Memory Design. Random Access Memory. Row decoder. n bit address. 2 m+k memory cells wide. n-1:k. Column Decoder. k-1:0.

Size: px
Start display at page:

Download "Memory Design. Random Access Memory. Row decoder. n bit address. 2 m+k memory cells wide. n-1:k. Column Decoder. k-1:0."

Transcription

1 Memory Design Random Access Memory Row decoder 2 m+k memory cells wide n-1:k k-1:0 Column Decoder n bit address Sense Amplifier m bit data word

2 Memory Timing: Approaches Address bus Row Address Column Address RAS CAS Address Bus Address Address transition initiates memory operatio RAS -CAS timing DRAM Timing Multiplexed Adressing SRAM Timing Self-timed

3 Memory Timing DRAM read cycle Activate RAS, and place row address on bus Row decoders select appropriate row Activate CAS, and place column address on bus Sense amps are activated and data is placed on the data bus

4 Memory Timing from Ars Technica RAM Guide, by Jon Stokes, Ars Technica LLC

5 Read-Only Memory Cells BL BL BL 1 WL WL V DD WL BL BL BL 0 WL WL WL GND Diode ROM MOS ROM 1 MOS ROM 2

6 MOS OR ROM BL[0] BL[1] BL[2] BL[3] WL[0] V DD WL[1] WL[2] V DD WL[3] V bias Pull-down loads

7 MOS NOR ROM V DD Pull-up devices WL[0] WL [1] GND WL [2] GND WL [3] BL [0] BL [1] BL [2] BL [3]

8 MOS NOR ROM Layout BL0 BL1 BL2 BL3 Cell (9.5λ x 7λ) WL0 WL1 GND Programmming using the Active Layer Only WL2 WL3 GND Polysilicon Metal1 Diffusion Metal1 on Diffusion

9 MOS NOR ROM Layout Cell (11λ x 7λ) Programmming using the Contact Layer Only Polysilicon Metal1 Diffusion Metal1 on Diffusion

10 MOS NAND ROM V DD Pull-up devices BL[0] BL[1] BL[2] BL[3] WL[0] WL[1] WL[2] WL[3] All word lines high by default with exception of selected row

11 MOS NAND ROM Layout Cell (8λ x 7λ) Programmming using the Metal-1 Layer Only No contact to VDD or GND necessary; drastically reduced cell size Loss in performance compared to NOR ROM Polysilicon Diffusion Metal1 on Diffusion

12 Equivalent Transient Model for MOS NOR ROM Model for NOR ROM V DD BL WL r word C bit c word Word line parasitics Wire capacitance and gate capacitance Wire resistance (polysilicon( polysilicon) Bit line parasitics Resistance not dominant (metal) Drain and Gate-Drain capacitance

13 Equivalent Transient Model for MOS NAND ROM Model for NAND ROM V DD BL r bit C L WL r word c bit c word Word line parasitics Similar to NOR ROM Bit line parasitics Resistance of cascaded transistors dominates Drain/Source and complete gate capacitance

14 Decreasing Word Line Delay WL Driver Polysilicon word line Metal word line (a) Driving the word line from both sides Metal bypass WL K cells (b) Using a metal bypass Polysilicon word line (c) Use silicides

15 Precharged MOS NOR ROM f pre V DD Precharge devices WL [0] WL [1] GND WL [2] GND WL [3] BL [0] BL [1] BL [2] BL [3] PMOS precharge device can be made as large as necessary, but clock driver becomes harder to design.

16 Non-Volatile Memories The Floating-gate transistor (FAMOS) Source Floating gate Gate Drain D t ox G n + Substrate p t ox n +_ S Device cross-section Schematic symbol

17 Floating-Gate Transistor Programming 20 V 0 V 5 V 10 V 5 V 20 V -5 V 0 V -2.5 V 5 V S D S D S D Avalanche injection Removing programming voltage leaves charge trapped Programming results in higher V T.

18 FLOTOX EEPROM Floating gate Source Gate Drain I nm n 1 Substrate p n 1 10 nm -10 V 10 V V GD FLOTOX transistor Fowler-Nordheim I-V characteristic

19 EEPROM Cell BL WL V DD Absolute threshold control is hard Unprogrammed transistor might be depletion 2 transistor cell

20 Flash EEPROM Control gate Floating gate erasure n + source programming p-substrate Thin tunneling oxide n + drain Many other options

21 Cross-sections of NVM cells Flash Courtesy Intel EPROM

22 Basic Operations in a NOR Flash Memory_ Erase cell array BL 0 BL 1 12 V G 0 V WL 0 S D 12V 0 V WL 1 open open

23 Basic Operations in a NOR Flash Memory_ Write 12 V BL 0 BL 1 G 6 V 12 V WL 0 S D 0 V WL 1 6 V 0 V

24 Basic Operations in a NOR Flash Memory_ Read 5 V G 1 V 5 V BL 0 BL 1 WL 0 S D 0 V WL 1 1 V 0 V

25 Memory Design Register File RAM with multiple read or write ports You can read or write multiple data values at the same time Useful in data processing applications

