Physics 11 Fall 2012 Practice Problems 6 - Solutions

Size: px
Start display at page:

Download "Physics 11 Fall 2012 Practice Problems 6 - Solutions"

Transcription

1 Physics 11 Fall 01 Practice Problems 6 - s 1. Two points are on a disk that is turning about a fixed axis perpendicular to the disk and through its center at increasing angular velocity. One point is on the rim and the other point is halfway between the rim and the center. (a) Which point moves the greater distance in a given time? (b) Which point turns through the greater angle? (c) Which point has the greater speed? (d) Which point has the greater angular speed? (e) Which point has the greater tangential acceleration? (f) Which point has the greater angular acceleration? (g) Which point has the greater centripetal acceleration? (a) The point on the rim travels a greater distance in the same amount of time, since it has to make a bigger orbit. (b) Both points move through the same angle. (c) The speed is v = rω. Since point particles change their angle by the same amount in the same time, the point with the bigger radius has the bigger velocity. So, the point on the rim moves with the greater speed. (d) Since the angular speed is ω, and both points travel through the same angle in the same time, they both have the same angular speed. (e) The problem states that the disk is turing at increasing angular velocity, and so ω is increasing. Thus, v = rω is increasing. The tangential acceleration is a tang = rα. So, the particle with the bigger radius has the bigger tangential acceleration; i.e., the point on the rim has the bigger tangential acceleration. (f) The angular acceleration is α, and is the same for both points. (g) The centripetal acceleration is a cent = v /r = (rω) /r = rω. Since ω is the same for both points, the point on the rim has the bigger centripetal acceleration, since it has the bigger value of r. 1

2 . What is the angular speed of Earth in radians per second as it rotates about its axis? The angular speed is ω = θ. The Earth rotates through an angle of π radians in 4 t hours. 4 hours is seconds, or 86,400 seconds. So, the angular speed is ω Earth = θ t = π = rad/sec.

3 I = [ ( kg)( m) + ( kg)( 0.00 m) ] + ( kg)( m) 5 m = kg The Thepercent methane difference molecule between (CH 4 ) I has and four Iapp is: hydrogen atoms located at the vertices of a regular tetrahedron of edge length 0.18 I Iapp kg m kg m nm, with the carbon atom = at the center = 3.6 % of the tetrahedron. I Find the moment kg of m inertia of this molecule for rotation about an axis that passes through the centers of (b) The rotational inertia would increase because I the carbon atom and one of the hydrogen cm of a hollow sphere is greater than atoms. I cm of a solid sphere. 49 The methane molecule (CH 4 ) has four hydrogen atoms located at the vertices of a regular tetrahedron of edge length 0.18 nm, with the carbon atom at the center of the tetrahedron (Figure 9-48). Find the moment of inertia of this molecule for rotation about an axis that passes through the centers of the carbon atom Because and the one axis of the of rotation hydrogen is through atoms. the carbon and one of the hydrogens, neither of these atoms contribute. The moment of Picture inertia isthe then Problem due only tothe the remaining axis of H rotation three hydrogens. passes through The moment the center of inertia of the is base of the tetrahedron. The carbon 3 3 atom and I the = hydrogen m i ri = matom H at ri the, apex of the tetrahedron i=1 do not contribute i=1 to I because since all the of thedistance masses are of identical. their nuclei Now from the radii the axis are also of rotation all equal is iszero. just From the C H the distance geometry, from the central distance hydrogen of the to three the atoms on the vertex. if the distance between the hydrogens is a, then the radius H nuclei from the rotation axis is a is/ 3, where a is the length of a side r = a 1 cos 30 = a = a H of the tetrahedron.. a 3 3 Apply the definition of the moment I = miri = mhr1 + mhr + mhr So, we find that i of inertia for a system of particles to ( ) obtain: I = 3m H a 3 a = m H = a mh = mha 3 = ( ) ( ) = kg m. Substitute numerical values and 7 I = kg m evaluate I: = kg m 3 ( )( ) H 3

