Big Data and Complex Networks Analytics. Timos Sellis, CSIT Kathy Horadam, MGS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Big Data and Complex Networks Analytics. Timos Sellis, CSIT Kathy Horadam, MGS"

Transcription

1 Big Data and Complex Networks Analytics Timos Sellis, CSIT Kathy Horadam, MGS

2 Big Data What is it? Most commonly accepted definition, by Gartner (the 3 Vs) Big data is high-volume, high-velocity and high-variety information assets that demand cost-effective, innovative forms of information processing for enhanced insight and decision making. 2

3 Big Data some stats high-volume, high-velocity and high-variety > 2 million s sent Every minute ( /2012/06/08/how-much-data-iscreated-every-minute/) 34,722 likes 100,000 tweets 571 websites added 250,000 items sold on amazon $272,020 spend on web shopping 3

4 Complex Networks What is it? Network with significant topological features common in real-world networks eg most technological, biological and social networks Rapidly expanding field bringing together mathematics, engineering, computer science, sociology, epidemiology, physics, biology. 4

5 Big Data and Complex Network Synergies Both share interesting properties Large scale (volume) Complexity (variety) Dynamics (velocity) Interesting analytics algorithms Many applications with both characteristics (social networks, utility networks, security, etc) 5

6 Big Data - Research Issues (1) Main stream Infrastructure and Architectures (New large scale data architectures, Cloud architectures) Models (Data representation, storage, and retrieval) and Data Access (Query processing and optimization, Privacy, Security) 6

7 Big Data - Research Issues (2) Complex Data Analytics Computational, mathematical, statistical, and algorithmic techniques for modelling high dimensional data, large graphs, and complex (interrelated) data Learning, inference, prediction, and knowledge discovery for large volumes of dynamic data sets Data retrieval and data mining to facilitate pattern discovery, trend analysis and anomaly detection Dimensionality reduction, sparse data 7

8 Big Data - Research Issues (3) Highly Streaming Data Positional streams Social network data Mobile app data Game data 8

9 Big Data - Research Issues (4) Data Integration Findability and search Information fusion of multiple data sources Semantic integration Recommendation systems 9

10 Networks- Research Issues (1) Analytics Mathematical models of simpler networks do not show the significant topological features. Network structure and community detection Knowledge discovery, especially of characteristic small communities (motifs) in large networks Bipartite networks 10

11 Networks- Research Issues (2) Dynamics Algorithm development: machine learning, high dimensional data, large networks New topological, statistical techniques Eg. persistent homology: track connectivity changes RMIT could be a national leader if we could develop this further 11

12 Networks- Research Issues (3) Detection and Prediction Identification of influential or hidden nodes or communities across networks Structural anomaly detection (via supervised or unsupervised learning) Model transmission or flow through network Correlation=94%!! Data Fit 0 06 June st June st June st June st June st June st June st June st June st June st June st June 2001 Fitting period year Extrapolation 12

13 Networks- Research Issues (4) Location and Spatial Networks Prioritised habitats 13

14 Possible Research Themes (1) Situation Awareness applications (Disaster Management, Fault detection) Resource Management applications (Ecology, environment, power network management) Public Health applications (Epidemics, medical records) Financial and Forensic applications (Fraud detection, money laundering) Smart cities applications (Transport, Energy) 14

15 Possible Research Themes (1) Security applications (Biometrics, computer and information security) Positioning Technologies applications (Agriculture, Forest health, real-time tracks, large mobile networks) Education (Learning analytics) 15

16 RMIT today High-interest, cutting-edge and well-funded research in: Large scale Data Integration Data quality, etc Sensor networks Data driven complex networks, Sensor network data, Distributed Sensor Networks Complex Networks/Graphs network/graph models and structure detection, graph mining, network/graph analysis, prediction, identification and security Positioning apps/technologies Power and Transport networks, network analysis for detecting possible problems, streamed metering data, real time analytics 16

17 RMIT today - Examples Former Employees Current Employees Insiders Contractors Trusted Business Partners Cloud Providers Anomaly detection Money laundering Epidemic spread Smart metering Biometric Identification 17

18 RMIT tomorrow Foster collaboration between many disciplines towards large scale information management. For example, planners, designers and technologists can collaborate on designing buildings fitted with sensors using intelligent optimisation techniques. Plan for a major collaborative effort, like a CRC. Build long term partnerships with key international and national public and private organizations. 18

19 Preliminary SWOT analysis Strengths 1. Infrastructure/data management 2. Complex network dynamics 3. Location based services 4. Information retrieval 5. Optimization 6. Theoretical analysis Opportunities 1. NICTA funding potential for RMIT centre 2. Cover different application areas, compared to on-going activities 3. Identify a short term impact opportunity 4. Identify an opportunity that can attract an industry sector (e.g. logistics, energy and positioning/mobile applications) Weaknesses 1. No major results/history in the area 2. Big data and complex networks on its own is not recognised as an RMIT strength Threats 1. A couple of CoE proposals submitted 2. Some other on-going efforts (CRCs, government CoE) 3. Fragmentation based on disciplines, due to cultural difference 19

