# Balloon Astronaut. Balloon Astronaut 1. Design Challenge Learning. challenge- learning

Save this PDF as:

Size: px
Start display at page:

Download "Balloon Astronaut. Balloon Astronaut 1. Design Challenge Learning. https://www.thetech.org/educators/design- challenge- learning"

## Transcription

2 Vocabulary: Familiarity with these terms and concepts will enhance students experience in the activity Acceleration: The rate at which an object changes its velocity. Energy: The ability to do work. Appears in many forms, all of which are either kinetic or potential. Force: A push or a pull. An influence on a body or system, causing or tending to cause a change in movement or shape. Gravitational Potential Energy: Potential energy due to elevated position. Note: This only depends on vertical displacement and not the path taken to get it there. This value is always relative to some reference level. Inertia: The tendency of matter to remain at rest if at rest, or if moving, to keep moving in the same direction, unless affected by an outside (or unbalanced) force. Kinetic Energy (KE): Energy of motion. Includes heat, sound, and light (motion of molecules). Mass: The amount of matter that is contained by an object. Momentum: The quantity of motion of a moving object, equal to the product of its mass and its velocity. Newton s Law of Momentum Conservation: The amount of momentum remains constant momentum is neither created nor destroyed, but only changed through the action of forces. Newton s law of Conservation of Energy: Energy cannot be created or destroyed; it may be transformed from one form into another, or transferred from one place to another, but the total amount of energy never changes. Newton s Laws of Motion: o 1 st Law (Law of Inertia): An object at rest tends to stay at rest and an object in motion tends to stay in motion with the same speed and in the same direction unless acted upon by an unbalanced force. o 2 nd Law: When an unbalanced force acts on a body, it is accelerated in the direction of the force; the magnitude of the acceleration is directly proportional to the force and inversely proportional to the mass of the body F=ma. o 3 rd Law: Forces always occur in pairs. If object A exerts a force, F, on object B exerts an equal and opposite force, -F, on object A. Or Every action has an equal and opposite reaction. Potential Energy (PE): Energy of position; energy that is stored and held in readiness. Includes chemical energy, such as fossil fuels, electrical batteries, and food we eat. Speed: How fast an object is moving. The distance traveled over time. Terminal Velocity: The velocity attained by an object wherein the resistive forces counterbalance the driving forces, so motion is without acceleration. Velocity: The speed of something in a given direction. Resources: PhET Interactive Simulations: Administered by the University of Colorado Boulder, the website provides a variety of interactive simulations for science and math. It includes simulations dealing with motion, energy, power, and work. Liquid Body Armor: A facilitation guide provided by NISE Network on how nanotechnology is being used to create new types of protective fabrics. It includes an experiment/demonstration utilizing Oobleck to demonstrate the techniques scientists utilize when creating protective, lightweight, and flexible fabrics. NASA Spacesuits: Two websites provide an interactive guide to NASA spacesuits. They discusses the mission objectives and the design considerations for each suit. and

3 Using Science to Provide Impact Protection for Mobile Devices: An article on Geek Dad that covers information about the development of impact-protective materials by Tech Design Challenge Process: The Design Challenge Process is designed so students reinforce their science, mathematics, social studies, and language arts content knowledge, through an open-ended process that results in an original, team-driven solution. Students are expected to take responsibility for assessing their own progress and incorporate peer feedback as they conceptualize and redesign their projects. The process consists of three interconnected steps: Conceptualize Identify problem, materials, and constraints Brainstorm ideas and possible solutions Construct and Test Select a solution Design and construct Prototype Redesign or modify Retest Acquire Knowledge Research Share solutions Reflect and discuss Through the try, fail, learn approach, students develop the skills and habits of mind of Silicon Valley innovators: creativity, problem solving, design, collaboration, leadership, risk-taking, perseverance, and learning from failure. Materials: Materials can be limiting or inspirational to students! Have a wide variety of materials to promote a diversity of solutions. Recycled items are really useful: old mouse pads, wood scraps, boxes, cardboard tubes, strawberry baskets, etc. Team Materials (2-3 Engineers): Rubber bands String Elastic Plastic grocery bags/ trash bags Tissue paper Aluminum foil Netting Cellophane Paper towels Newspaper/phone book pages Wax paper Scissors Paper grocery bags Testing Supplies: 7ft or longer piece of PVC pipe Large Nail that is able to fall down the PVC pipe Inflated balloons/water balloons