4 4. During most of its lifetime, a star maintains an equilibrium size in which the inward force of gravity on each atom is balanced by an outward pressure force due to the heat of the nuclear reactions in core. But after all the hydrogen fuel is consumed by nuclear fusion, the pressure force drops and the star undergoes gravitational collapse until it becomes a neutron star. In a neutron star, the electrons and protons are squeezed together by gravity until they form neutrons. Neutron stars spin very rapidly and emit intense pulses of radio and light waves, one pulse per rotation. These pulsing stars were discovered in the 1960s and are called pulsars. (a) A star with the mass (M = kg) and size (R = m) of our sun rotates once every 30 days. After undergoing gravitational collapse, the star forms a pulsar that is observed by astronomers to emit radio pulses every 0.10 seconds. By treating the neutron star as a solid sphere, deduce its radius. (b) What is the speed of a point on the equator of the neutron star? Your answer will be somewhat too large because a star cannot be accurately modeled as a solid sphere. Even so, you will be able to show that a star, whose mass is 10 6 larger than the earth s, can be compressed by gravitational forces to a size smaller than a typical state in the United States! (a) As the star collapses, it speeds up by the conservation of angular momentum. It s initial angular momentum is L i = Mv i R i = MRi ω i = πf i MRi, where we have recalled that v = Rω, and that ω = πf, where f is the rotation frequency. The angular momentum after the collapse is, then, L f = πf f MRf. Conservation of angular momentum says that L i = L f, and so R f = f i Tf R i = R i, f f T i where we ve re-expressed the radius in terms of the rotation period. Now, the initial frequency is once per 30 days, so T i = = seconds, while T f = 0.10 seconds. Thus, R f = Tf 0.1 R i = T i = m = 137 km. (b) The speed of a point on the equator is v = R f ω f = πr f /T = π( )/0.1 = m/s. 4

5 us sign is a consequence of the fact that the frictional torque otion of the wheel. 5. A pendulum consisting of a string of length L attached to a bob of mass m swings in a vertical plane. When the string is at an angle θ to the vertical, endulum consisting of a string of length L attached to a bob of (a) calculate the tangential acceleration of the bob using F t = ma t. s in a vertical (b) What plane. is the torque When exerted the about string the pivot point? is at an angle θ to the vertic (c) Show that τ = Iα with a t = Lα gives the same tangential acceleration as found in Part (a). t = ma t, calculate the tangential acceleration of the bob? (b) Wh xerted about the pivot point? (c) Show that τ = I α with a t = L tangential acceleration as found in Part (a). (a) The pendulum is seen in the figure to the right. The only tangential force is the component of gravity along the rotation path, Problem The pendulum acting on it are shown in diagram. Note that the F t = mg sin θ. Since F t = ma t, then we just solve for the acceleration, a t = F t = g sin θ. string is radial, and m so ential force on the ball. ewton s nd law in both nd rotational form to find l component of the f the bob. (b) The torque is just τ = rf t, where r = L is the distance from the pivot point. So, τ = mgl sin θ. (c) The torque is τ = Iα. Since the string is massless and all the mass is in the bob, then I = mr = ml. So, τ = mgl sin θ = ml α. Furthermore, since α = τ/i = a t /L, then a t = τl, or I a t = τl I o the free-body ess the component of ent to the circular path = mgl sin θ ml = g sin θ, which is the same result we found in part (a). F t = mg sinθ L θ T r mg r θ nd law to express the 5 Ft mg sinθ a = = = g sinθ

6 6. A uniform 1.5 m diameter ring is pivoted at a point on its perimeter so that it is free to rotate about a horizontal axis that is perpendicular to the plane of the ring. The ring is released with the center of the ring at the same height as the axis. (a) If the ring was released from rest, what was its maximum angular speed? (b) What minimum angular speed must it be given at release if it is to rotate a full 360? (a) When the ring is just hanging straight down, it has zero potential energy. When it s released from it s initial height, h = R, then it has potential energy mgh = mgr. Now, at the bottom of the path, all the energy is kinetic. Since it s rotating, the energy is all rotational kinetic energy, KE = 1 Iω. What s I? We can look up the moment of inertia of the ring about an axis through the center to find I = mr. Since the ring is rotating about it s rim, then we can use the parallel axis theorem to write the moment of inertia about the rim as I rim = I center +md = mr + mr = mr. So, the kinetic energy is KE = 1 Iω = mr ω. So, if energy is conserved, then KE = P E mr ω = mgr. Solving for ω gives g ω = R. Plugging in the numbers gives ω = g R = = 3.61 rad/sec. (b) Now we want to figure out how fast we d need to rotate it around in order for it to rotate to the top. In this case, it still has the same kinetic energy, for some ω, KE = mr ω. Now it has to get to the top, changing its height by R, so that it s final potential energy is P E = mgr. Solving for KE = P E ω = g/r, exactly the same as in part (a). 6