Exploiting the power of Big Data

Exploiting the power of Big Data Exploiting the power of Big Data Timos Sellis School of Computer Science and Information Technology timos.sellis@rmit.edu.au ITECHLAW Asia-Pacific Conference, February 26-28, 2014 Melbourne Australia Timeline

More information

International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop

International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop ISSN: 2454-2377, October 2015 Big Data and Hadoop Simmi Bagga 1 Satinder Kaur 2 1 Assistant Professor, Sant Hira Dass Kanya MahaVidyalaya, Kala Sanghian, Distt Kpt. INDIA E-mail: simmibagga12@gmail.com

More information

REAL-TIME OPERATIONAL INTELLIGENCE. Competitive advantage from unstructured, high-velocity log and machine Big Data

REAL-TIME OPERATIONAL INTELLIGENCE. Competitive advantage from unstructured, high-velocity log and machine Big Data REAL-TIME OPERATIONAL INTELLIGENCE Competitive advantage from unstructured, high-velocity log and machine Big Data 2 SQLstream: Our s-streaming products unlock the value of high-velocity unstructured log

More information

locuz.com Big Data Services

locuz.com Big Data Services locuz.com Big Data Services Big Data At Locuz, we help the enterprise move from being a data-limited to a data-driven one, thereby enabling smarter, faster decisions that result in better business outcome.

More information

ANALYTICS IN BIG DATA ERA

ANALYTICS IN BIG DATA ERA ANALYTICS IN BIG DATA ERA ANALYTICS TECHNOLOGY AND ARCHITECTURE TO MANAGE VELOCITY AND VARIETY, DISCOVER RELATIONSHIPS AND CLASSIFY HUGE AMOUNT OF DATA MAURIZIO SALUSTI SAS Copyr i g ht 2012, SAS Ins titut

More information

Information Management course

Information Management course Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli (alberto.ceselli@unimi.it)

More information

Exploiting Data at Rest and Data in Motion with a Big Data Platform

Exploiting Data at Rest and Data in Motion with a Big Data Platform Exploiting Data at Rest and Data in Motion with a Big Data Platform Sarah Brader, sarah_brader@uk.ibm.com What is Big Data? Where does it come from? 12+ TBs of tweet data every day 30 billion RFID tags

More information

Are You Ready for Big Data?

Are You Ready for Big Data? Are You Ready for Big Data? Jim Gallo National Director, Business Analytics April 10, 2013 Agenda What is Big Data? How do you leverage Big Data in your company? How do you prepare for a Big Data initiative?

More information

UNIVERSITY OF INFINITE AMBITIONS. MASTER OF SCIENCE COMPUTER SCIENCE DATA SCIENCE AND SMART SERVICES

UNIVERSITY OF INFINITE AMBITIONS. MASTER OF SCIENCE COMPUTER SCIENCE DATA SCIENCE AND SMART SERVICES UNIVERSITY OF INFINITE AMBITIONS. MASTER OF SCIENCE COMPUTER SCIENCE DATA SCIENCE AND SMART SERVICES MASTER S PROGRAMME COMPUTER SCIENCE - DATA SCIENCE AND SMART SERVICES (DS3) This is a specialization

More information

Take the Red Pill: Becoming One with Your Computing Environment using Security Intelligence

Take the Red Pill: Becoming One with Your Computing Environment using Security Intelligence Take the Red Pill: Becoming One with Your Computing Environment using Security Intelligence Chris Poulin Security Strategist, IBM Reboot Privacy & Security Conference 2013 1 2012 IBM Corporation Securing

More information

Safe Harbor Statement

Safe Harbor Statement Defining a Roadmap to Big Data Success Robert Stackowiak, Oracle Vice President, Big Data 17 November 2015 Safe Harbor Statement The following is intended to outline our general product direction. It is

More information

ISSN:2321-1156 International Journal of Innovative Research in Technology & Science(IJIRTS)

ISSN:2321-1156 International Journal of Innovative Research in Technology & Science(IJIRTS) Nguyễn Thị Thúy Hoài, College of technology _ Danang University Abstract The threading development of IT has been bringing more challenges for administrators to collect, store and analyze massive amounts

More information

DAMA NY DAMA Day October 17, 2013 IBM 590 Madison Avenue 12th floor New York, NY

DAMA NY DAMA Day October 17, 2013 IBM 590 Madison Avenue 12th floor New York, NY Big Data Analytics DAMA NY DAMA Day October 17, 2013 IBM 590 Madison Avenue 12th floor New York, NY Tom Haughey InfoModel, LLC 868 Woodfield Road Franklin Lakes, NJ 07417 201 755 3350 tom.haughey@infomodelusa.com

More information

Software Engineering for Big Data. CS846 Paulo Alencar David R. Cheriton School of Computer Science University of Waterloo

