Mathematical Modelling Lecture 8 Networks


 David Hodge
 1 years ago
 Views:
Transcription
1 Lecture 8 Networks
2 Overview of Course Model construction dimensional analysis Experimental input fitting Finding a best answer optimisation Tools for constructing and manipulating models networks, differential equations, integration Tools for constructing and simulating models randomness Real world difficulties chaos and fractals The material in these two lectures is not in the course textbook.
3 What is a network? A network is any system of interconnected locations Locations usually less important than the connections Not restricted to computer networks! Using networks we can answer questions like What is the shortest route between two points? What is the cheapest route between two points? Are there any bottlenecks?
4 What s in a name? Locations are called nodes or vertices Links are called connections or edges
5 Classified according to the nature of the connections: May contain cycles May contain directed (oneway) or undirected edges May be complete (every node directly connected to every other) or incomplete
6 : Trees A tree is a special type of network. Unique path from any one node to any other Not cyclic Incomplete May have directed and/or undirected edges
7 : Trees A tree is a special type of network. Unique path from any one node to any other Not cyclic Incomplete May have directed and/or undirected edges
8 : Bipartite A bipartite network has two distinct groups of nodes Paths only exist between nodes in different groups No paths between nodes in same group May have directed and/or undirected edges
9 : Bipartite A bipartite network has two distinct groups of nodes Paths only exist between nodes in different groups No paths between nodes in same group May have directed and/or undirected edges
10 : Complete A complete network has: Paths from each node to all other nodes Lots of cycles
11 We are interested in the cheapest path from a particular node, called the root node, to another node.
12 Our method is to build up a linked list. We need to define three things: P j is the previous node in the cheapest path found so far from the root node to node j K j is the cost of the cheapest path found so far from the root node to node j C ij is the cost of the connection from neighbouring node i to node j
13 We start by initialising P and K for all the nodes: [P root, K root ] = 0 [P i, K i ] = [0, ] for nonroot nodes Label the root node with a slash
14 1 From the slashed node i, look at each nonslashed neighbour j 2 Calculate K i + C ij 3 If this is less than the current K j : K j = K i + C ij and P j = i Sketch the new [P j, K j ] by the node 4 Find the neighbour with the lowest K j 5 Label this node with a slash and repeat from step 1 until all nodes are slashed
15 Example 1 Introduction Let s look at the cheapest path from node 1 to nodes 9 and 10.
16 Example 1 Introduction
17 Example 1 Introduction
18 Example 1 Introduction
19 Example 1 Introduction
20 Example 1 Introduction
21 Example 1 Introduction
22 Example 1 Introduction
23 Example 1 Introduction
24 Example 1 Introduction
25 Example 1 Introduction
26 Example 1 Introduction
27 Example 1 Introduction
28 Example 1 Introduction
29 At the end, K target is the cost of the cheapest path to the target node We can find the cheapest path by working back along the links of previous nodes P j : from node j move to node P j and repeat until we reach the root node.
30 Example 1 Introduction
31 Example 1 Introduction
32 Example 2 Introduction
33 Example 3  Transportation network Using the network from the first example, but 1 3 and 3 4 are directional (oneway). There is a further restriction on 3 4, that the flow must not exceed 50 units a day.
34 Example 3  Transportation network Using the cheapest routes: Flow due to path Edge A B C D Total flow
35 Example 3  Transportation network Route Cost Flow x x x y y y z z w w 2
36 Example 3  Transportation network Total cost K : K = 6x 1 +8x 2 +7x 3 +8y 1 +10y 2 +9y 3 +10z 1 +12z 2 +11w 1 +13w 2 Subject to: x 1 + x 2 + x 3 = 35 y 1 + y 2 + y 3 = 20 z 1 + z 2 = 15 w 1 + w 2 = 30 x 1 + y 1 + w 1 + z 1 50 i.e. minimise K subject to constraints a linear programming problem!
