# Extra Problems for Midterm 2

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Extra Problems for Midterm Sudesh Kalyanswamy Exercise (Surfaces). Find the equation of, and classify, the surface S consisting of all points equidistant from (0,, 0) and (,, ). Solution. Let P (x, y, z) be on the surface. The distance from P to (0,, 0) is x + (y + ) + z, and the distance from P to (,, ) is (x ) + (y ) + (z ). Therefore x + (y + ) + z = (x ) + (y ) + (z ). Square both sides and expand. x + y + z =, which is a plane. After simplifying, you should get 4x + 8y + 4x = 8, or Exercise (Surfaces). Classify the quadric surface given by the equation x + y x 4y z 5 = 0. Solution. Complete the square in the x and y to get something like which is an elliptic paraboloid. (x ) + (y ) = z = z + 8, Exercise 3 (Surfaces). Find the equation for the surface obtained by rotating y = x about the y-axis, and classify the surface. Solution 3. The equation is y = x + z, and this is an elliptic paraboloid. Exercise 4 (Surfaces). Find an equation of, and clasify, the surface consisting of all points equidistant from (, 0, 0) and x =. Solution 4. This is similar to the first exercise. The distance from a point P (x, y, z) on the surface to (, 0, 0) is (x + ) + y + z, and the distance to the plane x = is x. Therefore x = (x + ) + y + z. Square both sides and simplify to get 4x = y + z, which is, again, an elliptic paraboloid. Exercise 5 (Surfaces). Find the equation for, and classify, the surface obtained by rotating x = 3y about the x-axis. Solution 5. For a fixed x-value, say x = a, the trace of the surface is a circle with equation y + z = ( a 3) = a 9. Therefore the surface will have equation y + z = x, which is a cone. 9 Exercise 6 (Level Curves and other stuff). Consider f(x, y) = ln(x y).

2 (a) Find and sketch the domain of f(x, y). (b) Find the range of f(x, y). (c) What do level curves of f(x, y) look like? (d) Find the tangent plane to f(x, y) at (, 0). (e) Approximate ln(. +.03). Solution 6. The domain is {(x, y) R : x y > 0}. The range is all of R. The level curves are parabolas: c = ln(x y) = e c = x y = y = x e c. For the tangent plane, we need our two partials: f x = x x y, f y = x y, so f x (, 0) = and f y (, 0) =. Since f(, 0) = ln( 0) = 0, the tangent plane is (x ) (y 0) (z 0) = 0 = z = (x ) y. Finally, to get the approximation, note that this value is what you get when you plug in x =. and y =.03 into the function, so the approximate value is what you get when you plug in these into the tangent plane: (. ) Exercise 7 (Level Curves/Tangent Plane). Let f(x, y) = x + y. (a) Plot the level curve to c = 0. (b) What is lim f(x, y)? (x,y) (0, ) (c) Find the tangent plane to f(x, y) at P (,, 3). Solution 7. (a) The graph of x + y = 0 is just the point (0, 0). (b) f(x, y) is continuous, so just plug in (0, ): f(0, ) =, so the limit is. (c) Near P, f(x, y) looks like x y by definition of absolute values. Therefore z = x y near P, which is already a plane. So the tangent plane will just be the function itself: x y z = 0. Exercise 8 (Partials). If f(x, y, z) = xy z + sin (x z), find f xzy. Solution 8. By Clairaut s theorem, since this function will have sufficiently nice partials, we can do this in any order. Notice that f y = xyz 3, so f yx = yz 3, and finally f yxz = 6yz. Exercise 9 (Partials). Does there exist f(x, y) such that f x = x + 4y and f y = 3x y. Solution 9. No, since f xy = 4, which does not equal f yx = 3.