Software Engineering for Big Data. CS846 Paulo Alencar David R. Cheriton School of Computer Science University of Waterloo Software Engineering for Big Data CS846 Paulo Alencar David R. Cheriton School of Computer Science University of Waterloo Big Data Big data technologies describe a new generation of technologies that aim

More information

The University of Jordan

The University of Jordan The University of Jordan Master in Web Intelligence Non Thesis Department of Business Information Technology King Abdullah II School for Information Technology The University of Jordan 1 STUDY PLAN MASTER'S

More information

3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India

3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India 3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India Call for Papers Cloud computing has emerged as a de facto computing

More information

Timo Elliott VP, Global Innovation Evangelist. 2015 SAP SE or an SAP affiliate company. All rights reserved. 1

Timo Elliott VP, Global Innovation Evangelist. 2015 SAP SE or an SAP affiliate company. All rights reserved. 1 Timo Elliott VP, Global Innovation Evangelist 2015 SAP SE or an SAP affiliate company. All rights reserved. 1 Analytics Takes Over The World 2015 SAP SE or an SAP affiliate company. All rights reserved.

More information

Big Data R&D Initiative

Big Data R&D Initiative Big Data R&D Initiative Howard Wactlar CISE Directorate National Science Foundation NIST Big Data Meeting June, 2012 Image Credit: Exploratorium. The Landscape: Smart Sensing, Reasoning and Decision Environment

More information

Big Data & Analytics: Your concise guide (note the irony) Wednesday 27th November 2013

Big Data & Analytics: Your concise guide (note the irony) Wednesday 27th November 2013 Big Data & Analytics: Your concise guide (note the irony) Wednesday 27th November 2013 Housekeeping 1. Any questions coming out of today s presentation can be discussed in the bar this evening 2. OCF is

More information

Big Data Analytics. Lucas Rego Drumond

Big Data Analytics. Lucas Rego Drumond Big Data Analytics Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Big Data Analytics Big Data Analytics 1 / 36 Outline

More information

Big Data Use Cases Update

Big Data Use Cases Update Big Data Use Cases Update Sanat Joshi Industry Solutions Manufacturing Industries Business Unit 1 Data Explosion Web & social networks experienced it first Infographic by Go-gulf.com 2 Number Of Connected

More information

Professional Organization Checklist for the Computer Science Curriculum Updates. Association of Computing Machinery Computing Curricula 2008

Professional Organization Checklist for the Computer Science Curriculum Updates. Association of Computing Machinery Computing Curricula 2008 Professional Organization Checklist for the Computer Science Curriculum Updates Association of Computing Machinery Computing Curricula 2008 The curriculum guidelines can be found in Appendix C of the report

More information

Search and Data Mining: Techniques. Applications Anya Yarygina Boris Novikov

Search and Data Mining: Techniques. Applications Anya Yarygina Boris Novikov Search and Data Mining: Techniques Applications Anya Yarygina Boris Novikov Introduction Data mining applications Data mining system products and research prototypes Additional themes on data mining Social

More information

Are You Ready for Big Data?

Are You Ready for Big Data? Are You Ready for Big Data? Jim Gallo National Director, Business Analytics February 11, 2013 Agenda What is Big Data? How do you leverage Big Data in your company? How do you prepare for a Big Data initiative?

More information

A New Era Of Analytic

A New Era Of Analytic Penang egovernment Seminar 2014 A New Era Of Analytic Megat Anuar Idris Head, Project Delivery, Business Analytics & Big Data Agenda Overview of Big Data Case Studies on Big Data Big Data Technology Readiness

More information

1 st Symposium on Colossal Data and Networking (CDAN-2016) March 18-19, 2016 Medicaps Group of Institutions, Indore, India

1 st Symposium on Colossal Data and Networking (CDAN-2016) March 18-19, 2016 Medicaps Group of Institutions, Indore, India 1 st Symposium on Colossal Data and Networking (CDAN-2016) March 18-19, 2016 Medicaps Group of Institutions, Indore, India Call for Papers Colossal Data Analysis and Networking has emerged as a de facto

More information

ATA DRIVEN GLOBAL VISION CLOUD PLATFORM STRATEG N POWERFUL RELEVANT PERFORMANCE SOLUTION CLO IRTUAL BIG DATA SOLUTION ROI FLEXIBLE DATA DRIVEN V

ATA DRIVEN GLOBAL VISION CLOUD PLATFORM STRATEG N POWERFUL RELEVANT PERFORMANCE SOLUTION CLO IRTUAL BIG DATA SOLUTION ROI FLEXIBLE DATA DRIVEN V ATA DRIVEN GLOBAL VISION CLOUD PLATFORM STRATEG N POWERFUL RELEVANT PERFORMANCE SOLUTION CLO IRTUAL BIG DATA SOLUTION ROI FLEXIBLE DATA DRIVEN V WHITE PAPER Create the Data Center of the Future Accelerate

