-FEQUENY ONVETE Internal circuit of M I VOTAGE EFEENE M OP AMP UENT MIO Q,9V Q P B Vin T ONE SHOT TIME VOT OMP VOT OMP S Q Q Q Q Q Q In direct transmission of an analog signal (below), V AN will

More information

USER MANUAL FIBER OPTIC ANALOG TRANSMITTER AND RECEIVER MODULE

USER MANUAL FIBER OPTIC ANALOG TRANSMITTER AND RECEIVER MODULE USER MANUAL FIBER OPTIC ANALOG TRANSMITTER AND RECEIVER MODULE Table of Contents 1. INTRODUCTION... 3 2. PREFACE... 4 2.1 Transmitter... 4 2.2 Optical fiber... 4 2.3 Receiver... 5 2.4 Advantage of Optical

More information

Baseband delay line QUICK REFERENCE DATA

Baseband delay line QUICK REFERENCE DATA FEATURES Two comb filters, using the switched-capacitor technique, for one line delay time (64 µs) Adjustment-free application No crosstalk between SECAM colour carriers (diaphoty) Handles negative or

More information

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

css Custom Silicon Solutions, Inc.

css Custom Silicon Solutions, Inc. css Custom Silicon Solutions, Inc. CSS555(C) CSS555/ PART DESCRIPTION The CSS555 is a micro-power version of the popular 555 Timer IC. It is pin-for-pin compatible with the standard 555 timer and features

More information

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

TDA4605 CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS

TDA4605 CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS Fold-Back Characteristic provides Overload Protection for External Diodes Burst Operation under Short-Circuit and no Load Conditions

More information

Fundamentals of Signature Analysis

Fundamentals of Signature Analysis Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...

More information

A Digital Timer Implementation using 7 Segment Displays

A Digital Timer Implementation using 7 Segment Displays A Digital Timer Implementation using 7 Segment Displays Group Members: Tiffany Sham u2548168 Michael Couchman u4111670 Simon Oseineks u2566139 Caitlyn Young u4233209 Subject: ENGN3227 - Analogue Electronics

More information

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

More information

ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME

ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME The national association for AMATEUR RADIO ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME This supplement is intended for use with the ARRL Morse Code Oscillator kit, sold separately.

More information

Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA

Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA Speed Control Methods of Various Types of Speed Control Motors Kazuya SHIRAHATA Oriental Motor Co., Ltd. offers a wide variety of speed control motors. Our speed control motor packages include the motor,

More information

Digital to Analog Converter. Raghu Tumati

Digital to Analog Converter. Raghu Tumati Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................

More information

RC Circuits and The Oscilloscope Physics Lab X

RC Circuits and The Oscilloscope Physics Lab X Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for

More information

MAINTENANCE & ADJUSTMENT

MAINTENANCE & ADJUSTMENT MAINTENANCE & ADJUSTMENT Circuit Theory The concept of PLL system frequency synthesization is not of recent development, however, it has not been a long age since the digital theory has been couplet with

More information

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode) Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

More information

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

More information

IEC 1000-4-2 ESD Immunity and Transient Current Capability for the SP72X Series Protection Arrays

IEC 1000-4-2 ESD Immunity and Transient Current Capability for the SP72X Series Protection Arrays IEC 00-4-2 ESD Immunity and Transient Current Capability for the SP72X Series Protection Arrays Application Note July 1999 AN9612.2 Author: Wayne Austin The SP720, SP721, SP723, and SP724 are protection

More information

DATA SHEET. TDA1518BQ 24 W BTL or 2 x 12 watt stereo car radio power amplifier INTEGRATED CIRCUITS

DATA SHEET. TDA1518BQ 24 W BTL or 2 x 12 watt stereo car radio power amplifier INTEGRATED CIRCUITS INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC01 July 1994 GENERAL DESCRIPTION The is an integrated class-b output amplifier in a 13-lead single-in-line (SIL) plastic power package.

More information

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic

More information

WS2811. Signal line 256 Gray level 3 channal Constant current LED drive IC. http://www.world-semi.com. Feature. Applications. General description

WS2811. Signal line 256 Gray level 3 channal Constant current LED drive IC. http://www.world-semi.com. Feature. Applications. General description Feature Output port compression 12V. uilt in stabilivolt, Only add a resistance to IC VDD feet when under 24V power supply. ray level 256 can be adjusted and scan freque ncy not less than 400Hz/s. uilt

More information

11: AUDIO AMPLIFIER I. INTRODUCTION

11: AUDIO AMPLIFIER I. INTRODUCTION 11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an op-amp depend primarily on the characteristics of the feedback network rather than on those of the op-amp itself. A

More information

POWER SYSTEM HARMONICS. A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS

POWER SYSTEM HARMONICS. A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS By: Robert G. Ellis, P. Eng., Rockwell Automation Medium Voltage Business CONTENTS INTRODUCTION...

More information

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of applications such as home appliances, medical, automotive,

More information

EFC 3600. Frequency converters

EFC 3600. Frequency converters 2 Bosch Rexroth AG Electric Drives and Controls Documentation Compact and complete: space saving side-by-side assembly, plug-in I/O terminals, with brake chopper and mains filter for ultra-simple installation

More information

The quadrature signals and the index pulse are accessed through five 0.025 inch square pins located on 0.1 inch centers.