26 Memory Design Register File Cell RB1 RB0 RB1 RB0 Word select 0 Word select 1 Write enable Write data

27 Memory Design Content Addressable Memory (CAM) Instead of finding memory by address, find it by content Search or match every single word in memory array

28 Static CAM Memory Cell Word Bit CAM Bit Bit CAM Bit Bit M4 M8 M6 M9 M7 M5 Bit Word CAM CAM Word Match S M3 int M2 S M1 Wired-NOR Match Line

29 CAM in Cache Memory CAM ARRAY Hit Logic SRAM ARRAY AddressDecoder Input Drivers Sense Amps / Input Drivers Address Tag Hit R/W Data

30 Memory Design Other memory structures FIFOs LIFOs SIPOs

31 Periphery Decoders Sense Amplifiers Input/Output Buffers Control / Timing Circuitry

32 Memory Design Row decoder A1 A0

33 Memory Design Row decoder With multiple inputs (>4), two problems Speed of gates becomes a problem Use hierarchy of NANDS/NORS Use predecoding - decode upper bits first and use lower bits to select from there Increased fanout Use minimum sized input gates

34 Hierarchical Decoders Multi-stage implementation improves performance WL 1 WL 0 A 0 A 1 A 0 A 1 A 0 A 1 A 0 A 1 A 2 A 3 A 2 A 3 A 2 A 3 A 2 A 3 A 1 A 0 A 0 A 1 A 3 A 2 A 2 A 3 NAND decoder using 2-input pre-decoders

35 Dynamic Decoders Precharge devices GND GND V DD WL 3 V DD WL 3 WL 2 V DD WL 2 WL 1 WL 0 V DD WL 1 WL 0 V DD φ A 0 A 0 A 1 A 1 A 0 A 0 A 1 A 1 φ 2-input NOR decoder 2-input NAND decoder

36 Memory Design Column decoder Memory Cells A1 A0 Data Out

37 Memory Design Column decoder Memory Cells Data Out A1 A0

38 Memory Design Column decoder AND-decoder based On the order of N 2N N transistors Binary tree based Slow because of the series of pass- transistors Usually use a combination of the two

39 Memory Design Sense Amplifier Time to get through row decoder, column pull-down and column decoder can be very long Use a sense amplifier to speed it up Sense small differences in voltage and amplify it to rail voltage Can be differential or single-ended Usually use transistors with high threshold voltages

40 Sense Amplifiers t p = C Δ V I av make ΔV as small as possible large small Idea: Use Sense Amplifer small transition s.a. input output

41 Differential Sense Amplifier V DD M 3 M 4 y Out bit M 1 M 2 bit SE M 5 Directly applicable to SRAMs

42 Next class Memory Reliability and Yield Control logic

Semiconductor Memories

Semiconductor Memories Semiconductor Memories Semiconductor memories array capable of storing large quantities of digital information are essential to all digital systems Maximum realizable data storage capacity of a single

More information

Chapter 9 Semiconductor Memories. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 9 Semiconductor Memories. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 9 Semiconductor Memories Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2 Outline Introduction

More information

RAM & ROM Based Digital Design. ECE 152A Winter 2012

RAM & ROM Based Digital Design. ECE 152A Winter 2012 RAM & ROM Based Digital Design ECE 152A Winter 212 Reading Assignment Brown and Vranesic 1 Digital System Design 1.1 Building Block Circuits 1.1.3 Static Random Access Memory (SRAM) 1.1.4 SRAM Blocks in

More information

CHAPTER 16 MEMORY CIRCUITS

CHAPTER 16 MEMORY CIRCUITS CHPTER 6 MEMORY CIRCUITS Chapter Outline 6. atches and Flip-Flops 6. Semiconductor Memories: Types and rchitectures 6.3 Random-ccess Memory RM Cells 6.4 Sense-mplifier and ddress Decoders 6.5 Read-Only

More information

A N. O N Output/Input-output connection

A N. O N Output/Input-output connection Memory Types Two basic types: ROM: Read-only memory RAM: Read-Write memory Four commonly used memories: ROM Flash, EEPROM Static RAM (SRAM) Dynamic RAM (DRAM), SDRAM, RAMBUS, DDR RAM Generic pin configuration:

More information

Memory Basics. SRAM/DRAM Basics

Memory Basics. SRAM/DRAM Basics Memory Basics RAM: Random Access Memory historically defined as memory array with individual bit access refers to memory with both Read and Write capabilities ROM: Read Only Memory no capabilities for

More information

1. Memory technology & Hierarchy

1. Memory technology & Hierarchy 1. Memory technology & Hierarchy RAM types Advances in Computer Architecture Andy D. Pimentel Memory wall Memory wall = divergence between CPU and RAM speed We can increase bandwidth by introducing concurrency

More information

Memory. The memory types currently in common usage are:

Memory. The memory types currently in common usage are: ory ory is the third key component of a microprocessor-based system (besides the CPU and I/O devices). More specifically, the primary storage directly addressed by the CPU is referred to as main memory

More information

Homework # 2. Solutions. 4.1 What are the differences among sequential access, direct access, and random access?

