Solutions to Homework Set #5 Phys2414 Fall 2005

Size: px
Start display at page:

Download "Solutions to Homework Set #5 Phys2414 Fall 2005"

Transcription

1 Solution Set #5 1 Solutions to Homewok Set #5 Phys414 Fall 005 Note: The numbes in the boxes coespond to those that ae geneated by WebAssign. The numbes on you individual assignment will vay. Any calculated quantities that involve these vaiable numbes will be boxed as well. 1. GRR1 5.P.00. A socce ball of diamete 31 cm olls without slipping at a linea speed of.6 m/s. Though how many evolutions has the socce ball tuned as it moves a linea distance of 16 m? The distance the ball tavels, x, is equal to the cicumfeence of the ball, C, times the numbe of evolutions, α, it tuns. x = C α The cicumfeence of a sphee at its equato with diamete, d, is πd. The numbe of evolutions the ball tuned is then x = πd α α = x πd α = 16 m π 0.31 m α = 16.4 ev. GRR1 5.P.006. An elevato cable winds on a dum of adius 70.0 cm that is connected to a moto. (a) If the elevato is moving down at 0.60 m/s, what is the angula speed of the dum? The speed of the elevato must be the speed of the ope as it leaves the dum. Since the ope is unspooling fom the dum, this is also the speed of the dum at its edge. The equation which elates angula speed with linea speed is The angula speed of the dum is then v = ω v 0.60 m/s m 0.86 ad/s (b) If the elevato moves down 9.0 m, how many evolutions has the dum made?

2 Solution Set #5 We may use the elationship we found in poblem 1 to find the numbe of evoltutions made. x = πd α α = x πd α = 9.0 m π( m α =.0 ev 3. GRR1 5.P.011. The appaatus of the figue below is designed to study insects at an acceleation of magnitude 960 m/s (= 98 g). The appaatus consists of a.0 m od with insect containes at eithe end. The od otates about an axis pependicula to the od and at its cente. (a) How fast does an insect move when it expeiences a centipetal acceleation of 960 m/s? Using the elationship between centipetal acceleation, linea speed, and adius, we can find the linea speed of the insect as it swings aound in this device. a c = v v = a c v = v = 31.0 m/s 960 m/s ( 1.0 m ) (b) What is the angula speed of the insect? The angula speed can be calculated using the cousin of the elationship above. a c = ω ac 960 m/s 1/.0 m 31.0 ad/s

3 Solution Set # GRR1 5.P.01. The oto (the figue below) is an amusement pak ide whee people stand against the inside of a cylinde. Once the cylinde is spinning fast enough, the floo dops out. (a) What foce keeps the people fom falling out the bottom of the cylinde? The fee-body diagam of a peson in the oto looks like the following figue. F f +y F N + W The foce that acts against the weight of the peson in the fiction foce on the peson by the wall. Since the peson is not sliding, we know it s static fiction that is holding the peson up. (b) If the coefficient of fiction is 0.4 and the cylinde has a adius of.3 m, what is the minimum angula speed of the cylinde so that the people don t fall out? (Nomally the opeato uns it consideably faste as a safety measue.) The sums of the foces in the y and diections ae ΣF y = F f W = 0

4 Solution Set #5 4 ΣF = F N = ma c whee a c is the centipetal acceleation. The minimum angula speed of the cylinde would occu when the maximum fictional foce is exactly equal to the weight of the peson. Using the equation fo static fiction, F f = µ s F N, we can combine the two above equations to get F f = W µ s F N = mg µ s (ma c ) = mg µ s a c = g Recognizing that the centipetal acceleation may be expessed as a c = ω, we can ewite the last equation as µ s ω = g ω = g µ s g µ s The minimum angula velocity is then 9.8 m/s m 3. ad/s 5. GRR1 5.P.018. A highway cuve has a adius of 11 m. At what angle should the oad be banked so that a ca taveling at 6.3 m/s has no tendency to skid sideways on the oad? [Hint: No tendency to skid means the fictional foce is zeo.] The fee-body diagam fo this situation looks like the following figue.