More information

GO BEYOND DATA Real-time Analytics for Application Performance Management

GO BEYOND DATA Real-time Analytics for Application Performance Management GO BEYOND DATA Real-time Analytics for Application Performance Management Yury Oleynik Data Analyst Modern applications Agenda Monitoring challenges INSTANA apploach Instana, Inc. Proprietary and Confidential

More information

Industry 4.0 and Big Data

Industry 4.0 and Big Data Industry 4.0 and Big Data Marek Obitko, mobitko@ra.rockwell.com Senior Research Engineer 03/25/2015 PUBLIC PUBLIC - 5058-CO900H 2 Background Joint work with Czech Institute of Informatics, Robotics and

More information

Distributed Systems & Networking Discipline

Distributed Systems & Networking Discipline Distributed Systems & Networking Discipline Professor Zahir Tari dsn-staff@rmit.edu.au dsn-phd@rmit.edu.au The Team. DSN staff team with happy faces! DSN students DSN - discipline profile located mainly

More information

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume

More information

Big Data and Analytics: Challenges and Opportunities

Big Data and Analytics: Challenges and Opportunities Big Data and Analytics: Challenges and Opportunities Dr. Amin Beheshti Lecturer and Senior Research Associate University of New South Wales, Australia (Service Oriented Computing Group, CSE) Talk: Sharif

More information

Cloud and Big Data Standardisation

Cloud and Big Data Standardisation Cloud and Big Data Standardisation EuroCloud Symposium ICS Track: Standards for Big Data in the Cloud 15 October 2013, Luxembourg Yuri Demchenko System and Network Engineering Group, University of Amsterdam

More information

Taming the Internet of Things: The Lord of the Things

Taming the Internet of Things: The Lord of the Things Taming the Internet of Things: The Lord of the Things Kirk Borne @KirkDBorne School of Physics, Astronomy, & Computational Sciences College of Science, George Mason University, Fairfax, VA Taming the Internet

More information

Technology Implications of an Instrumented Planet presented at IFIP WG 10.4 Workshop on Challenges and Directions in Dependability

Technology Implications of an Instrumented Planet presented at IFIP WG 10.4 Workshop on Challenges and Directions in Dependability Technology Implications of an Instrumented Planet presented at IFIP WG 10.4 Workshop on Challenges and Directions in Dependability Nick Bowen Colin Harrison IBM June 2008 1 Background Global Technology

More information

Enhance Collaboration and Data Sharing for Faster Decisions and Improved Mission Outcome

Enhance Collaboration and Data Sharing for Faster Decisions and Improved Mission Outcome Enhance Collaboration and Data Sharing for Faster Decisions and Improved Mission Outcome Richard Breakiron Senior Director, Cyber Solutions Rbreakiron@vion.com Office: 571-353-6127 / Cell: 803-443-8002

More information

Where is... How do I get to...

Where is... How do I get to... Big Data, Fast Data, Spatial Data Making Sense of Location Data in a Smart City Hans Viehmann Product Manager EMEA ORACLE Corporation August 19, 2015 Copyright 2014, Oracle and/or its affiliates. All rights

More information

Statistical Challenges with Big Data in Management Science

Statistical Challenges with Big Data in Management Science Statistical Challenges with Big Data in Management Science Arnab Kumar Laha Indian Institute of Management Ahmedabad Analytics vs Reporting Competitive Advantage Reporting Prescriptive Analytics (Decision

More information

Big Data Analytics and Healthcare

Big Data Analytics and Healthcare Big Data Analytics and Healthcare Anup Kumar, Professor and Director of MINDS Lab Computer Engineering and Computer Science Department University of Louisville Road Map Introduction Data Sources Structured

More information

CIS 4930/6930 Spring 2014 Introduction to Data Science Data Intensive Computing. University of Florida, CISE Department Prof.

CIS 4930/6930 Spring 2014 Introduction to Data Science Data Intensive Computing. University of Florida, CISE Department Prof. CIS 4930/6930 Spring 2014 Introduction to Data Science Data Intensive Computing University of Florida, CISE Department Prof. Daisy Zhe Wang Data Science Overview Why, What, How, Who Outline Why Data Science?

More information

LEVERAGING BIG DATA ANALYTICS TO REDUCE SECURITY INCIDENTS A use case in Finance Sector

LEVERAGING BIG DATA ANALYTICS TO REDUCE SECURITY INCIDENTS A use case in Finance Sector LEVERAGING BIG DATA ANALYTICS TO REDUCE SECURITY INCIDENTS A use case in Finance Sector INITIAL SCENARIO IT Security Incidents Physical Incidents Stolen data/credentials Malware / Phishing Denial of Service

More information

Timo Elliott VP, Global Innovation Evangelist. 2015 SAP SE or an SAP affiliate company. All rights reserved. 1

Timo Elliott VP, Global Innovation Evangelist. 2015 SAP SE or an SAP affiliate company. All rights reserved. 1 Timo Elliott VP, Global Innovation Evangelist 2015 SAP SE or an SAP affiliate company. All rights reserved. 1 Analytics Takes Over The World 2015 SAP SE or an SAP affiliate company. All rights reserved.