7 A uniform solid sphere of mass M and radius R is free rotate about a horizontal axis through its center. A string is wrapped around the sphere and is attached to an object of mass m. Assume that the string does not slip on the sphere. Find (a) the acceleration of the object and (b) the tension in the string. Chapter 9 77 A uniform solid sphere of mass M and radius R is free t horizontal axis through its center. A string is wrapped around the s attached to an object of mass m (Figure 9-58). Assume that the stri on the sphere. Find (a) the acceleration of the object, and (b) the te string. Picture the Problem The force diagram shows the forces acting and the hanging object. The tension in the string is responsible acceleration of the sphere and the difference between the weight o the tension is the net force acting on the hanging object. We can us law to obtain two equations in a and T that we can solve simultane (a) We can draw the force diagram for the system as seen in to the right. The weight of the block creates a torque on the wheel, causing it to rotate. We can write down the net forces and torques acting on the system. For the sphere, τ = T R = Iα. While for the hanging mass, calling the vertical direction x, Fx = T mg = ma. 0 M (a) Noting that T = T, apply Newton s nd law to the sphere and the hanging object: Substitute for I sphere and α in equation (1) to obtain: Eliminate T between equations () and (3) and solve for a to obtain: F R x T x T mg τ 0 = TR = I sphereα and F x = mg T = ma Now, since the string isn t slipping around the wheel, the angular acceleration is just α = a/r. Furthermore, the moment of inertia for a sphere is I = 5 MR. So, we find the following system of equations T = Ma 5 T = m (g a). a = a ( MR ) R Setting these two expressions equal to each other and solving for the acceleration gives TR = 5 g a =. 1 + M 5m g M 1+ 5m (b) Now we just substitute this result back in to the expression T = Ma to find 5 T = 5 Mg 1 + M 5m = Mmg 5m + M. (b) Substitute for 7 a in equation () and solve for T to obtain: T = mmg 5m + M

8 8. A basketball rolls without slipping down an incline of angle θ. The coefficient of static friction is µ s. Model the ball as a thin spherical shell. Find Picture the Problem The three forces acting on the basketball a the ball, the normal force, and the force of friction. Because th assumed to be acting at the center of mass, and the normal force center of mass, the only force which exerts a torque about the c the frictional force. Let the mass of the basketball be m and app (a) the acceleration of the center of mass of the ball, (b) the frictional force acting on the ball, and (c) the maximum angle of the incline for which the ball will roll without slipping. law to find a system of simultaneous equations that we can solve f (a) We can begin called by writing for in down the problem Newton s statement. laws for the ball, including the torques: y Fx = mg sin θ + F f = ma Fy = mg cos θ + F n = 0 F r n τi = F f R = Iα. Furthermore, since the ball is rolling without slipping, we have that a = αr. So, we have enough to solve this system of equations. Plugging in F f = Iα/R = Ia/R to the first equation and solving for a gives a = mg sin θ m + I/R. x m r 0 mg r θ f r (a) Apply Newton s nd law in both translational and mg rotational sin θ form to a = the ball: m + m/3r = 3 g sin θ. 5 The moment of inertia of the spherical shell is just I = 3 mr, and so (b) Since F f = I a = R 3 mr a = ma, we have R 3 F f = mg sin θ. 5 Because the basketball is rolling without slipping we know that: Substitute in equation (3) to obtain: From Table 9-1 we have: F = mg f x sinθ s = F = cos y Fn mg θ = and τ 0 = f sr = I 0α a α = r (c) Now, we know that the frictional force is F f = µ s F N = µ s mg cos θ. Setting this equal to our result from part (b) we find 5 mg sin θ = µ smg cos θ tan θ = 5 µ s. f r I0 So, the maximum angle of the incline that the ball will roll without slipping is ). θ = tan 1 ( 5 µ s The rolling of the ball increases the angle from the sliding case. s = 3 a r I 0 = mr Substitute for I 0 and 8 α in equation (4) and solve for f s : a ( mr ) f fs r = 3 s = r