The quadrature signals and the index pulse are accessed through five 0.025 inch square pins located on 0.1 inch centers. Quick Assembly Two and Three Channel Optical Encoders Technical Data HEDM-550x/560x HEDS-550x/554x HEDS-560x/564x Features Two Channel Quadrature Output with Optional Index Pulse Quick and Easy Assembly

More information

Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads.

Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. Whites, EE 3 Lecture 18 Page 1 of 10 Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. We discussed using transistors as switches in the last lecture.

More information

LM1036 Dual DC Operated Tone/Volume/Balance Circuit

LM1036 Dual DC Operated Tone/Volume/Balance Circuit LM1036 Dual DC Operated Tone/Volume/Balance Circuit General Description The LM1036 is a DC controlled tone (bass/treble), volume and balance circuit for stereo applications in car radio, TV and audio systems.

More information

LM566C Voltage Controlled Oscillator

LM566C Voltage Controlled Oscillator LM566C Voltage Controlled Oscillator General Description The LM566CN is a general purpose voltage controlled oscillator which may be used to generate square and triangular waves the frequency of which

More information

ICL8038. Features. Precision Waveform Generator/Voltage Controlled Oscillator. Ordering Information. Pinout. Functional Diagram

ICL8038. Features. Precision Waveform Generator/Voltage Controlled Oscillator. Ordering Information. Pinout. Functional Diagram Semiconductor IL0 September 99 File Number 4. Precision Waveform Generator/Voltage ontrolled Oscillator The IL0 waveform generator is a monolithic integrated circuit capable of producing high accuracy

More information

SERIES-PARALLEL DC CIRCUITS

SERIES-PARALLEL DC CIRCUITS Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills

More information

Timer A (0 and 1) and PWM EE3376

Timer A (0 and 1) and PWM EE3376 Timer A (0 and 1) and PWM EE3376 General Peripheral Programming Model Each peripheral has a range of addresses in the memory map peripheral has base address (i.e. 0x00A0) each register used in the peripheral

More information

Objectives. Electric Current

Objectives. Electric Current Objectives Define electrical current as a rate. Describe what is measured by ammeters and voltmeters. Explain how to connect an ammeter and a voltmeter in an electrical circuit. Explain why electrons travel

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Theory of Operation. Figure 1 illustrates a fan motor circuit used in an automobile application. The TPIC2101. 27.4 kω AREF.

Theory of Operation. Figure 1 illustrates a fan motor circuit used in an automobile application. The TPIC2101. 27.4 kω AREF. In many applications, a key design goal is to minimize variations in power delivered to a load as the supply voltage varies. This application brief describes a simple DC brush motor control circuit using

More information

THE FIBRE-OPTICS TRAINER MANUAL

THE FIBRE-OPTICS TRAINER MANUAL THE FIBRE-OPTICS TRAINER MANUAL THE FIBRE-OPTICS TRAINER MANUAL THE FIBRE-OPTICS TRAINER CONTAINS: TRANSMITTER UNIT RECEIVER UNIT 5m. LENGTH OF TERMINATED OPTICAL CABLE INSTRUCTION MANUAL (THIS BOOK) CARRYING

More information

Speed Control of Induction Motor using VHDL Implementation of PWM Technique

Speed Control of Induction Motor using VHDL Implementation of PWM Technique International Journal of Electrical Engineering. ISSN 0974-2158 Volume 7, Number 1 (2014), pp.1-9 International Research Publication House http://www.irphouse.com Speed Control of Induction Motor using

More information

DATA SHEET. TDA1510AQ 24 W BTL or 2 x 12 W stereo car radio power amplifier INTEGRATED CIRCUITS

DATA SHEET. TDA1510AQ 24 W BTL or 2 x 12 W stereo car radio power amplifier INTEGRATED CIRCUITS INTEGRATED CIRCUITS DATA SHEET 24 W BTL or 2 x 12 W stereo car radio File under Integrated Circuits, IC01 January 1992 GENERAL DESCRIPTION The is a class-b integrated output amplifier encapsulated in a

More information

HCF4056B BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION

HCF4056B BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION QUIESCENT CURRENT SPECIF. UP TO 20V OPERATION OF LIQUID CRYSTALS WITH CMOS CIRCUITS PROVIDES ULTRA LOW POWER DISPLAY. EQUIVALENT AC OUTPUT DRIVE

More information

Principles of Adjustable Frequency Drives

Principles of Adjustable Frequency Drives What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable

More information

Application Note. Line Card Redundancy Design With the XRT83SL38 T1/E1 SH/LH LIU ICs

Application Note. Line Card Redundancy Design With the XRT83SL38 T1/E1 SH/LH LIU ICs Application Note Design With the XRT83SL38 T1/E1 SH/LH LIU ICs Revision 1.3 1 REDUNDANCY APPLICATIONS INTRODUCTION Telecommunication system design requires signal integrity and reliability. When a T1/E1

More information

Keywords: rainfall detection, rain sensor, buzzer and alarm system.

Keywords: rainfall detection, rain sensor, buzzer and alarm system. Volume 5, Issue 4, April 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Design of Rain

More information