More information

EPSRC Cross-SAT Big Data Workshop: Well Sorted Materials

EPSRC Cross-SAT Big Data Workshop: Well Sorted Materials EPSRC Cross-SAT Big Data Workshop: Well Sorted Materials 5th August 2015 Contents Introduction 1 Dendrogram 2 Tree Map 3 Heat Map 4 Raw Group Data 5 For an online, interactive version of the visualisations

More information

Big Data a threat or a chance?

Big Data a threat or a chance? Big Data a threat or a chance? Helwig Hauser University of Bergen, Dept. of Informatics Big Data What is Big Data? well, lots of data, right? we come back to this in a moment. certainly, a buzz-word but

More information

Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum

Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum Siva Ravada Senior Director of Development Oracle Spatial and MapViewer 2 Evolving Technology Platforms

More information

Better Decision Making

Better Decision Making Better Decision Making Big Data Analytics Webinar, November 2013 Dr. Wolfgang Martin Analyst and Member of the Boulder BI Brain Trust Better Decision Making Process Oriented Businesses. Decision Making:

More information

Data-intensive HPC: opportunities and challenges. Patrick Valduriez

Data-intensive HPC: opportunities and challenges. Patrick Valduriez Data-intensive HPC: opportunities and challenges Patrick Valduriez Big Data Landscape Multi-$billion market! Big data = Hadoop = MapReduce? No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard,

More information

Sanjeev Kumar. contribute

Sanjeev Kumar. contribute RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 sanjeevk@iasri.res.in 1. Introduction The field of data mining and knowledgee discovery is emerging as a

More information

Pulsar Realtime Analytics At Scale. Tony Ng April 14, 2015

Pulsar Realtime Analytics At Scale. Tony Ng April 14, 2015 Pulsar Realtime Analytics At Scale Tony Ng April 14, 2015 Big Data Trends Bigger data volumes More data sources DBs, logs, behavioral & business event streams, sensors Faster analysis Next day to hours

More information

VIEWPOINT. High Performance Analytics. Industry Context and Trends

VIEWPOINT. High Performance Analytics. Industry Context and Trends VIEWPOINT High Performance Analytics Industry Context and Trends In the digital age of social media and connected devices, enterprises have a plethora of data that they can mine, to discover hidden correlations

More information

Automated Machine Learning For Autonomic Computing

Automated Machine Learning For Autonomic Computing Automated Machine Learning For Autonomic Computing ICAC 2012 Numenta Subutai Ahmad Autonomic Machine Learning ICAC 2012 Numenta Subutai Ahmad 35% 30% 25% 20% 15% 10% 5% 0% Percentage of Machine Learning

More information

可 视 化 与 可 视 计 算 概 论. Introduction to Visualization and Visual Computing 袁 晓 如 北 京 大 学 2015.12.23

可 视 化 与 可 视 计 算 概 论. Introduction to Visualization and Visual Computing 袁 晓 如 北 京 大 学 2015.12.23 可 视 化 与 可 视 计 算 概 论 Introduction to Visualization and Visual Computing 袁 晓 如 北 京 大 学 2015.12.23 2 Visual Analytics Adapted from Jim Thomas s slides 3 Visual Analytics Definition Visual Analytics is the

More information

Statistics for BIG data

Statistics for BIG data Statistics for BIG data Statistics for Big Data: Are Statisticians Ready? Dennis Lin Department of Statistics The Pennsylvania State University John Jordan and Dennis K.J. Lin (ICSA-Bulletine 2014) Before

More information

Master of Science in Health Information Technology Degree Curriculum

Master of Science in Health Information Technology Degree Curriculum Master of Science in Health Information Technology Degree Curriculum Core courses: 8 courses Total Credit from Core Courses = 24 Core Courses Course Name HRS Pre-Req Choose MIS 525 or CIS 564: 1 MIS 525

More information

YOU VS THE SENSORS. Six Requirements for Visualizing the Internet of Things. Dan Potter Chief Marketing Officer, Datawatch Corporation

YOU VS THE SENSORS. Six Requirements for Visualizing the Internet of Things. Dan Potter Chief Marketing Officer, Datawatch Corporation YOU VS THE SENSORS Six Requirements for Visualizing the Internet of Things Dan Potter Chief Marketing Officer, Datawatch Corporation About Datawatch NASDAQ: DWCH Pioneer in real-time visual data discovery

More information

The 4 Pillars of Technosoft s Big Data Practice

The 4 Pillars of Technosoft s Big Data Practice beyond possible Big Use End-user applications Big Analytics Visualisation tools Big Analytical tools Big management systems The 4 Pillars of Technosoft s Big Practice Overview Businesses have long managed