3 Exercise 0 (Partials). The ellipsoid 4x + y + z = 6 intersects the plane y = in what shape? Find the tangent line to this shape at (,, ). Solution 0. It intersects it in an ellipse: 4x + + z = 6, so 4x + z = 8, which is an ellipse. There are several ways of going about getting the line. We need a direction vector, so one could parametrize this ellipse: x = cos(t), z = sin(t). The point (,, ) corresponds to t = π/4. Since x (π/4) = and z (π/4) =, a direction vector is, 0,. So the tangent line is,, + t, 0,. Exercise (Partials). If f(x, y) = x(x + y ) 3/ e sin(x y), find f x (, 0). Solution. Notice that f(x, 0) = x(x ) 3/ = x. Therefore f x (, 0) = x 3 x= =. Exercise (Partials). Does there exist f(x, y) such that f x = x and f y = y? Solution. Observe that f xy = f yx = 0, so maybe. If f x = y, then integrating with respect to x gives f(x, y) = x + g(y) for some function g(y). Taking the partial of this with respect to y gives f y = g (y) = y, so one candidate for g(y) is y3. Observe, then, that 3 works. f(x, y) = x + y3 3 Exercise 3 (Tangent Plane). Show that every tangent plane to the cone x +y = z passes through the origin. Solution 3. Let P (a, b, c) be a point on the cone. The tangent plane to P is a(x a) + b(x b) c(x c) = 0. If you plug in (0, 0, 0) and recall that a + b = c since P is on the cone, you observe that the origin is on the plane, as desired. Exercise 4 (Tangent Plane). A surface contains the curves r (t) = t, t, t 3 and r (s) =, sin(s), cos(s). Find the tangent plane to (,, ). Solution 4. Notice that r (t) =, t, 3t and r (s) = 0, cos(s), sin(s). The point (,, ) corresponds to t = and s = π/4. Therefore, crossing r () and r (π/4) gives a normal vector to the plane, and in this case gives 5,,. Therefore the plane is 5(x ) + (y ) + (z ) = 0. Exercise 5 (Linear Approx/Chain Rule). The resistance of a circuit consisting of three resistors connected in parallel satisfies R = R + R + R 3, where R, R, R 3 are the resistances of each of the individual resistors. (a) If R = R = 00Ω and are increasing at Ω/s and R 3 = 00Ω decreasing at Ω/s, at this moment, how fast is R changing? 3

4 (b) R, R, R 3 are measured to be 5, 40, and 50 Ohms, respectively, with a possible error of percent in each case. Estimate the maximum possible error in calculated value of R. Solution 5. (a) Take d/dt of both sides implicitly to get dr R dt = dr dr dr R dt R dt R dt. If R = R = 00 and R 3 = 00, then R = 40. Now you know everything except dr so plug in: ( dr dt = ) (b) Now use differentials: R dr = dr R dr R dr R3 3. dt, If the error is at most percent, then the maximum errors in each case is,, and, 4 5 respectively, which are your dr, dr, and dr 3. Again, plug in to get ( dr = R ). With the given values of R, R, R 3, R = 00. Plug this in to get dr, which is your 7 answer. Exercise 6 (Gradient). Find a vector tangent to x y = 8 at (, 3). Solution 6. Interpret this curve as a level curve to f(x, y) = x y at c = 8. The gradient is normal to the level curve: f(, 3) = yx y, x y ln(x) (,3) =, 8 ln(). A vector tangent to this curve is a vector orthogonal to the gradient, say 8 ln(),. Exercise 7 (Directional Derivative). Find the directional derivative of f(x, y) = xy at P (, 8) in the direction of Q(5, 4). Solution 7. First, f =, so f(, 8) =, 4. The vector P Q = 3, 4, so y xy, x xy a unit vector in this direction is u = 3 5, 4 5. Therefore, we just need f(, 8) u = = 5. Exercise 8. Find the maximum rate of change of f(x, y) at the given point and the direction (as a unit vector) in which it occurs. 4

5 (a) f(x, y) = sin(xy), at (, 0) (b) f(x, y) = 4y x at (4, ) Solution 8. The maximum rate of change is f and the direction is in the direction of the gradient. (a) in the direction 0,. (b) 65, in the direction 8 65, 65. Exercise 9. Let f(x, y, z) = x y + xyz, v = 3, 4,. (a) Calculate D v f(,, ) (b) Let r(t) be a differentiable function giving the position of a moving particle at time t such that at t = 0 the object is at the point (,, ) moving in the direction v at speed. Compute r (0). (c) If g(t) is the value of the function f at the objects position at time t, find g (0). Solution 9. (a) This is straight computation: ˆv = 3 meaning f(,, ) = 0, 5,. Therefore, 4, 3 3 D v f(,, ) = f(,, ) ˆv = , f(x, y, z) = x + yz, y + xz, xy, (b) r (0) is the tangent vector to r(t) at t = 0. The tangent vector points in the direction of motion, which you are given to be v. The speed is, so you need the magnitude to be. Therefore you are finding a vector of length in the direction of v, which is ˆv. So r (0) = ˆv, which we found in (a). (c) g(t) = f(r(t)), so g (t) = f(r(t)) r (t), and g (0) = f(r(0)) r (0). But r (0) = ˆv and since r(0) = (,, ), f(r(0)) = 0, 5,, since we found this in (a). Therefore g (0) = 0, 5, ˆv = 4 3. Notice you ended up doing the same work as in (a). Try to connect the two ideas. Exercise 0. Consider the surfaces z = x + y and x + y =. A particle moves along the itnersection of these surfaces from the point (, 0, 4) to (0,, 4) in such a way that x = t. At the time the position is (,, ), find: v, the speed, a, and decompose the acceleration into the tangential and centripetal components. Solution 0. So first we need the full r(t). We know x = t, and since x + y =, we know y = x = ( t) = t. Similarly, since z = x + y, we get z = ( t) + t = t 4t