5 Solution Set #5 5 F N +y + θ W Notice that one of the coodinate axes is pointed in the diection of the acceleation. The sums of the foces in the y and diections ae ΣF y = F N W = 0 ΣF = F N sin θ = ma c Solving fo F N in the fist equation gives F N = W F N = mg F N = mg We can substitute this expession fo F N into the second equation above. This gives F N sin θ = ma ( ) c mg sin θ = ma c mg sin θ = ma c sin θ = a c g The faction on the left is equal to tan θ. We can also expess a c in tems of the linea speed, v, and the adius,. We can now solve fo theta. tan θ = v g θ = actan ( ) v g

6 Solution Set #5 6 The angle at which the ca does not skid sideways is then θ = ( ) ( 6.3 m/s) actan 9.8 m/s 11 m θ = GRR1 5.P.00. A olle coaste ca of mass 330 kg (including passenges) tavels aound a hoizontal cuve of adius 37 m. Its speed is 14 m/s. What is the magnitude and diection of the total foce exeted on the ca by the tack? The fee-body diagam fo this situation is vey simila to that of the last poblem. In this case we will conside the only two foces acting on the ca, i.e. the foce on the ca by the tack, F CT, and the foce of gavity on the ca, W. F CT +y + θ W The sums of the foces in the y and diections ae then ΣF y = F CT,y W = 0 ΣF = F CT, = ma c The magnitude of the foce on the ca by the tack is given by F CT = (F CT, ) + (F CT,y ) Using the fist two equations we know that F CT, and F CT,y ae equal to The magnitude is then F CT, = ma c, F CT,y = mg F CT = (ma c ) + (mg) F CT = m a c + g F ( ) v CT = m + g

7 Solution Set #5 7 The angle above hoizontal is then given by tan θ = F CT,y F CT,x tan θ = mg ma c tan θ = g a c tan θ = g v ( ) g θ = actan v The magnitude and diection ae then F ( ) CT = 330 kg ( 14 m/s) + (9.8 m/s ) 37 m F CT = 3700 N θ = actan θ = 61.6 ( 9.8 m/s ) 37 m ( 14 m/s) 7. GRR1 5.P.03. A ca dives aound a cuve with adius 40 m at a speed of 33 m/s. The oad is banked at 5.. The mass of the ca is 1600 kg. (a) What is the fictional foce on the ca? This poblem is simila to poblem 5, but this time thee is a fictional foce. The coesponding fee-body diagam is given in the figue below. F N +y F f + θ W

8 Solution Set #5 8 The sums of the foces in the y and diections ae then ΣF y = F N F f sin θ W = 0 ΣF = F N sin θ + F f = ma c We would like to solve fo the fictional foce to get the answe. Compaing the two equations above we can see that both equations have F N as the fist tem, but one is multiplied by while the othe is multiplied by sin θ. In ode to solve this system of equations, we have to eliminate F N. To do this we can multiply the fist equation by sin θ and the second equation by. Doing this gives the following two equations F N sin θ F f sin θ = W sin θ F N sin θ + F f cos θ = ma c Next we can multiply the fist equation by 1 and add the equations togethe F N sin θ + F f sin θ = W sin θ F N sin θ + F f cos θ = ma c Adding the equations togethe gives F f cos θ + F f sin θ = ma c W sin θ Factoing out F f on the left side we find F f (cos θ + sin θ) = ma c W sin θ The quantity in paentheses is a tigonometic identity and is equal to one. Finally we have F f = ma c W sin θ F f = m v mg sin θ ( ) v F f = m g sin θ The foce of fiction is then equal to F f = ( ) ( 33 m/s) 1600 kg 40 m cos( 5. ) 9.8 m/s sin( 5. ) F f = 710 N