More information

Big Data Analytic and Mining with Machine Learning Algorithm

Big Data Analytic and Mining with Machine Learning Algorithm International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 4, Number 1 (2014), pp. 33-40 International Research Publications House http://www. irphouse.com /ijict.htm Big Data

More information

Zero-in on business decisions through innovation solutions for smart big data management. How to turn volume, variety and velocity into value

Zero-in on business decisions through innovation solutions for smart big data management. How to turn volume, variety and velocity into value Zero-in on business decisions through innovation solutions for smart big data management How to turn volume, variety and velocity into value ON THE LOOKOUT FOR NEW SOURCES OF VALUE CREATION WHAT WILL DRIVE

More information

Overview NIST Big Data Working Group Activities

Overview NIST Big Data Working Group Activities Overview NIST Big Working Group Activities and Big Architecture Framework (BDAF) by UvA Yuri Demchenko SNE Group, University of Amsterdam Big Analytics Interest Group 17 September 2013, 2nd RDA Plenary

More information

Data Mining + Business Intelligence. Integration, Design and Implementation

Data Mining + Business Intelligence. Integration, Design and Implementation Data Mining + Business Intelligence Integration, Design and Implementation ABOUT ME Vijay Kotu Data, Business, Technology, Statistics BUSINESS INTELLIGENCE - Result Making data accessible Wider distribution

More information

Challenges for Data Driven Systems

Challenges for Data Driven Systems Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2

More information

TRANSFORM BIG DATA INTO ACTIONABLE INFORMATION

TRANSFORM BIG DATA INTO ACTIONABLE INFORMATION TRANSFORM BIG DATA INTO ACTIONABLE INFORMATION Make Big Available for Everyone Syed Rasheed Solution Marketing Manager January 29 th, 2014 Agenda Demystifying Big Challenges Getting Bigger Red Hat Big

More information

SMARTPHONES & BIG DATA. Daniel Nelson Head of Enterprise Development, Braintree @DanielROINelson daniel.nelson@braintreepayments.

SMARTPHONES & BIG DATA. Daniel Nelson Head of Enterprise Development, Braintree @DanielROINelson daniel.nelson@braintreepayments. SMARTPHONES & BIG DATA Daniel Nelson Head of Enterprise Development, Braintree @DanielROINelson daniel.nelson@braintreepayments.com TODAY WE LL COVER 1. Why smartphones represent a significant enabler

More information

BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376

BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376 Course Director: Dr. Kayvan Najarian (DCM&B, kayvan@umich.edu) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.

More information

Augmented Search for IT Data Analytics. New frontier in big log data analysis and application intelligence

Augmented Search for IT Data Analytics. New frontier in big log data analysis and application intelligence Augmented Search for IT Data Analytics New frontier in big log data analysis and application intelligence Business white paper May 2015 IT data is a general name to log data, IT metrics, application data,

More information

Collaborations between Official Statistics and Academia in the Era of Big Data

Collaborations between Official Statistics and Academia in the Era of Big Data Collaborations between Official Statistics and Academia in the Era of Big Data World Statistics Day October 20-21, 2015 Budapest Vijay Nair University of Michigan Past-President of ISI vnn@umich.edu What

More information

Why big data? Lessons from a Decade+ Experiment in Big Data

Why big data? Lessons from a Decade+ Experiment in Big Data Why big data? Lessons from a Decade+ Experiment in Big Data David Belanger PhD Senior Research Fellow Stevens Institute of Technology dbelange@stevens.edu 1 What Does Big Look Like? 7 Image Source Page:

More information

BIG DATA STRATEGY. Rama Kattunga Chair at American institute of Big Data Professionals. Building Big Data Strategy For Your Organization

BIG DATA STRATEGY. Rama Kattunga Chair at American institute of Big Data Professionals. Building Big Data Strategy For Your Organization BIG DATA STRATEGY Rama Kattunga Chair at American institute of Big Data Professionals Building Big Data Strategy For Your Organization In this session What is Big Data? Prepare your organization Building

More information

Thinking small about big data: Privacy considerations for the public sector Shaun Brown Partner, nnovation LLP

Thinking small about big data: Privacy considerations for the public sector Shaun Brown Partner, nnovation LLP Thinking small about big data: Privacy considerations for the public sector Shaun Brown Partner, nnovation LLP March 30, 2016 Thinking small about big data: objectives Consider big data as a concept Focus

More information

IC05 Introduction on Networks &Visualization Nov. 2009. <mathieu.bastian@gmail.com>

IC05 Introduction on Networks &Visualization Nov. 2009. <mathieu.bastian@gmail.com> IC05 Introduction on Networks &Visualization Nov. 2009 Overview 1. Networks Introduction Networks across disciplines Properties Models 2. Visualization InfoVis Data exploration