37 Summary Introduction Networks consist of nodes joined by connections Examples include trees, bipartite networks, complete networks May have cycles, be directed/undirected, complete/incomplete Dijkstra s algorithm computes the cheapest path from a particular node to all other nodes
Social Media Mining. Graph Essentials
Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures
More informationIE 680 Special Topics in Production Systems: Networks, Routing and Logistics*
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti
More informationLoad balancing Static Load Balancing
Chapter 7 Load Balancing and Termination Detection Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination detection
More informationLoad Balancing and Termination Detection
Chapter 7 Load Balancing and Termination Detection 1 Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination detection
More informationScheduling. Open shop, job shop, flow shop scheduling. Related problems. Open shop, job shop, flow shop scheduling
Scheduling Basic scheduling problems: open shop, job shop, flow job The disjunctive graph representation Algorithms for solving the job shop problem Computational complexity of the job shop problem Open
More informationDecision Mathematics D1 Advanced/Advanced Subsidiary. Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes
Paper Reference(s) 6689/01 Edexcel GCE Decision Mathematics D1 Advanced/Advanced Subsidiary Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Nil Items included with
More information1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT
DECISION 1 Revision Notes 1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT Make sure you show comparisons clearly and label each pass First Pass 8 4 3 6 1 4 8 3 6 1 4 3 8 6 1 4 3 6 8 1
More informationAnalysis of Algorithms, I
Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadthfirst search (BFS) 4 Applications
More informationMATHEMATICS Unit Decision 1
General Certificate of Education January 2008 Advanced Subsidiary Examination MATHEMATICS Unit Decision 1 MD01 Tuesday 15 January 2008 9.00 am to 10.30 am For this paper you must have: an 8page answer
More informationMATHEMATICS Unit Decision 1
General Certificate of Education January 2007 Advanced Subsidiary Examination MATHEMATICS Unit Decision 1 MD01 Tuesday 16 January 2007 9.00 am to 10.30 am For this paper you must have: an 8page answer
More informationCSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.
Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure
More informationThe Butterfly, CubeConnectedCycles and Benes Networks
The Butterfly, CubeConnectedCycles and Benes Networks Michael Lampis mlambis@softlab.ntua.gr NTUA The Butterfly, CubeConnectedCycles and Benes Networks p.1/16 Introduction Hypercubes are computationally
More informationSeminar. Path planning using Voronoi diagrams and BSplines. Stefano Martina stefano.martina@stud.unifi.it
Seminar Path planning using Voronoi diagrams and BSplines Stefano Martina stefano.martina@stud.unifi.it 23 may 2016 This work is licensed under a Creative Commons AttributionShareAlike 4.0 International
More informationThe number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.
ADVANCED SUBSIDIARY GCE UNIT 4736/01 MATHEMATICS Decision Mathematics 1 THURSDAY 14 JUNE 2007 Afternoon Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1) Time: 1 hour 30 minutes INSTRUCTIONS
More informationMetabolic Network Analysis
Metabolic Network nalysis Overview  modelling chemical reaction networks  Levels of modelling Lecture II: Modelling chemical reaction networks dr. Sander Hille shille@math.leidenuniv.nl http://www.math.leidenuniv.nl/~shille
More informationLoad Balancing and Termination Detection
Chapter 7 slides71 Load Balancing and Termination Detection slides72 Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination
More informationCloud Enabled Emergency Navigation Using Fasterthanrealtime Simulation
Cloud Enabled Emergency Navigation Using Fasterthanrealtime Simulation Huibo Bi and Erol Gelenbe Intelligent Systems and Networks Group Department of Electrical and Electronic Engineering Imperial College
More informationLecture 2.1 : The Distributed BellmanFord Algorithm. Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol
Lecture 2 : The DSDV Protocol Lecture 2.1 : The Distributed BellmanFord Algorithm Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol The Routing Problem S S D D The routing problem
More informationLoad Balancing and Termination Detection
Chapter 7 Slide 1 Slide 2 Load Balancing and Termination Detection Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination
More informationPart 2: Community Detection
Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection  Social networks 
More informationFoundations of Operations Research
Foundations of Operations Research Master of Science in Computer Engineering Roberto Cordone roberto.cordone@unimi.it Tuesday 13.1515.15 Thursday 10.1513.15 http://homes.di.unimi.it/~cordone/courses/2013for/2013for.html
More informationDynamic programming. Doctoral course Optimization on graphs  Lecture 4.1. Giovanni Righini. January 17 th, 2013
Dynamic programming Doctoral course Optimization on graphs  Lecture.1 Giovanni Righini January 1 th, 201 Implicit enumeration Combinatorial optimization problems are in general NPhard and we usually
More informationEngineering Route Planning Algorithms. Online Topological Ordering for Dense DAGs
Algorithm Engineering for Large Graphs Engineering Route Planning Algorithms Peter Sanders Dominik Schultes Universität Karlsruhe (TH) Online Topological Ordering for Dense DAGs Deepak Ajwani Tobias Friedrich
More informationApproximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NPCompleteness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
More informationLecture 11: Graphical Models for Inference