6 Therefore r(t) = t, t, t 4t + 4. Notice that the point (,, ) corresponds to t =. So v = r (). Since r (t) =,, 4t 4, we get r () =,, 0. The speed is v =. For acceleration we need r (t): r (t) = 0, 0, 4, so r () = a = 0, 0, 4. To decompose it: the unit tangent vector is gotten by normalizing r (0): T =,, 0. Then a T = a T = 0. We can get a N using a N = a = a T T + a N N, and we know everything but N, we can solve for N: N = a a T T a N. a a T = 4. Finally, since we have Exercise. Use differentials to approximate the amount of tin in a closed (cylindrical) tin can with diameter 8 cm and height cm if the tin is.04 cm thick. Solution. You have to interpret this the right way. I can consider a cylinder with radius 4 cm (notice that you were given the diameter, not the radius) and height and compute its volume. Adding thickness decreases the volume by a certain amount, and this amount is the amount of tin that I m adding. So the amount of tin being used is approximately dv. Since V = πr h, dv = (πrh)dr + (πr )dh. You know r = 4, h =. If the thickness is.04, then the radius decreases by.04 and the height decreases by.08 (.04 each for the top and bottom). Therefore dr =.04, dh =.08. Plug these in to get dv : dv = (π 4 ).04 + π This is a negative quantity because the volume decreased. The amount of tin is just the absolute value of this. Exercise. A skier is on a mountain with height function z = f(x, y) = 00.4x.3y, where z is the height. (a) The skier is at (,, f(, )) and wants to ski downhill along the steepest path. In which direction should the skier go? Give answer as a unit vector. (b) The skier begins skiing in the direction you found in (a), so the skier heads in a direction in 3D space given by a, b, c. Find this vector. Solution. (a) The path of steepest descent happens in the direction of f. Here, f(x, y) =.8x,.6y, so f(, ) =.8,.6 =.8,.6. This vector is already a unit vector. 6

7 (b) From (a), you know the x and y components are.8 and.6, respectively. But you need c. Notice that the rate of steepest descent is f =. Intepret this as a slope: if I move unit in the direction of.8,.6, my z-value changes by. unit in that direction means you ve moved a total of.8,.6 =, and your vertical distance changed is exactly c. So c =, so c =. Thus, your vector is.8,.6,. Exercise 3. If g(x, y) = y x e t dt, find the linear approximation to (0, 0) and use it to approximate.. e t dt. Solution 3. By Fundamental Theorem of Calculus, g x (x, y) = e x, and g y (x, y) = e y. So g x (0, 0) = and g y (0, 0) =. Since g(0, 0) = 0 0 e t dt = 0, the point is (0, 0, 0) and the normal vector is,,. Thus, the plane is x + y z = 0 = z = y x. To approximate the given integral, we notice that it corresponds to x =. and y =., so plug this into the tangent plane to get that the approximate value is. (.) =.3. Exercise 4. (a) Find a parametrization of the line through A(,, 3) and B(0,, ) such that the lines passes through A at t = and through B at t =. (b) Find where the line in (a) intersects the sphere of radius 8 centered at the origin. (c) Find an arc length parametrization of the line. Solution 4. (a) Your direction vector is AB =, 0,, so a line is,, 3 +t, 0,. The problem is that point A corresponds to t = 0 and point B corresponds to t =. To remedy this, you can shift by :,, 3 + (t ), 0,. You can check now that this goes through A at t = and B at t =. (b) The line is x = t, y = and z = 4 t. The equation of the sphere is x +y +z = 8. Plug these x, y and z into the sphere equation and solve for t. You should get t = or t = 4, so there are two points: t = corrsponds to (0,, ) and t = 4 corresponds to (,, 0). (c) You can simplify the line to,, 4 + t, 0,. The arc length parametrization of the line is gotten by essentially normalizing the direction vector: r(s) =,, 4 + s, 0,. Or you could do all the steps we did for the last midterm to get this as well. 7