More information

Surfing the Data Tsunami: A New Paradigm for Big Data Processing and Analytics

Surfing the Data Tsunami: A New Paradigm for Big Data Processing and Analytics Surfing the Data Tsunami: A New Paradigm for Big Data Processing and Analytics Dr. Liangxiu Han Future Networks and Distributed Systems Group (FUNDS) School of Computing, Mathematics and Digital Technology,

More information

Big Data & Analytics. A boon under certain conditions. Dr. Christian Keller General Manager IBM Switzerland. 2014 IBM Corporation

Big Data & Analytics. A boon under certain conditions. Dr. Christian Keller General Manager IBM Switzerland. 2014 IBM Corporation Big Data & Analytics A boon under certain conditions Dr. Christian Keller General Manager IBM Switzerland Agenda IBM at a glance What is Big Data? 4Vs The IBM point of view BD&A Market Opportunities Challenges

More information

The Canadian Realities of Big Data and Business Analytics. Utsav Arora February 12, 2014

The Canadian Realities of Big Data and Business Analytics. Utsav Arora February 12, 2014 The Canadian Realities of Big Data and Business Analytics Utsav Arora February 12, 2014 Things to think about for today How Important is Big Data for me? Why do I need to implement Big Data and Analytics

More information

IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper

IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper CAST-2015 provides an opportunity for researchers, academicians, scientists and

More information

Real World Application and Usage of IBM Advanced Analytics Technology

Real World Application and Usage of IBM Advanced Analytics Technology Real World Application and Usage of IBM Advanced Analytics Technology Anthony J. Young Pre-Sales Architect for IBM Advanced Analytics February 21, 2014 Welcome Anthony J. Young Lives in Austin, TX Focused

More information

Big Data-ready, Secure & Sovereign Cloud

Big Data-ready, Secure & Sovereign Cloud Copernicus Big Data Workshop Big Data-ready, Secure & Sovereign Cloud A Technology Enabler for Copernicus Data Innovation March 14 th, 2014 Brussels F. BOUJEMAA R&D Manager E. MICONNET - Head of Cyber

More information

COMP9321 Web Application Engineering

COMP9321 Web Application Engineering COMP9321 Web Application Engineering Semester 2, 2015 Dr. Amin Beheshti Service Oriented Computing Group, CSE, UNSW Australia Week 11 (Part II) http://webapps.cse.unsw.edu.au/webcms2/course/index.php?cid=2411

More information

Demystifying Big Data Government Agencies & The Big Data Phenomenon

Demystifying Big Data Government Agencies & The Big Data Phenomenon Demystifying Big Data Government Agencies & The Big Data Phenomenon Today s Discussion If you only remember four things 1 Intensifying business challenges coupled with an explosion in data have pushed

More information

BIG DATA: CHALLENGES AND OPPORTUNITIES IN LOGISTICS SYSTEMS

BIG DATA: CHALLENGES AND OPPORTUNITIES IN LOGISTICS SYSTEMS BIG DATA: CHALLENGES AND OPPORTUNITIES IN LOGISTICS SYSTEMS Branka Mikavica a*, Aleksandra Kostić-Ljubisavljević a*, Vesna Radonjić Đogatović a a University of Belgrade, Faculty of Transport and Traffic

More information

smartcatalonia Catalonia s Smart Strategy Directorate General for Telecommunications and Information Society

smartcatalonia Catalonia s Smart Strategy Directorate General for Telecommunications and Information Society smartcatalonia Catalonia s Smart Strategy Directorate General for Telecommunications and Information Society Introduction Catalonia Smart Strategy (Smart Catalonia) has set a goal to convert Catalonia

More information

Tracking a Soccer Game with Big Data

Tracking a Soccer Game with Big Data Tracking a Soccer Game with Big Data QCon Sao Paulo - 2015 Asanka Abeysinghe Vice President, Solutions Architecture - WSO2,Inc 2 Story about soccer 3 and Big Data Outline Big Data and CEP Tracking a Soccer

More information

The Role of Big Data and Analytics in the Move Toward Scientific Transportation Engineering

The Role of Big Data and Analytics in the Move Toward Scientific Transportation Engineering The Role of Big Data and Analytics in the Move Toward Scientific Transportation Engineering Bob McQueen CEO The 0cash Company Orlando, Florida bobmcqueen@0cash.com Topics Introduction Smart cities What

More information

Cloud and Big Data initiatives. Mark O Connell, EMC

Cloud and Big Data initiatives. Mark O Connell, EMC Object storage PRESENTATION systems: TITLE GOES the underpinning HERE of Cloud and Big Data initiatives Mark O Connell, EMC SNIA Legal Notice The material contained in this tutorial is copyrighted by the

More information

Reimagining Business with SAP HANA Cloud Platform for the Internet of Things

Reimagining Business with SAP HANA Cloud Platform for the Internet of Things SAP Brief SAP HANA SAP HANA Cloud Platform for the Internet of Things Objectives Reimagining Business with SAP HANA Cloud Platform for the Internet of Things Connect, transform, and reimagine Connect,