Lecture 11: Graphical Models for Inference So far we have seen two graphical models that are used for inference  the Bayesian network and the Join tree. These two both represent the same joint probability
More informationG52APT AI Programming Techniques
G52APT AI Programming Techniques Lecture 8: Depth first search in Prolog Brian Logan School of Computer Science bsl@cs.nott.ac.uk Outline of this lecture recap: definition of a search problem state spaces
More informationA hierarchical multicriteria routing model with traffic splitting for MPLS networks
A hierarchical multicriteria routing model with traffic splitting for MPLS networks João Clímaco, José Craveirinha, Marta Pascoal jclimaco@inesccpt, jcrav@deecucpt, marta@matucpt University of Coimbra
More informationLecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method
Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming
More informationNetwork (Tree) Topology Inference Based on Prüfer Sequence
Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 vanniarajanc@hcl.in,
More informationSystem Interconnect Architectures. Goals and Analysis. Network Properties and Routing. Terminology  2. Terminology  1
System Interconnect Architectures CSCI 8150 Advanced Computer Architecture Hwang, Chapter 2 Program and Network Properties 2.4 System Interconnect Architectures Direct networks for static connections Indirect
More informationWAN Wide Area Networks. Packet Switch Operation. Packet Switches. COMP476 Networked Computer Systems. WANs are made of store and forward switches.
Routing WAN Wide Area Networks WANs are made of store and forward switches. To there and back again COMP476 Networked Computer Systems A packet switch with two types of I/O connectors: one type is used
More informationDistributed Computing over Communication Networks: Topology. (with an excursion to P2P)
Distributed Computing over Communication Networks: Topology (with an excursion to P2P) Some administrative comments... There will be a Skript for this part of the lecture. (Same as slides, except for today...
More informationOutline. NPcompleteness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NPcompleteness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2pairs sum vs. general Subset Sum Reducing one problem to another Clique
More informationSearch Heuristics for Load Balancing in IPnetworks
Search Heuristics for Load Balancing in IPnetworks Mattias Söderqvist Swedish Institute of Computer Science mso@sics.se 3rd March 25 SICS Technical Report T25:4 ISSN 113154 ISRN:SICST25/4SE Abstract
More informationOn the effect of forwarding table size on SDN network utilization
IBM Haifa Research Lab On the effect of forwarding table size on SDN network utilization Rami Cohen IBM Haifa Research Lab Liane Lewin Eytan Yahoo Research, Haifa Seffi Naor CS Technion, Israel Danny Raz
More informationLoad Balancing Routing Algorithm for Data Gathering Sensor Network
Load Balancing Routing Algorithm for Data Gathering Sensor Network Evgeny Bakin, Grigory Evseev State University of Aerospace Instrumentation SaintPetersburg, Russia {jenyb, egs}@vu.spb.ru Denis Dorum
More informationData Structures and Algorithms Written Examination
Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where
More informationAn Introduction to APGL
An Introduction to APGL Charanpal Dhanjal February 2012 Abstract Another Python Graph Library (APGL) is a graph library written using pure Python, NumPy and SciPy. Users new to the library can gain an
More informationChapter 7 Load Balancing and Termination Detection
Chapter 7 Load Balancing and Termination Detection Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination detection
More informationHome Page. Data Structures. Title Page. Page 1 of 24. Go Back. Full Screen. Close. Quit
Data Structures Page 1 of 24 A.1. Arrays (Vectors) nelement vector start address + ielementsize 0 +1 +2 +3 +4... +n1 start address continuous memory block static, if size is known at compile time dynamic,
More informationDesign of LDPC codes
Design of LDPC codes Codes from finite geometries Random codes: Determine the connections of the bipartite Tanner graph by using a (pseudo)random algorithm observing the degree distribution of the code
More informationDetection of local affinity patterns in big data
Detection of local affinity patterns in big data Andrea Marinoni, Paolo Gamba Department of Electronics, University of Pavia, Italy Abstract Mining information in Big Data requires to design a new class
More informationAnalysis of Algorithms I: Optimal Binary Search Trees
Analysis of Algorithms I: Optimal Binary Search Trees Xi Chen Columbia University Given a set of n keys K = {k 1,..., k n } in sorted order: k 1 < k 2 < < k n we wish to build an optimal binary search
More information2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]
Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)
More informationA Review And Evaluations Of Shortest Path Algorithms
A Review And Evaluations Of Shortest Path Algorithms Kairanbay Magzhan, Hajar Mat Jani Abstract: Nowadays, in computer networks, the routing is based on the shortest path problem. This will help in minimizing
More informationFast Sequential Summation Algorithms Using Augmented Data Structures
Fast Sequential Summation Algorithms Using Augmented Data Structures Vadim Stadnik vadim.stadnik@gmail.com Abstract This paper provides an introduction to the design of augmented data structures that offer
More information5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the FordFulkerson
More informationGraph models for the Web and the Internet. Elias Koutsoupias University of Athens and UCLA. Crete, July 2003
Graph models for the Web and the Internet Elias Koutsoupias University of Athens and UCLA Crete, July 2003 Outline of the lecture Small world phenomenon The shape of the Web graph Searching and navigation
More informationAutomated Scheduling, School of Computer Science and IT, University of Nottingham 1. Job Shop Scheduling. Disjunctive Graph.