4 Lesson Plan: Introduction (5 minutes) 1. One of the many jobs of astronauts is that of mechanic, performing maintenance and fixing the manmade objects in space. In order to do this work, astronauts must exit the durable spacecraft and perform the dangerous work of extravehicular activity (EVA) activities that take place outside their spacecraft. 2. What hazards are faced by astronauts performing extravehicular activities (EVAs)? What systems need to be in place in order to protect astronauts? (Note: Popular Mechanics published an article on the top 10 dangers of past EVAs 3. There are more than 500,000 pieces of debris, or space junk in orbit of Earth, traveling at speeds of up to 17,500 mph. At these speeds, even small pieces of debris can cause damage to satellites, spacecraft, and their human occupants. (Reference on Space Debris: The Challenge (20 minutes) 1. Introduce the Challenge: Design an outfit for your balloon astronaut that will protect it from the effects of being hit by small space debris moving at high speeds. 2. Introduce the Constraints: Protective wear must fit snugly on the astronaut. No adhesives may be used. Maximum of four layers may be used. Must be flexible. Must consist of at least three different materials. 3. Build: Give students about 15 minutes to build and test. The instructor should ask open-ended questions to help guide students through the design process, but should also allow students space to tinker. 4. Testing: During the build time student should be able to test and iterate their designs freely. Place the balloon astronaut in the testing space. Place the PVC pipe directly over the balloon astronaut and drop the nail pointed-side fist down the pipe. There should be supervision at the test area to ensure students are safely testing their gear no body parts should be in the test area while the nail is falling. A successful design is represented by an intact balloon. Demonstration and Reflection (20 minutes) 1. Demonstration: Have students demonstrate their devices one team at a time. If students have not completed their device, or their device did not function as expected, ask them how the device would have worked. 2. Reflection: Have each group of students explain their design strategy and how their device protected the astronaut. The instructor should ask leading questions to get at the science behind the designs. Teaching Points: o There is more to designing a device than building it. You must consider the resources available and the limitations of a design. o Brainstorming, testing, and teamwork are important to a successful design process. o The many properties of materials make different materials suitable for different purposes.

5 o A collision is an event in which two or more bodies exert forces on each other. o Structures can help spread the force of an impact over a broad area. o Some materials are better able to absorb impact energy than others. Questions: o Which layer(s) was penetrated? Why? o How can you change your design or use of materials? o Would you add other layers or materials if you were to redesign your spacesuit? o What do you think would have happened if the nail was more massive? o What do you think would happen if the nail was dropped from a greater height? o Do you think that astronauts can be protected for all types and sizes of space debris? o Do you think it s important for an astronaut s space suit to fit snuggly? Why? Extensions 1. Explore how nanotechnology is being used to develop lightweight materials that absorb impacts. Experiment with the properties of Oobleck. Can it protect an astronaut? 2. Instead of having something impact the astronaut, launch the astronaut using a slingshot against a wall or into a freefall. Use water balloons for this type of activity. 3. Utilize different lengths of PVC pipe in order to test different dropping-heights. Use these tests as an opportunity to discuss how changes in distance affects the object s energy. 4. Utilize different sizes of nails/projectiles. Use these tests as an opportunity to discuss how changes in mass/weight affects the object s energy.