9 Solution Set #5 9 (b) At what speed could you dive aound this cuve so that the foce of fiction is zeo? This speed may be found by setting the fictional foce in ou above expession equal to zeo. ( ) v 0 = m g sin θ 0 = v g sin θ Solving fo v we get v = g sin θ v = g sin θ v = g tan θ The velocity at which no fictional foce occus is then v = (9.8 m/s )( 40 m) tan( 5. ) v = 19.6 m/s

PHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013

PHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013 PHYSICS 111 HOMEWORK SOLUTION #5 Mach 3, 2013 0.1 You 3.80-kg physics book is placed next to you on the hoizontal seat of you ca. The coefficient of static fiction between the book and the seat is 0.650,

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

Phys 2101 Gabriela González. cos. sin. sin

Phys 2101 Gabriela González. cos. sin. sin 1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

rotation -- Conservation of mechanical energy for rotation -- Angular momentum -- Conservation of angular momentum

rotation -- Conservation of mechanical energy for rotation -- Angular momentum -- Conservation of angular momentum Final Exam Duing class (1-3:55 pm) on 6/7, Mon Room: 41 FMH (classoom) Bing scientific calculatos No smat phone calculatos l ae allowed. Exam coves eveything leaned in this couse. Review session: Thusday

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

Algebra and Trig. I. A point is a location or position that has no size or dimension.

Algebra and Trig. I. A point is a location or position that has no size or dimension. Algeba and Tig. I 4.1 Angles and Radian Measues A Point A A B Line AB AB A point is a location o position that has no size o dimension. A line extends indefinitely in both diections and contains an infinite

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

14. Gravitation Universal Law of Gravitation (Newton):

14. Gravitation Universal Law of Gravitation (Newton): 14. Gavitation 1 Univesal Law of Gavitation (ewton): The attactive foce between two paticles: F = G m 1m 2 2 whee G = 6.67 10 11 m 2 / kg 2 is the univesal gavitational constant. F m 2 m 1 F Paticle #1

More information

LINES AND TANGENTS IN POLAR COORDINATES

LINES AND TANGENTS IN POLAR COORDINATES LINES AND TANGENTS IN POLAR COORDINATES ROGER ALEXANDER DEPARTMENT OF MATHEMATICS 1. Pola-coodinate equations fo lines A pola coodinate system in the plane is detemined by a point P, called the pole, and

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

Revision Guide for Chapter 11

Revision Guide for Chapter 11 Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams

More information

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M Poblems on oce Exeted by a Magnetic ields fom Ch 6 TM Poblem 6.7 A cuent-caying wie is bent into a semicicula loop of adius that lies in the xy plane. Thee is a unifom magnetic field B Bk pependicula to

More information

Multiple choice questions [70 points]

Multiple choice questions [70 points] Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions

More information

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth Ch. 8 Univesal Gavitation Pat 1: Keple s Laws Objectives: Section 8.1 Motion in the Heavens and on Eath Objectives Relate Keple s laws of planetay motion to Newton s law of univesal gavitation. Calculate

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

Problem Set 6: Solutions

Problem Set 6: Solutions UNIVESITY OF ALABAMA Depatment of Physics and Astonomy PH 16-4 / LeClai Fall 28 Poblem Set 6: Solutions 1. Seway 29.55 Potons having a kinetic enegy of 5. MeV ae moving in the positive x diection and ente

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Problems of the 2 nd International Physics Olympiads (Budapest, Hungary, 1968)

Problems of the 2 nd International Physics Olympiads (Budapest, Hungary, 1968) Poblems of the nd ntenational Physics Olympiads (Budapest Hungay 968) Péte Vankó nstitute of Physics Budapest Univesity of Technical Engineeing Budapest Hungay Abstact Afte a shot intoduction the poblems

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

Hour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and

Hour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and Hou Exam No. Please attempt all of the following poblems befoe the due date. All poblems count the same even though some ae moe complex than othes. Assume that c units ae used thoughout. Poblem A photon

More information

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................