### Practice Problems for Midterm 2

Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y,

### (a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

### Section 12.6: Directional Derivatives and the Gradient Vector

Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

### Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

### Solutions for Review Problems

olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

### Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,

### L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

### Solutions to Practice Problems for Test 4

olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

### 42 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2. 1.6.1 Brief review of Conic Sections

2 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.18: Parabola y = 2 1.6 Quadric Surfaces 1.6.1 Brief review of Conic Sections You may need to review conic sections for this to make more sense. You

### MATH 1231 S2 2010: Calculus. Section 1: Functions of severable variables.

MATH 1231 S2 2010: Calculus For use in Dr Chris Tisdell s lectures Section 1: Functions of severable variables. Created and compiled by Chris Tisdell S1: Motivation S2: Function of two variables S3: Visualising

### Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

### Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50

Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 5-37, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall

### Exam 1 Sample Question SOLUTIONS. y = 2x

Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

### x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

### DERIVATIVES AS MATRICES; CHAIN RULE

DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we

### Math 241, Exam 1 Information.

Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

### Solutions to Homework 5

Solutions to Homework 5 1. Let z = f(x, y) be a twice continously differentiable function of x and y. Let x = r cos θ and y = r sin θ be the equations which transform polar coordinates into rectangular

### ( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make

### Week #15 - Word Problems & Differential Equations Section 8.1

Week #15 - Word Problems & Differential Equations Section 8.1 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 25 by John Wiley & Sons, Inc. This material is used by

### Review Sheet for Third Midterm Mathematics 1300, Calculus 1

Review Sheet for Third Midterm Mathematics 1300, Calculus 1 1. For f(x) = x 3 3x 2 on 1 x 3, find the critical points of f, the inflection points, the values of f at all these points and the endpoints,

### Solutions to Homework 10

Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

### SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

### 1 3 4 = 8i + 20j 13k. x + w. y + w

) Find the point of intersection of the lines x = t +, y = 3t + 4, z = 4t + 5, and x = 6s + 3, y = 5s +, z = 4s + 9, and then find the plane containing these two lines. Solution. Solve the system of equations

### Section 10.7 Parametric Equations

299 Section 10.7 Parametric Equations Objective 1: Defining and Graphing Parametric Equations. Recall when we defined the x- (rcos(θ), rsin(θ)) and y-coordinates on a circle of radius r as a function of

### Math 209 Solutions to Assignment 7. x + 2y. 1 x + 2y i + 2. f x = cos(y/z)), f y = x z sin(y/z), f z = xy z 2 sin(y/z).

Math 29 Solutions to Assignment 7. Find the gradient vector field of the following functions: a fx, y lnx + 2y; b fx, y, z x cosy/z. Solution. a f x x + 2y, f 2 y x + 2y. Thus, the gradient vector field

### MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.

MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin

### Engineering Math II Spring 2015 Solutions for Class Activity #2

Engineering Math II Spring 15 Solutions for Class Activity # Problem 1. Find the area of the region bounded by the parabola y = x, the tangent line to this parabola at 1, 1), and the x-axis. Then find

### Section 1.8 Coordinate Geometry

Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of

### Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6

### Vectors, Gradient, Divergence and Curl.

Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use

### FINAL EXAM SOLUTIONS Math 21a, Spring 03

INAL EXAM SOLUIONS Math 21a, Spring 3 Name: Start by printing your name in the above box and check your section in the box to the left. MW1 Ken Chung MW1 Weiyang Qiu MW11 Oliver Knill h1 Mark Lucianovic

### This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,

### Solutions to Vector Calculus Practice Problems

olutions to Vector alculus Practice Problems 1. Let be the region in determined by the inequalities x + y 4 and y x. Evaluate the following integral. sinx + y ) da Answer: The region looks like y y x x

### Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =

Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a

### Solutions - Homework sections 17.7-17.9

olutions - Homework sections 7.7-7.9 7.7 6. valuate xy d, where is the triangle with vertices (,, ), (,, ), and (,, ). The three points - and therefore the triangle between them - are on the plane x +

### Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

### Differentiation of vectors

Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where

### PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

### Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

### Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic

### Lecture L6 - Intrinsic Coordinates

S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed

### Module 1 : A Crash Course in Vectors Lecture 2 : Coordinate Systems

Module 1 : A Crash Course in Vectors Lecture 2 : Coordinate Systems Objectives In this lecture you will learn the following Define different coordinate systems like spherical polar and cylindrical coordinates

### Engineering Geometry

Engineering Geometry Objectives Describe the importance of engineering geometry in design process. Describe coordinate geometry and coordinate systems and apply them to CAD. Review the right-hand rule.