### Vocabulary: Familiarity with these terms and concepts will enhance students experience in the activity

Energize your students with this exploration of the way energy transforms and transfers. Using household items and their knowledge, students will build fun contraptions that will make a ball move and hit

### Magnet Circus. Design Challenge Learning. https://www.thetech.org/educators/design- challenge- learning

Students explore the properties of magnets by designing a device that mimics the movements of circus performers using only magnetism, and then design a machine that will stay in motion for the greatest

### Exploring Buoyancy. Design Challenge Learning. https://www.thetech.org/educators/design- challenge- learning

How low can you go? Students are challenged to use their understanding of buoyancy, density, and pressure to design and build ocean exploring devices. As students iterate through this design challenge,

### Students design a pumping device that will effectively pump fluid through a given cardiovascular system.

Students design a pumping device that will effectively pump fluid through a given cardiovascular system. Grades 4-8 Estimated time: 60 minutes Student Outcomes: 1. Students will be able to design and build

### Roller Coaster Mania!

Overview Roller Coaster Mania! This series of educational programs was designed to simultaneously entertain and challenge gifted youth in their time outside of the school setting; however, the activities

### 5 Newton s Third Law of Motion

5 Newton s Third Law of Motion The heavy weight champion can hit the massive bag with considerable force. But with the same punch he can only exert a tiny force on the tissue paper in midair. Why is this?

### Q: Who established the law of universal gravitation? A: Newton. Q: What is a spring scale used for? A: To measure weight

Q: Who established the law of universal gravitation? A: Newton Q: What is a spring scale used for? A: To measure weight Q: What is the Law of Universal Gravitation? A: Everything in the universe has gravity.

### EGG ENGINEERING-SAVE THE EGG

EGG ENGINEERING-SAVE THE EGG MAKING AN EGG DROP PROTECTIVE DEVICE Experiment Objective: The aim of this project is to design a carrier that will prevent an egg from breaking when dropped from a certain

### Handheld Water Bottle Rocket & Launcher

Handheld Water Bottle Rocket & Launcher Category: Physics: Force and Motion Type: Make & Take Rough Parts List: Rocket Launcher: 1 3/8 One- hole rubber stopper 2 Valve stems, from an inner tube 4 Small

### Tree House Escape. Design Challenge Learning. https://www.thetech.org/educators/design- challenge- learning

A frightened friend is stranded in a treehouse and needs help getting out! In this design challenge students explore how simple machines can make work easier while they design a device to retrieve their

### STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws

Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction

### Newton's Laws of Motion in Motion

Newton's Laws of Motion in Motion Objectives: Students will use simple techniques to demonstrate Newton's 1 st and 3 rd Laws of Motion. Students will demonstrate their understanding of thrust, drag, lift,

### Educational Innovations

Educational Innovations Background Forces and Motion MAR-600 Wall Coaster Motion is caused by forces. Motion can be described. Motion follows rules. There are many forces and principles involved with motion.

### Newton s Laws of Motion

Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off

### Physical Science Chapter 2. Forces

Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components

### Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

### Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

### 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

### Elements of Physics Motion, Force, and Gravity Teacher s Guide

Teacher s Guide Grade Level: 9 12 Curriculum Focus: Physical Science Lesson Duration: Three class periods Program Description Examine Isaac Newton's laws of motion, the four fundamental forces of the universe,

### Newton s Wagon Newton s Laws

Newton s Wagon Newton s Laws What happens when you kick a soccer ball? The kick is the external force that Newton was talking about in his first law of motion. What happens to the ball after you kick it?