Job hop cheduling Contents 1. Problem tatement 2. Disjunctive Graph. he hifting Bottleneck Heuristic and the Makespan Literature: 1. cheduling, heory, Algorithms, and ystems, Michael Pinedo, Prentice Hall,
More informationAn Improved ACO Algorithm for Multicast Routing
An Improved ACO Algorithm for Multicast Routing Ziqiang Wang and Dexian Zhang School of Information Science and Engineering, Henan University of Technology, Zheng Zhou 450052,China wzqagent@xinhuanet.com
More information7.1 Modelling the transportation problem
Chapter Transportation Problems.1 Modelling the transportation problem The transportation problem is concerned with finding the minimum cost of transporting a single commodity from a given number of sources
More information12 Abstract Data Types
12 Abstract Data Types 12.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Define the concept of an abstract data type (ADT).
More informationScheduling Shop Scheduling. Tim Nieberg
Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations
More informationContinuous Fastest Path Planning in Road Networks by Mining RealTime Traffic Event Information
Continuous Fastest Path Planning in Road Networks by Mining RealTime Traffic Event Information Eric HsuehChan Lu ChiWei Huang Vincent S. Tseng Institute of Computer Science and Information Engineering
More informationThe Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
More informationProblem Set 7 Solutions
8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in
More informationTopological Properties
Advanced Computer Architecture Topological Properties Routing Distance: Number of links on route Node degree: Number of channels per node Network diameter: Longest minimum routing distance between any
More informationCSE 4351/5351 Notes 7: Task Scheduling & Load Balancing
CSE / Notes : Task Scheduling & Load Balancing Task Scheduling A task is a (sequential) activity that uses a set of inputs to produce a set of outputs. A task (precedence) graph is an acyclic, directed
More informationGraph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis
Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.0, steen@cs.vu.nl Chapter 06: Network analysis Version: April 8, 04 / 3 Contents Chapter
More informationV. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005
V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer
More informationLecture 5: Conic Optimization: Overview
EE 227A: Conve Optimization and Applications January 31, 2012 Lecture 5: Conic Optimization: Overview Lecturer: Laurent El Ghaoui Reading assignment: Chapter 4 of BV. Sections 3.13.6 of WTB. 5.1 Linear
More information5.1 The Remainder and Factor Theorems; Synthetic Division
5.1 The Remainder and Factor Theorems; Synthetic Division In this section you will learn to: understand the definition of a zero of a polynomial function use long and synthetic division to divide polynomials
More informationEnergyAware Data Centre Management
EnergyAware Data Centre Management Cathryn Peoples, Gerard Parr and Sally McClean {c.peoples, gp.parr, si.mcclean}@ulster.ac.uk IndiaUK Advanced Technology Centre of Excellence in Next Generation Networks,
More informationMinimizing Probing Cost and Achieving Identifiability in Probe Based Network Link Monitoring
Minimizing Probing Cost and Achieving Identifiability in Probe Based Network Link Monitoring Qiang Zheng, Student Member, IEEE, and Guohong Cao, Fellow, IEEE Department of Computer Science and Engineering
More informationThe UnionFind Problem Kruskal s algorithm for finding an MST presented us with a problem in datastructure design. As we looked at each edge,
The UnionFind Problem Kruskal s algorithm for finding an MST presented us with a problem in datastructure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints
More information6.852: Distributed Algorithms Fall, 2009. Class 2
.8: Distributed Algorithms Fall, 009 Class Today s plan Leader election in a synchronous ring: Lower bound for comparisonbased algorithms. Basic computation in general synchronous networks: Leader election
More informationDecision Mathematics D1. Advanced/Advanced Subsidiary. Friday 12 January 2007 Morning Time: 1 hour 30 minutes. D1 answer book
Paper Reference(s) 6689/01 Edexcel GCE Decision Mathematics D1 Advanced/Advanced Subsidiary Friday 12 January 2007 Morning Time: 1 hour 30 minutes Materials required for examination Nil Items included
More informationChapter 6: Graph Theory
Chapter 6: Graph Theory Graph theory deals with routing and network problems and if it is possible to find a best route, whether that means the least expensive, least amount of time or the least distance.