More information

Big Data Executive Survey

Big Data Executive Survey Big Data Executive Full Questionnaire Big Date Executive Full Questionnaire Appendix B Questionnaire Welcome The survey has been designed to provide a benchmark for enterprises seeking to understand the

More information

Leveraging Big Data Technologies to Support Research in Unstructured Data Analytics

Leveraging Big Data Technologies to Support Research in Unstructured Data Analytics Leveraging Big Data Technologies to Support Research in Unstructured Data Analytics BY FRANÇOYS LABONTÉ GENERAL MANAGER JUNE 16, 2015 Principal partenaire financier WWW.CRIM.CA ABOUT CRIM Applied research

More information

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition

More information

Data Analytics as a Service

Data Analytics as a Service Data Analytics as a Service unleashing the power of Cloud and Big Data 05-06-2014 Big Data in a Cloud DAaaS: Data Analytics as a Service DAaaS: Data Analytics as a Service Introducing Data Analytics as

More information

Extend your analytic capabilities with SAP Predictive Analysis

Extend your analytic capabilities with SAP Predictive Analysis September 9 11, 2013 Anaheim, California Extend your analytic capabilities with SAP Predictive Analysis Charles Gadalla Learning Points Advanced analytics strategy at SAP Simplifying predictive analytics

More information

Beginning the journey to smart water companies starting with water networks

Beginning the journey to smart water companies starting with water networks Beginning the journey to smart water companies starting with water networks Paul Rutter, Water Innovation Manager, Thames Water Joby Boxall, Professor of Water Infrastructure Engineering, The University

More information

MES and Industrial Internet

MES and Industrial Internet October 7, 2014 MES and Industrial Internet Jan Snoeij Board Member, MESA International Principal Consultant, CGI Do you know MESA? Agenda Introduction Internet of Things Big Data Smart Factory or Smart

More information

Smart City Australia

Smart City Australia Smart City Australia Slaven Marusic Department of Electrical and Electronic Engineering The University of Melbourne, Australia ARC Research Network on Intelligent Sensors, Sensor Networks and Information

More information

The Intelligent Data Network: Proposal for Engineering the Next Generation of Distributed Data Modeling, Analysis and Prediction

The Intelligent Data Network: Proposal for Engineering the Next Generation of Distributed Data Modeling, Analysis and Prediction Making Sense of your Data The Intelligent Data Network: Proposal for Engineering the Next Generation of Distributed Data Modeling, Analysis and Prediction David L. Brock The Data Center, Massachusetts

More information

Big Data, Physics, and the Industrial Internet! How Modeling & Analytics are Making the World Work Better."

Big Data, Physics, and the Industrial Internet! How Modeling & Analytics are Making the World Work Better. Big Data, Physics, and the Industrial Internet! How Modeling & Analytics are Making the World Work Better." Matt Denesuk! Chief Data Science Officer! GE Software! October 2014! Imagination at work. Contact:

More information

Horizontal IoT Application Development using Semantic Web Technologies

Horizontal IoT Application Development using Semantic Web Technologies Horizontal IoT Application Development using Semantic Web Technologies Soumya Kanti Datta Research Engineer Communication Systems Department Email: Soumya-Kanti.Datta@eurecom.fr Roadmap Introduction Challenges

More information

Big Data Driven Knowledge Discovery for Autonomic Future Internet

Big Data Driven Knowledge Discovery for Autonomic Future Internet Big Data Driven Knowledge Discovery for Autonomic Future Internet Professor Geyong Min Chair in High Performance Computing and Networking Department of Mathematics and Computer Science College of Engineering,

More information

CAP4773/CIS6930 Projects in Data Science, Fall 2014 [Review] Overview of Data Science

CAP4773/CIS6930 Projects in Data Science, Fall 2014 [Review] Overview of Data Science CAP4773/CIS6930 Projects in Data Science, Fall 2014 [Review] Overview of Data Science Dr. Daisy Zhe Wang CISE Department University of Florida August 25th 2014 20 Review Overview of Data Science Why Data

More information

Cloud Computing and Big Data What s the Big Deal

Cloud Computing and Big Data What s the Big Deal Cloud Computing and Big Data What s the Big Deal Arlene Minkiewicz, Chief Scientist PRICE Systems, LLC arlene.minkiewicz@pricesystems.com Optimize tomorrow today. 1 Agenda Introduction Cloud Computing

More information

Big Data in Subsea Solutions

Big Data in Subsea Solutions Big Data in Subsea Solutions Subsea Valley Conference 2014 Telenor Arena, Fornebu, April 2-3 Roar Fjellheim, Computas AS Computas AS - Brief company profile Norwegian IT consulting company providing services

More information

Training for Big Data

Training for Big Data Training for Big Data Learnings from the CATS Workshop Raghu Ramakrishnan Technical Fellow, Microsoft Head, Big Data Engineering Head, Cloud Information Services Lab Store any kind of data What is Big

More information