### Astro 110-01 Lecture 10 Newton s laws

Astro 110-01 Lecture 10 Newton s laws Twin Sungrazing comets 9/02/09 Habbal Astro110-01 Lecture 10 1 http://umbra.nascom.nasa.gov/comets/movies/soho_lasco_c2.mpg What have we learned? How do we describe

### b. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.

I. What is Motion? a. Motion - is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far

### Units DEMO spring scales masses

Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring

### Newton s Laws of Motion

Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first

### Design: Car Building (Balloon cars)

Zipline Activity Design: Car Building (Balloon cars) Investigation: Speed (flat surface) Objective Student Experience Students will construct a zipline to recognize and analyze the motion (and cause of

### Notes: Mechanics. The Nature of Force, Motion & Energy

Notes: Mechanics The Nature of Force, Motion & Energy I. Force A push or pull. a) A force is needed to change an object s state of motion. b) Net force- The sum (addition) of all the forces acting on an

### Name Period Chapter 10 Study Guide

Name _ Period Chapter 10 Study Guide Modified True/False Indicate whether the statement is true or false. 1. Unbalanced forces do not change an object s motion. 2. Friction depends on the types of surfaces

### Lecture 5: Newton s Laws. Astronomy 111

Lecture 5: Newton s Laws Astronomy 111 Isaac Newton (1643-1727): English Discovered: three laws of motion, one law of universal gravitation. Newton s great book: Newton s laws are universal in scope,

### Newton s Laws of Motion

Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems

### Newton s Third Law. Newton s Third Law of Motion. Action-Reaction Pairs

Section 4 Newton s Third Law Reading Preview Key Concepts What is Newton s third law of motion? How can you determine the momentum of an object? What is the law of conservation of momentum? Key Terms momentum

### Force. A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another.

Force A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another. Force Weight is the force of the earth's gravity exerted

### Motion Commotion. Middle School TEKS. Vocabulary

Motion Commotion Middle School TEKS Sixth Grade: 6.8A, 6.8B, 6.8C, 6.8D Seventh Grade: 7.7A, 7.7C Eighth Grade: 8.6A, 8.6C Vocabulary acceleration, friction, gravity, inertia, kinetic energy, Newton s

### Rocketry for Kids. Science Level 4. Newton s Laws

Rocketry for Kids Science Level 4 Newton s Laws Victorian Space Science Education Centre 400 Pascoe Vale Road Strathmore, Vic 3041 www.vssec.vic.edu.au Some material for this program has been derived from

### 1. The unit of force, a Newton, is equal to a. The amount of mass in an object c. kg m/s b. Mass X Velocity d. kg m/s 2

Forces in Motion Test- FORM B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The unit of force, a Newton, is equal to a. The amount of mass in an object

### April 07, 2015. Force motion examples.notebook MOTION AND FORCES. GRAVITY: a force that makes any object pull toward another object.

Force motion examples.notebook April 07, 2015 MOTION AND FORCES GRAVITY: a force that makes any object pull toward another object Feb 15 12:00 PM 1 FRICTION: a force that acts to slow down moving objects

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

### ACTIVITY 1: Gravitational Force and Acceleration

CHAPTER 3 ACTIVITY 1: Gravitational Force and Acceleration LEARNING TARGET: You will determine the relationship between mass, acceleration, and gravitational force. PURPOSE: So far in the course, you ve

### LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes

LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes DESCRIPTION Apply the concepts of pressure and Newton s laws of motion to build simple rockets. OBJECTIVE This lesson

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### AP1 Gravity. at an altitude equal to twice the radius (R) of the planet. What is the satellite s speed assuming a perfectly circular orbit?

1. A satellite of mass m S orbits a planet of mass m P at an altitude equal to twice the radius (R) of the planet. What is the satellite s speed assuming a perfectly circular orbit? (A) v = Gm P R (C)

### Provided by TryEngineering - www.tryengineering.org

Provided by TryEngineering - Lesson Focus Lesson focuses on wind tunnel tests that engineers in many industries use to when developing products such as airplanes, cars, and even buildings. Teams of students

### Science Standard Articulated by Grade Level Strand 5: Physical Science

Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

### Chapter 4 Newton s Laws: Explaining Motion

Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!