### 4 More Applications of Definite Integrals: Volumes, arclength and other matters

4 More Applications of Definite Integrals: Volumes, arclength and other matters Volumes of surfaces of revolution 4. Find the volume of a cone whose height h is equal to its base radius r, by using the

### PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

### Learning Objectives for Math 165

Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

### Roots and Coefficients of a Quadratic Equation Summary

Roots and Coefficients of a Quadratic Equation Summary For a quadratic equation with roots α and β: Sum of roots = α + β = and Product of roots = αβ = Symmetrical functions of α and β include: x = and

### 7.3 Volumes Calculus

7. VOLUMES Just like in the last section where we found the area of one arbitrary rectangular strip and used an integral to add up the areas of an infinite number of infinitely thin rectangles, we are

### HOMEWORK 4 SOLUTIONS. All questions are from Vector Calculus, by Marsden and Tromba

HOMEWORK SOLUTIONS All questions are from Vector Calculus, by Marsden and Tromba Question :..6 Let w = f(x, y) be a function of two variables, and let x = u + v, y = u v. Show that Solution. By the chain

### 5.1 Derivatives and Graphs

5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has

### Review Sheet for Test 1

Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

### 1.7 Cylindrical and Spherical Coordinates

56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.7 Cylindrical and Spherical Coordinates 1.7.1 Review: Polar Coordinates The polar coordinate system is a two-dimensional coordinate system in which the

### Vector surface area Differentials in an OCS

Calculus and Coordinate systems EE 311 - Lecture 17 1. Calculus and coordinate systems 2. Cartesian system 3. Cylindrical system 4. Spherical system In electromagnetics, we will often need to perform integrals

### 1.2 ERRORS AND UNCERTAINTIES Notes

1.2 ERRORS AND UNCERTAINTIES Notes I. UNCERTAINTY AND ERROR IN MEASUREMENT A. PRECISION AND ACCURACY B. RANDOM AND SYSTEMATIC ERRORS C. REPORTING A SINGLE MEASUREMENT D. REPORTING YOUR BEST ESTIMATE OF

### SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253

SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253 1. Prove that the following differential equations are satisfied by the given functions: (a) 2 u + 2 u 2 y + 2 u 2 z =0,whereu 2 =(x2 + y 2 + z 2 ) 1/2. (b)

### The Math Circle, Spring 2004

The Math Circle, Spring 2004 (Talks by Gordon Ritter) What is Non-Euclidean Geometry? Most geometries on the plane R 2 are non-euclidean. Let s denote arc length. Then Euclidean geometry arises from the

### Math 497C Sep 9, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 9, 2004 1 Curves and Surfaces Fall 2004, PSU Lecture Notes 2 15 sometries of the Euclidean Space Let M 1 and M 2 be a pair of metric space and d 1 and d 2 be their respective metrics We say

### 2.1 Three Dimensional Curves and Surfaces

. Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

### Fundamental Theorems of Vector Calculus

Fundamental Theorems of Vector Calculus We have studied the techniques for evaluating integrals over curves and surfaces. In the case of integrating over an interval on the real line, we were able to use

### APPLICATIONS OF DIFFERENTIATION

4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,

### Limits and Continuity

Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

### CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder.

TEST A CHAPTER 8, GEOMETRY 1. A rectangular plot of ground is to be enclosed with 180 yd of fencing. If the plot is twice as long as it is wide, what are its dimensions? 2. A 4 cm by 6 cm rectangle has

### MULTIPLE INTEGRALS. h 2 (y) are continuous functions on [c, d] and let f(x, y) be a function defined on R. Then

MULTIPLE INTEGALS 1. ouble Integrals Let be a simple region defined by a x b and g 1 (x) y g 2 (x), where g 1 (x) and g 2 (x) are continuous functions on [a, b] and let f(x, y) be a function defined on.