More informationChapter 10 LinkState Routing Protocols
Chapter 10 LinkState Routing Protocols CCNA21 Chapter 10 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks
More informationDecision Mathematics 1 TUESDAY 22 JANUARY 2008
ADVANCED SUBSIDIARY GCE 4736/01 MATHEMATICS Decision Mathematics 1 TUESDAY 22 JANUARY 2008 Additional materials: Answer Booklet (8 pages) Graph paper Insert for Questions 3 and 4 List of Formulae (MF1)
More informationCourse: Model, Learning, and Inference: Lecture 5
Course: Model, Learning, and Inference: Lecture 5 Alan Yuille Department of Statistics, UCLA Los Angeles, CA 90095 yuille@stat.ucla.edu Abstract Probability distributions on structured representation.
More informationHyper Node Torus: A New Interconnection Network for High Speed Packet Processors
2011 International Symposium on Computer Networks and Distributed Systems (CNDS), February 2324, 2011 Hyper Node Torus: A New Interconnection Network for High Speed Packet Processors Atefeh Khosravi,
More informationRandom Map Generator v1.0 User s Guide
Random Map Generator v1.0 User s Guide Jonathan Teutenberg 2003 1 Map Generation Overview...4 1.1 Command Line...4 1.2 Operation Flow...4 2 Map Initialisation...5 2.1 Initialisation Parameters...5 w xxxxxxx...5
More informationArtificial Intelligence Methods (G52AIM)
Artificial Intelligence Methods (G52AIM) Dr Rong Qu rxq@cs.nott.ac.uk Constructive Heuristic Methods Constructive Heuristics method Start from an empty solution Repeatedly, extend the current solution
More informationMax Flow. Lecture 4. Optimization on graphs. C25 Optimization Hilary 2013 A. Zisserman. Maxflow & mincut. The augmented path algorithm
Lecture 4 C5 Optimization Hilary 03 A. Zisserman Optimization on graphs Maxflow & mincut The augmented path algorithm Optimization for binary image graphs Applications Max Flow Given: a weighted directed
More informationWhat is Classification? Data Mining Classification. Certainty. Usual Examples. Predictive / Definitive. Techniques
What is Classification? Data Mining Classification Kevin Swingler Assigning an object to a certain class based on its similarity to previous examples of other objects Can be done with reference to original
More informationAgentBased Decentralised Coordination for Sensor Networks using the MaxSum Algorithm
Noname manuscript No. (will be inserted by the editor) AgentBased Decentralised Coordination for Sensor Networks using the MaxSum Algorithm A. Farinelli A. Rogers N. R. Jennings the date of receipt and
More informationCS2 Algorithms and Data Structures Note 11. BreadthFirst Search and Shortest Paths
CS2 Algorithms and Data Structures Note 11 BreadthFirst Search and Shortest Paths In this last lecture of the CS2 Algorithms and Data Structures thread we will consider the problem of computing distances
More informationDynamic Programming and Graph Algorithms in Computer Vision
Dynamic Programming and Graph Algorithms in Computer Vision Pedro F. Felzenszwalb and Ramin Zabih Abstract Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas,
More informationECE 516: System Control Engineering
ECE 516: System Control Engineering This course focuses on the analysis and design of systems control. This course will introduce timedomain systems dynamic control fundamentals and their design issues
More informationNetwork Metrics, Planar Graphs, and Software Tools. Based on materials by Lala Adamic, UMichigan
Network Metrics, Planar Graphs, and Software Tools Based on materials by Lala Adamic, UMichigan Network Metrics: Bowtie Model of the Web n The Web is a directed graph: n webpages link to other webpages
More information1. Write the number of the lefthand item next to the item on the right that corresponds to it.