### Marshmallow Catapults

Marshmallow Catapults 1 Name Marshmallow Catapults Background Information: Catapults use projectile motion to move objects across distances. A couple of factors can affect the distance an object can be

### The University of Texas at Austin. Gravity and Orbits

UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 60-75 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the

### Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

### Explore 3: Crash Test Dummies

Explore : Crash Test Dummies Type of Lesson: Learning Goal & Instructiona l Objectives Content with Process: Focus on constructing knowledge through active learning. Students investigate Newton s first

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### Intro Physics (Each individual student will complete his or her own lab report) Bottle Rocket Lab

Intro Physics June 013 Name (Each individual student will complete his or her own lab report) Bottle Rocket Lab Group Members: Target Launch Date: Grade: Pre Launch questions (max 0 points) - Due date:

### tps Q: If the Earth were located at 0.5 AU instead of 1 AU, how would the Sun s gravitational force on Earth change?

tps Q: If the Earth were located at 0.5 AU instead of 1 AU, how would the Sun s gravitational force on Earth change? A. It would be one-fourth as strong. B. It would be one-half as strong. C. It would

### 7 TH GRADE SCIENCE REVIEW

7 TH GRADE SCIENCE REVIEW The motion of an object is always judged with respect to some other object or point. When an object changes position over time relative to a reference point, the object is in

### Newton s Laws of Motion Project

Newton s Laws of Motion Project Sir Isaac Newton lived during the 1s. Like all scientists, he made observations about the world around him. Some of his observations were about motion. His observations

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY Word Bank: Acceleration, mass, inertia, weight, gravity, work, heat, kinetic energy, potential energy, closed systems, open systems,

### UCM-Gravity. 2. The diagram shows two bowling balls, A and B, each having a mass of 7 kilograms, placed 2 meters apart.

1. A space probe is launched into space from Earth s surface. Which graph represents the relationship between the magnitude of the gravitational force exerted on Earth by the space probe and the distance

### PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

### Work, Energy and Power

Name: KEY Work, Energy and Power Objectives: 1. To understand work and its relation to energy. 2. To understand how energy can be transformed from one form into another. 3. To compute the power from the

### NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied

### engineering is out of this world

Light but Strong A Lesson in Engineering EP-2013-09-107-MSFC engineering is out of this world National Aeronautics and Space Administration Light but Strong teacher notes Next Generation Science Standards:

### Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

### Unit 1/Module I Motions, Forces, and Energy

Timeline: 1 st /2 nd Quarter Big Idea: Motion, Forces, and Energy Unit 1/Module I Motions, Forces, and Energy TRANSFER Students will be able to independently use their learning to Recognize that an object

### Calculate Gravitational Acceleration

Calculate Gravitational Acceleration Subject Areas Associated Unit Associated Lesson Activity Title Header Algebra, measurement, physics, science and technology Calculate Gravitational Acceleration Insert

### Force and Motion Test

Force and Motion Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. (1 point each) 1. Your best guess of how an experiment might turn out

### Section 3 Newton s Laws of Motion

Section 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that

### Activity: Building a Catapult

Mechanical Engineering Activity: Building a Catapult In this activity, youth learn how to design and build a catapult that uses a pivot arm (lever) and a fulcrum to launch a Ping-Pong ball across the room.

### Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

### Newton s Laws of Motion. Presented by: - Rakhi Gupta(166) Tamanpreet Kaur(211)

Newton s Laws of Motion Presented by: - Rakhi Gupta(166) Tamanpreet Kaur(211) Contents of the Presentation Newton s First law of Motion Balance and Unbalanced Force Newton s Second law of Motion Free Falling

### Roanoke Pinball Museum Key Concepts

Roanoke Pinball Museum Key Concepts What are Pinball Machines Made of? SOL 3.3 Many different materials are used to make a pinball machine: 1. Steel: The pinball is made of steel, so it has a lot of mass.