9 9. Released from rest at the same height, a thin spherical shell and a solid sphere of the same mass m and radius R roll without slipping down an incline through the same vertical drop H. Each is moving horizontally as it leaves the ramp. The spherical shell hits the ground a horizontal distance L from the end of the ramp and the solid sphere hits the ground a distance L from the end of the ramp. Find the ratio L /L. The distance that each ball goes after leaving the ramp depends on it s speed upon leaving the ramp. Since both balls take the same amount of time to reach the ground then L = v t, while L = v t, where v is the speed of the shell and v is the speed of the sphere at the bottom of the ramp. Now, the ratio L /L = v /v. So, we need to know the speed of the balls. Each ball starts off with the same potential energy, mgh. The final energy of each ball at the bottom of the ram is made up of translational and rotational kinetic energy, KE shell = 1 mv + 1 I shellω KE sphere = 1 mv + 1 I sphereω Now, since the balls are rolling without slipping, ω = v/r, while ω = v /R. Plugging in these expressions gives KE shell = ( I shell ) mr mv ( ) KE sphere = I sphere mv mr Since energy is conserved KE shell = KE sphere = mgh. So, mgh = ( ) I shell mr mv ( ) mgh = I sphere mv mr Taking the ratio v /v gives v v = 1 + I shell mr 1 + I sphere mr. Since I shell = 3 mr, while I sphere = 5 mr, we have v v = L L = 1 + / /5 = 1 =

10 10. According to the Standard Model of Particle Physics, electrons are pointlike particles having no spatial extent. (This assumption has been confirmed experimentally, and the radius of the electron has been shown to be less than meters.) The intrinsic spin of an electron could in principle be due to its rotation. Let us check to see if this conclusion is feasible. (a) Assuming that the electron is a uniform sphere whose radius is m, what angular speed would be necessary to produce the observed intrinsic angular momentum of /? (b) Using this value of the angular speed, show that the speed of a point on the equator of a spinning electron would be moving faster than the speed of light. What is your conclusion about the spin angular momentum being analogous to a spinning sphere with spatial extent? (a) The angular momentum can be expressed in terms of the moment of inertia, I, and the angular velocity, ω, as L = Iω. Thus, the angular speed is ω = L/I. Now, for a uniform sphere, I = 5 MR, and for L = /, we find ω = L I = Taking M = m e = kg, we have ω = 5 4MR = 5 4MR (10 18 ) = rad/sec. (b) The speed is v = Rω, so using our results from part (a) gives v = Rω = = m/s! This is much faster than light. So, if we require that these points on the equator can t spin faster than light, we have to abandon the model of the electron as a tiny little spinning sphere. 10

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013 PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6. Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

More information

Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity. We touched on this briefly in chapter 7! x 2 Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

More information

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc. Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

More information

Angular acceleration α

Angular acceleration α Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Lab 7: Rotational Motion

Lab 7: Rotational Motion Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

More information

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length

More information

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6 Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital

More information

3600 s 1 h. 24 h 1 day. 1 day

3600 s 1 h. 24 h 1 day. 1 day Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

Rotational Inertia Demonstrator

Rotational Inertia Demonstrator WWW.ARBORSCI.COM Rotational Inertia Demonstrator P3-3545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold.

So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold. Name: MULTIPLE CHOICE: Questions 1-11 are 5 points each. 1. A safety device brings the blade of a power mower from an angular speed of ω 1 to rest in 1.00 revolution. At the same constant angular acceleration,

More information

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

Practice Exam Three Solutions

Practice Exam Three Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

More information

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Rotational Motion: 11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.

SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi. SOLID MECHANICS DYNAMICS TUTOIAL MOMENT OF INETIA This work covers elements of the following syllabi. Parts of the Engineering Council Graduate Diploma Exam D5 Dynamics of Mechanical Systems Parts of the

More information

Problem Set 5 Work and Kinetic Energy Solutions

Problem Set 5 Work and Kinetic Energy Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

Rotational Motion: Moment of Inertia

Rotational Motion: Moment of Inertia Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis * By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams

More information

226 Chapter 15: OSCILLATIONS

226 Chapter 15: OSCILLATIONS Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

More information

AP Physics: Rotational Dynamics 2

AP Physics: Rotational Dynamics 2 Name: Assignment Due Date: March 30, 2012 AP Physics: Rotational Dynamics 2 Problem A solid cylinder with mass M, radius R, and rotational inertia 1 2 MR2 rolls without slipping down the inclined plane

More information

Answer, Key { Homework 6 { Rubin H Landau 1 This print-out should have 24 questions. Check that it is complete before leaving the printer. Also, multiple-choice questions may continue on the next column

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

Torque Analyses of a Sliding Ladder

Torque Analyses of a Sliding Ladder Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N) Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

At the skate park on the ramp

At the skate park on the ramp At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

More information

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 21.1 Introduction... 1 21.2 Translational Equation of Motion... 1 21.3 Translational and Rotational Equations of Motion... 1

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013 PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.

More information

Chapter 8: Rotational Motion of Solid Objects

Chapter 8: Rotational Motion of Solid Objects Chapter 8: Rotational Motion of Solid Objects 1. An isolated object is initially spinning at a constant speed. Then, although no external forces act upon it, its rotational speed increases. This must be

More information

10.1 Quantitative. Answer: A Var: 50+

10.1 Quantitative. Answer: A Var: 50+ Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass

More information

Problem Set #8 Solutions

Problem Set #8 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection

More information

Problem Set V Solutions

Problem Set V Solutions Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

More information

Work and Conservation of Energy

Work and Conservation of Energy Work and Conservation of Energy Topics Covered: 1. The definition of work in physics. 2. The concept of potential energy 3. The concept of kinetic energy 4. Conservation of Energy General Remarks: Two

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

Chapter 9 Circular Motion Dynamics

Chapter 9 Circular Motion Dynamics Chapter 9 Circular Motion Dynamics 9. Introduction Newton s Second Law and Circular Motion... 9. Universal Law of Gravitation and the Circular Orbit of the Moon... 9.. Universal Law of Gravitation... 3

More information

Chapter 7 Homework solutions

Chapter 7 Homework solutions Chapter 7 Homework solutions 8 Strategy Use the component form of the definition of center of mass Solution Find the location of the center of mass Find x and y ma xa + mbxb (50 g)(0) + (10 g)(5 cm) x

More information

Determination of Acceleration due to Gravity

Determination of Acceleration due to Gravity Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

Chapter 9. particle is increased.

Chapter 9. particle is increased. Chapter 9 9. Figure 9-36 shows a three particle system. What are (a) the x coordinate and (b) the y coordinate of the center of mass of the three particle system. (c) What happens to the center of mass

More information

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad. Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.

More information

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces. Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Linear Motion vs. Rotational Motion

Linear Motion vs. Rotational Motion Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

More information

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Chapter 6. Work and Energy

Chapter 6. Work and Energy Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a non-zero speed carries energy

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Chapter 11 Equilibrium

Chapter 11 Equilibrium 11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Lecture Presentation Chapter 7 Rotational Motion

Lecture Presentation Chapter 7 Rotational Motion Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class

More information

AP1 Dynamics. Answer: (D) foot applies 200 newton force to nose; nose applies an equal force to the foot. Basic application of Newton s 3rd Law.

AP1 Dynamics. Answer: (D) foot applies 200 newton force to nose; nose applies an equal force to the foot. Basic application of Newton s 3rd Law. 1. A mixed martial artist kicks his opponent in the nose with a force of 200 newtons. Identify the action-reaction force pairs in this interchange. (A) foot applies 200 newton force to nose; nose applies

More information

EDUH 1017 - SPORTS MECHANICS

EDUH 1017 - SPORTS MECHANICS 4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

More information

D Alembert s principle and applications

D Alembert s principle and applications Chapter 1 D Alembert s principle and applications 1.1 D Alembert s principle The principle of virtual work states that the sum of the incremental virtual works done by all external forces F i acting in

More information

KE =? v o. Page 1 of 12

KE =? v o. Page 1 of 12 Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal

More information

3 Work, Power and Energy

3 Work, Power and Energy 3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

Problem Set #13 Solutions

Problem Set #13 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.0L: Physics I January 3, 06 Prof. Alan Guth Problem Set #3 Solutions Due by :00 am on Friday, January in the bins at the intersection of Buildings

More information

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Chapter 18 Static Equilibrium

Chapter 18 Static Equilibrium Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example

More information