More information

10. Collisions. Before During After

10. Collisions. Before During After 10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: -F(t)

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

Solutions for Physics 1301 Course Review (Problems 10 through 18)

Solutions for Physics 1301 Course Review (Problems 10 through 18) Solutions fo Physics 1301 Couse Review (Poblems 10 though 18) 10) a) When the bicycle wheel comes into contact with the step, thee ae fou foces acting on it at that moment: its own weight, Mg ; the nomal

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2 Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the

More information

Mechanics 1: Work, Power and Kinetic Energy

Mechanics 1: Work, Power and Kinetic Energy Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).

More information

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43 Chapte 13 Gavitation Poblems: 1, 4, 5, 7, 18, 19, 5, 9, 31, 33, 43 Evey object in the univese attacts evey othe object. This is called gavitation. We e use to dealing with falling bodies nea the Eath.

More information

ESCAPE VELOCITY EXAMPLES

ESCAPE VELOCITY EXAMPLES ESCAPE VELOCITY EXAMPLES 1. Escape velocity is the speed that an object needs to be taveling to beak fee of planet o moon's gavity and ente obit. Fo example, a spacecaft leaving the suface of Eath needs

More information

Trigonometry in the Cartesian Plane

Trigonometry in the Cartesian Plane Tigonomet in the Catesian Plane CHAT Algeba sec. 0. to 0.5 *Tigonomet comes fom the Geek wod meaning measuement of tiangles. It pimail dealt with angles and tiangles as it petained to navigation astonom

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES . TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an

More information

CHAT Pre-Calculus Section 10.7. Polar Coordinates

CHAT Pre-Calculus Section 10.7. Polar Coordinates CHAT Pe-Calculus Pola Coodinates Familia: Repesenting gaphs of equations as collections of points (, ) on the ectangula coodinate sstem, whee and epesent the diected distances fom the coodinate aes to

More information

Experiment MF Magnetic Force

Experiment MF Magnetic Force Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuent-caying conducto is basic to evey electic moto -- tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating

More information

Solution Derivations for Capa #8

Solution Derivations for Capa #8 Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass

More information

Chapter 3 Savings, Present Value and Ricardian Equivalence

Chapter 3 Savings, Present Value and Ricardian Equivalence Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual

More information

Introduction to Electric Potential

Introduction to Electric Potential Univesiti Teknologi MARA Fakulti Sains Gunaan Intoduction to Electic Potential : A Physical Science Activity Name: HP: Lab # 3: The goal of today s activity is fo you to exploe and descibe the electic

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Carter-Penrose diagrams and black holes

Carter-Penrose diagrams and black holes Cate-Penose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example

More information

Chapter 30: Magnetic Fields Due to Currents

Chapter 30: Magnetic Fields Due to Currents d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.

More information

Physics 505 Homework No. 5 Solutions S5-1. 1. Angular momentum uncertainty relations. A system is in the lm eigenstate of L 2, L z.

Physics 505 Homework No. 5 Solutions S5-1. 1. Angular momentum uncertainty relations. A system is in the lm eigenstate of L 2, L z. Physics 55 Homewok No. 5 s S5-. Angula momentum uncetainty elations. A system is in the lm eigenstate of L 2, L z. a Show that the expectation values of L ± = L x ± il y, L x, and L y all vanish. ψ lm

More information

Theory and measurement

Theory and measurement Gavity: Theoy and measuement Reading: Today: p11 - Theoy of gavity Use two of Newton s laws: 1) Univesal law of gavitation: ) Second law of motion: Gm1m F = F = mg We can combine them to obtain the gavitational

More information

EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH S MAGNETIC FIELD

EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH S MAGNETIC FIELD 260 16-1. THEORY EXPERMENT 16 THE MAGNETC MOMENT OF A BAR MAGNET AND THE HORZONTAL COMPONENT OF THE EARTH S MAGNETC FELD The uose of this exeiment is to measue the magnetic moment μ of a ba magnet and