### Playing with Parachutes

Provided by TryEngineering - Lesson Focus This lesson focuses on parachute design. Teams of students construct parachutes from everyday materials. They then test their parachutes to determine whether they

### Conceptual Physics 11 th Edition. Forces and Interactions. Newton s Third Law of Motion. This lecture will help you understand:

This lecture will help you understand: Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION Forces and Interactions Summary of Newton s Laws Vectors Forces and Interactions Interaction

### 4 Gravity: A Force of Attraction

CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

### What is Energy? 1 45 minutes Energy and You: Energy Picnic Science, Physical Education Engage

Unit Grades K-3 Awareness Teacher Overview What is energy? Energy makes change; it does things for us. It moves cars along the road and boats over the water. It bakes a cake in the oven and keeps ice frozen

### 5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

### Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

### PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION

Newton s 3rd Law and Momentum Conservation, p./ PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION Read over the lab and then answer the following questions about the procedures:. Write down the definition

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### Our Dynamic Universe

North Berwick High School Department of Physics Higher Physics Unit 1 Section 3 Our Dynamic Universe Collisions and Explosions Section 3 Collisions and Explosions Note Making Make a dictionary with the

### Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

### Kinetic Theory. Bellringer. Kinetic Theory, continued. Visual Concept: Kinetic Molecular Theory. States of Matter, continued.

Bellringer You are already familiar with the most common states of matter: solid, liquid, and gas. For example you can see solid ice and liquid water. You cannot see water vapor, but you can feel it in

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

### Physics I Honors: Chapter 4 Practice Exam

Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe

### Baking Soda & Vinegar Rocket

Baking Soda & Vinegar Rocket Category: Chemistry; Physics: Force & Motion Type: Make & Take Rough Parts List: 1 Plastic bottle 1 Cork 1 Paper towel Cardstock or thin cardboard Baking soda Vinegar Cardboard

### Physics Momentum and Impulse Car Safety Engineering (egg drop) Conservation of Momentum

Physics Momentum and Impulse Car Safety Engineering (egg drop) Intro to Momentum Conservation of Momentum Impulse Student Experience Students brainstorm the meaning of momentum. Students use different

### ELEMENTS OF PHYSICS MOTION, FORCE, AND GRAVITY

1 Pre-Test Directions: This will help you discover what you know about the subject of motion before you begin this lesson. Answer the following true or false. 1. Aristotle believed that all objects fell

### Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION This lecture will help you understand: Forces and Interactions Newton s Third Law of Motion Summary of Newton s Laws Vectors Forces

### Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

### BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

### Practice TEST 2. Explain your reasoning

Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant

### NEWTON S LAWS OF MOTION

Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

### Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same.

1. A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall

### E Physics: A. Newton s Three Laws of Motion Activity: Newton s Third Law of Motion

Science as Inquiry: As a result of their activities in grades 5 8, all students should develop Understanding about scientific inquiry. Abilities necessary to do scientific inquiry: identify questions,

### PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

### Energy Transfer in a Flash-Light. (Teacher Copy)

Energy Transfer in a Flash-Light (Teacher Copy) Florida Sunshine State Standards Benchmark: SC.B. 1.3.1 AA The student identifies forms of energy and explains that they can be measured and compared. (Also

### Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

### Physics 2AB Notes - 2012. Heating and Cooling. The kinetic energy of a substance defines its temperature.

Physics 2AB Notes - 2012 Heating and Cooling Kinetic Theory All matter is made up of tiny, minute particles. These particles are in constant motion. The kinetic energy of a substance defines its temperature.

### Gravitational Potential Energy

Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

### Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

### Work and Energy. Work = Force Distance. Work increases the energy of an object. Energy can be converted back to work.

Work and Energy Ch. 6 Work = Force Distance Work increases the energy of an object. Energy can be converted back to work. Therefore, energy and work have the same unit: Newton meter = Nm Energy per gram,