1. Write the number of the lefthand item next to the item on the right that corresponds to it. 1. Stanford prison experiment 2. Friendster 3. neuron 4. router 5. tipping 6. small worlds 7. jobhunting
More informationAsynchronous Computations
Asynchronous Computations Asynchronous Computations Computations in which individual processes operate without needing to synchronize with other processes. Synchronizing processes is an expensive operation
More informationRouting in packetswitching networks
Routing in packetswitching networks Circuit switching vs. Packet switching Most of WANs based on circuit or packet switching Circuit switching designed for voice Resources dedicated to a particular call
More informationBicolored Shortest Paths in Graphs with Applications to Network Overlay Design
Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and HyeongAh Choi Department of Electrical Engineering and Computer Science George Washington University Washington,
More informationCompact Representations and Approximations for Compuation in Games
Compact Representations and Approximations for Compuation in Games Kevin Swersky April 23, 2008 Abstract Compact representations have recently been developed as a way of both encoding the strategic interactions
More informationSmall independent edge dominating sets in graphs of maximum degree three
Small independent edge dominating sets in graphs of maimum degree three Grażna Zwoźniak Grazna.Zwozniak@ii.uni.wroc.pl Institute of Computer Science Wrocław Universit Small independent edge dominating
More informationAlgorithm Design and Analysis
Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;
More informationReinforcement Learning
Reinforcement Learning LU 2  Markov Decision Problems and Dynamic Programming Dr. Joschka Bödecker AG Maschinelles Lernen und Natürlichsprachliche Systeme AlbertLudwigsUniversität Freiburg jboedeck@informatik.unifreiburg.de
More informationComputational Approach for Assessment of Critical Infrastructure in Network Systems
Computational Approach for Assessment of Critical Infrastructure in Network Systems EMIL KELEVEDJIEV 1 Institute of Mathematics and Informatics Bulgarian Academy of Sciences ABSTRACT. Methods of computational
More informationLoad Balancing and Switch Scheduling
EE384Y Project Final Report Load Balancing and Switch Scheduling Xiangheng Liu Department of Electrical Engineering Stanford University, Stanford CA 94305 Email: liuxh@systems.stanford.edu Abstract Load
More informationInNetwork Coding for Resilient Sensor Data Storage and Efficient Data Mule Collection
InNetwork Coding for Resilient Sensor Data Storage and Efficient Data Mule Collection Michele Albano Jie Gao Instituto de telecomunicacoes, Aveiro, Portugal Stony Brook University, Stony Brook, USA Data
More informationSolutions to Homework 6
Solutions to Homework 6 Debasish Das EECS Department, Northwestern University ddas@northwestern.edu 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example
More informationBasic Parsing Algorithms Chart Parsing
Basic Parsing Algorithms Chart Parsing Seminar Recent Advances in Parsing Technology WS 2011/2012 Anna Schmidt Talk Outline Chart Parsing Basics Chart Parsing Algorithms Earley Algorithm CKY Algorithm
More informationCommon Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity 8G18G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
More informationChapter 10: Network Flow Programming
Chapter 10: Network Flow Programming Linear programming, that amazingly useful technique, is about to resurface: many network problems are actually just special forms of linear programs! This includes,
More informationAgentbased decentralised coordination for sensor networks using the maxsum algorithm
DOI 10.1007/s1045801392251 Agentbased decentralised coordination for sensor networks using the maxsum algorithm A. Farinelli A. Rogers N. R. Jennings The Author(s) 2013 Abstract In this paper, we
More informationExamples and Proofs of Inference in Junction Trees
Examples and Proofs of Inference in Junction Trees Peter Lucas LIAC, Leiden University February 4, 2016 1 Representation and notation Let P(V) be a joint probability distribution, where V stands for a
More informationLecture 3: Linear Programming Relaxations and Rounding
Lecture 3: Linear Programming Relaxations and Rounding 1 Approximation Algorithms and Linear Relaxations For the time being, suppose we have a minimization problem. Many times, the problem at hand can
More informationResidential waste management in South Africa: Optimisation of vehicle fleet size and composition
Residential waste management in South Africa: Optimisation of vehicle fleet size and composition by Wouter H Bothma 26001447 Submitted in partial fulfillment of the requirements for the degree of Bachelors
More information