More information

r 6.10 m 5.2 m / s 9.80 m / s

r 6.10 m 5.2 m / s 9.80 m / s Week 4 homewok IMPORAN NOE ABOU WEBASSIGN: In the WebAign veion of thee poblem, vaiou detail have been hanged, o that the anwe will ome out diffeently. he method to find the olution i the ame, but you

More information

A couple is a pair of forces, equal in magnitude, oppositely directed, and displaced by perpendicular distance, d. F A F B (= -F A

A couple is a pair of forces, equal in magnitude, oppositely directed, and displaced by perpendicular distance, d. F A F B (= -F A 5 Moment of a Couple Ref: Hibbele 4.6, edfod & Fowle: Statics 4.4 couple is a pai of foces, equal in magnitude, oppositely diected, and displaced by pependicula distance, d. d (= - ) Since the foces ae

More information

Motion Control Formulas

Motion Control Formulas ems: A = acceleation ate {in/sec } C = caiage thust foce {oz} D = deceleation ate {in/sec } d = lead of scew {in/ev} e = lead scew efficiency ball scew 90% F = total fictional foce {oz} GR = gea atio J

More information

Economics 326: Input Demands. Ethan Kaplan

Economics 326: Input Demands. Ethan Kaplan Economics 326: Input Demands Ethan Kaplan Octobe 24, 202 Outline. Tems 2. Input Demands Tems Labo Poductivity: Output pe unit of labo. Y (K; L) L What is the labo poductivity of the US? Output is ouhgly

More information

9.5 Volume of Pyramids

9.5 Volume of Pyramids Page of 7 9.5 Volume of Pyamids and Cones Goal Find the volumes of pyamids and cones. Key Wods pyamid p. 49 cone p. 49 volume p. 500 In the puzzle below, you can see that the squae pism can be made using

More information

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6 Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the

More information

8-1 Newton s Law of Universal Gravitation

8-1 Newton s Law of Universal Gravitation 8-1 Newton s Law of Univesal Gavitation One of the most famous stoies of all time is the stoy of Isaac Newton sitting unde an apple tee and being hit on the head by a falling apple. It was this event,

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle

More information

Chapter 9 Rotation. Conceptual Problems

Chapter 9 Rotation. Conceptual Problems Chapte 9 otation Conceptual Poblems 7 Duing a baseball game, the pitche has a blazing astball. You have not been able to swing the bat in time to hit the ball. You ae now just tying to make the bat contact

More information

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,

More information

Problem Set # 9 Solutions

Problem Set # 9 Solutions Poblem Set # 9 Solutions Chapte 12 #2 a. The invention of the new high-speed chip inceases investment demand, which shifts the cuve out. That is, at evey inteest ate, fims want to invest moe. The incease

More information

Notes on Electric Fields of Continuous Charge Distributions

Notes on Electric Fields of Continuous Charge Distributions Notes on Electic Fields of Continuous Chage Distibutions Fo discete point-like electic chages, the net electic field is a vecto sum of the fields due to individual chages. Fo a continuous chage distibution

More information

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to . Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate

More information

Skills Needed for Success in Calculus 1

Skills Needed for Success in Calculus 1 Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

Fluids Lecture 15 Notes

Fluids Lecture 15 Notes Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2-D, this velocit

More information

On the Relativistic Forms of Newton's Second Law and Gravitation

On the Relativistic Forms of Newton's Second Law and Gravitation On the Relativistic Foms of Newton's Second Law and avitation Mohammad Bahami,*, Mehdi Zaeie 3 and Davood Hashemian Depatment of physics, College of Science, Univesity of Tehan,Tehan, Islamic Republic