### Math 53 Worksheet Solutions- Minmax and Lagrange

Math 5 Worksheet Solutions- Minmax and Lagrange. Find the local maximum and minimum values as well as the saddle point(s) of the function f(x, y) = e y (y x ). Solution. First we calculate the partial

### correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

Date Period Unit 0: Quadratic Relations DAY TOPIC Distance and Midpoint Formulas; Completing the Square Parabolas Writing the Equation 3 Parabolas Graphs 4 Circles 5 Exploring Conic Sections video This

### www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

### Mark Howell Gonzaga High School, Washington, D.C.

Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,

### 2008 AP Calculus AB Multiple Choice Exam

008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus

### Parametric Equations and the Parabola (Extension 1)

Parametric Equations and the Parabola (Extension 1) Parametric Equations Parametric equations are a set of equations in terms of a parameter that represent a relation. Each value of the parameter, when

### Functions and Equations

Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

### Linear and quadratic Taylor polynomials for functions of several variables.

ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

### Math 265 (Butler) Practice Midterm II B (Solutions)

Math 265 (Butler) Practice Midterm II B (Solutions) 1. Find (x 0, y 0 ) so that the plane tangent to the surface z f(x, y) x 2 + 3xy y 2 at ( x 0, y 0, f(x 0, y 0 ) ) is parallel to the plane 16x 2y 2z

### Multiplicity. Chapter 6

Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are

### 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea.

BA01 ENGINEERING MATHEMATICS 01 CHAPTER 3 APPLICATION OF DIFFERENTIATION 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH Introduction to Applications of Differentiation In Isaac Newton's

### x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -

### Calculus with Analytic Geometry I Exam 10 Take Home part

Calculus with Analytic Geometry I Exam 10 Take Home part Textbook, Section 47, Exercises #22, 30, 32, 38, 48, 56, 70, 76 1 # 22) Find, correct to two decimal places, the coordinates of the point on the

### 3. Double Integrals 3A. Double Integrals in Rectangular Coordinates

3. Double Integrals 3A. Double Integrals in ectangular Coordinates 3A-1 Evaluate each of the following iterated integrals: c) 2 1 1 1 x 2 (6x 2 +2y)dydx b) x 2x 2 ydydx d) π/2 π 1 u (usint+tcosu)dtdu u2

To find a maximum or minimum: Find an expression for the quantity you are trying to maximise/minimise (y say) in terms of one other variable (x). dy Find an expression for and put it equal to 0. Solve

### A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

### Introduction to Calculus

Introduction to Calculus Contents 1 Introduction to Calculus 3 11 Introduction 3 111 Origin of Calculus 3 112 The Two Branches of Calculus 4 12 Secant and Tangent Lines 5 13 Limits 10 14 The Derivative

### MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

### Two vectors are equal if they have the same length and direction. They do not

Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

### a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12.

MA123 Elem. Calculus Fall 2015 Exam 2 2015-10-22 Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during

### Main page. Given f ( x, y) = c we differentiate with respect to x so that

Further Calculus Implicit differentiation Parametric differentiation Related rates of change Small variations and linear approximations Stationary points Curve sketching - asymptotes Curve sketching the

### 3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field

3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field 77 3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field Overview: The antiderivative in one variable calculus is an important

### Student Performance Q&A:

Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief

### Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

Jawapan Additional Mathematics Additional Mathematics Paper 1 SOALAN ULANGKAJI SPM 2011 Additional Mathematics Paper 2 SOALAN ULANGKAJI SPM 2011 SOALAN ULANGKAJI SPM 2011 SOALAN ULANGKAJI SPM 2011 SOALAN

### Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

### Homework from Section Find two positive numbers whose product is 100 and whose sum is a minimum.

Homework from Section 4.5 4.5.3. Find two positive numbers whose product is 100 and whose sum is a minimum. We want x and y so that xy = 100 and S = x + y is minimized. Since xy = 100, x = 0. Thus we have

### TOPIC 3: CONTINUITY OF FUNCTIONS

TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let

### Readings this week. 1 Parametric Equations Supplement. 2 Section 10.1. 3 Sections 2.1-2.2. Professor Christopher Hoffman Math 124

Readings this week 1 Parametric Equations Supplement 2 Section 10.1 3 Sections 2.1-2.2 Precalculus Review Quiz session Thursday equations of lines and circles worksheet available at http://www.math.washington.edu/