More information

Model Question Paper Mathematics Class XII

Model Question Paper Mathematics Class XII Model Question Pape Mathematics Class XII Time Allowed : 3 hous Maks: 100 Ma: Geneal Instuctions (i) The question pape consists of thee pats A, B and C. Each question of each pat is compulsoy. (ii) Pat

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe

More information

Quantity Formula Meaning of variables. 5 C 1 32 F 5 degrees Fahrenheit, 1 bh A 5 area, b 5 base, h 5 height. P 5 2l 1 2w

Quantity Formula Meaning of variables. 5 C 1 32 F 5 degrees Fahrenheit, 1 bh A 5 area, b 5 base, h 5 height. P 5 2l 1 2w 1.4 Rewite Fomulas and Equations Befoe You solved equations. Now You will ewite and evaluate fomulas and equations. Why? So you can apply geometic fomulas, as in Ex. 36. Key Vocabulay fomula solve fo a

More information

Worked Examples. v max =?

Worked Examples. v max =? Exaple iction + Unifo Cicula Motion Cicula Hill A ca i diing oe a ei-cicula hill of adiu. What i the fatet the ca can die oe the top of the hill without it tie lifting off of the gound? ax? (1) Copehend

More information

VISCOSITY OF BIO-DIESEL FUELS

VISCOSITY OF BIO-DIESEL FUELS VISCOSITY OF BIO-DIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use

More information

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities. Gaphs of Equations CHAT Pe-Calculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such

More information

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.

More information

IMPORTANT NOTE ABOUT WEBASSIGN:

IMPORTANT NOTE ABOUT WEBASSIGN: Week 8 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r Moment and couple In 3-D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita

More information

F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.

F G r. Don't confuse G with g: Big G and little g are totally different things. G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just

More information

2 - ELECTROSTATIC POTENTIAL AND CAPACITANCE Page 1

2 - ELECTROSTATIC POTENTIAL AND CAPACITANCE Page 1 - ELECTROSTATIC POTENTIAL AND CAPACITANCE Page. Line Integal of Electic Field If a unit positive chage is displaced by `given by dw E. dl dl in an electic field of intensity E, wok done is Line integation

More information

Power and Sample Size Calculations for the 2-Sample Z-Statistic

Power and Sample Size Calculations for the 2-Sample Z-Statistic Powe and Sample Size Calculations fo the -Sample Z-Statistic James H. Steige ovembe 4, 004 Topics fo this Module. Reviewing Results fo the -Sample Z (a) Powe and Sample Size in Tems of a oncentality Paamete.

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics Oveview Fluid kinematics deals with the motion of fluids without consideing the foces and moments which ceate the motion. Items discussed in this Chapte. Mateial deivative and its elationship to Lagangian

More information

Solution: (a) For a positively charged particle, the direction of the force is that predicted by the right hand rule. These are:

Solution: (a) For a positively charged particle, the direction of the force is that predicted by the right hand rule. These are: Problem 1. (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields as shown in the figure. (b) Repeat part (a), assuming the moving particle is

More information

In the lecture on double integrals over non-rectangular domains we used to demonstrate the basic idea

In the lecture on double integrals over non-rectangular domains we used to demonstrate the basic idea Double Integals in Pola Coodinates In the lectue on double integals ove non-ectangula domains we used to demonstate the basic idea with gaphics and animations the following: Howeve this paticula example

More information

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3 Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

92.131 Calculus 1 Optimization Problems

92.131 Calculus 1 Optimization Problems 9 Calculus Optimization Poblems ) A Noman window has the outline of a semicicle on top of a ectangle as shown in the figue Suppose thee is 8 + π feet of wood tim available fo all 4 sides of the ectangle

More information

The LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero.

The LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero. Poject Decision Metics: Levelized Cost of Enegy (LCOE) Let s etun to ou wind powe and natual gas powe plant example fom ealie in this lesson. Suppose that both powe plants wee selling electicity into the

More information

Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79

Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life? - car brakes - driving around a turn - walking - rubbing your hands together

More information