Homework # 2. Solutions. 4.1 What are the differences among sequential access, direct access, and random access? ECE337 / CS341, Fall 2005 Introduction to Computer Architecture and Organization Instructor: Victor Manuel Murray Herrera Date assigned: 09/19/05, 05:00 PM Due back: 09/30/05, 8:00 AM Homework # 2 Solutions

More information

Class 18: Memories-DRAMs

Class 18: Memories-DRAMs Topics: 1. Introduction 2. Advantages and Disadvantages of DRAMs 3. Evolution of DRAMs 4. Evolution of DRAMs 5. Basics of DRAMs 6. Basics of DRAMs 7. Write Operation 8. SA-Normal Operation 9. SA-Read Operation

More information

Evaluating Embedded Non-Volatile Memory for 65nm and Beyond

Evaluating Embedded Non-Volatile Memory for 65nm and Beyond Evaluating Embedded Non-Volatile Memory for 65nm and Beyond Wlodek Kurjanowicz DesignCon 2008 Sidense Corp 2008 Agenda Introduction: Why Embedded NVM? Embedded Memory Landscape Antifuse Memory evolution

More information

Algorithms and Methods for Distributed Storage Networks 3. Solid State Disks Christian Schindelhauer

Algorithms and Methods for Distributed Storage Networks 3. Solid State Disks Christian Schindelhauer Algorithms and Methods for Distributed Storage Networks 3. Solid State Disks Institut für Informatik Wintersemester 2007/08 Solid State Disks Motivation 2 10 5 1980 1985 1990 1995 2000 2005 2010 PRODUCTION

More information

1.1 Silicon on Insulator a brief Introduction

1.1 Silicon on Insulator a brief Introduction Table of Contents Preface Acknowledgements Chapter 1: Overview 1.1 Silicon on Insulator a brief Introduction 1.2 Circuits and SOI 1.3 Technology and SOI Chapter 2: SOI Materials 2.1 Silicon on Heteroepitaxial

More information

AN1837. Non-Volatile Memory Technology Overview By Stephen Ledford Non-Volatile Memory Technology Center Austin, Texas.

AN1837. Non-Volatile Memory Technology Overview By Stephen Ledford Non-Volatile Memory Technology Center Austin, Texas. Order this document by /D Non-Volatile Memory Technology Overview By Stephen Ledford Non-Volatile Memory Technology Center Austin, Texas Introduction Today s microcontroller applications are more sophisticated

More information

FLASH TECHNOLOGY DRAM/EPROM. Flash. 1980 1982 1984 1986 1988 1990 1992 1994 1996 Year Source: Intel/ICE, "Memory 1996"

FLASH TECHNOLOGY DRAM/EPROM. Flash. 1980 1982 1984 1986 1988 1990 1992 1994 1996 Year Source: Intel/ICE, Memory 1996 10 FLASH TECHNOLOGY Overview Flash memory technology is a mix of EPROM and EEPROM technologies. The term flash was chosen because a large chunk of memory could be erased at one time. The name, therefore,

More information

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1 Module 2 Embedded Processors and Memory Version 2 EE IIT, Kharagpur 1 Lesson 5 Memory-I Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would Pre-Requisite

More information

Chapter 5 :: Memory and Logic Arrays

Chapter 5 :: Memory and Logic Arrays Chapter 5 :: Memory and Logic Arrays Digital Design and Computer Architecture David Money Harris and Sarah L. Harris Copyright 2007 Elsevier 5- ROM Storage Copyright 2007 Elsevier 5- ROM Logic Data

More information

Module 7 : I/O PADs Lecture 33 : I/O PADs

Module 7 : I/O PADs Lecture 33 : I/O PADs Module 7 : I/O PADs Lecture 33 : I/O PADs Objectives In this lecture you will learn the following Introduction Electrostatic Discharge Output Buffer Tri-state Output Circuit Latch-Up Prevention of Latch-Up

More information

With respect to the way of data access we can classify memories as:

With respect to the way of data access we can classify memories as: Memory Classification With respect to the way of data access we can classify memories as: - random access memories (RAM), - sequentially accessible memory (SAM), - direct access memory (DAM), - contents

More information

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Outline Here we introduced () basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Circuit Logic Gate A logic gate is an elemantary building block

More information

Computer Architecture

Computer Architecture Computer Architecture Random Access Memory Technologies 2015. április 2. Budapest Gábor Horváth associate professor BUTE Dept. Of Networked Systems and Services ghorvath@hit.bme.hu 2 Storing data Possible

More information

CS250 VLSI Systems Design Lecture 8: Memory

CS250 VLSI Systems Design Lecture 8: Memory CS250 VLSI Systems esign Lecture 8: Memory John Wawrzynek, Krste Asanovic, with John Lazzaro and Yunsup Lee (TA) UC Berkeley Fall 2010 CMOS Bistable 1 0 Flip State 0 1 Cross-coupled inverters used to hold

More information

Yaffs NAND Flash Failure Mitigation

Yaffs NAND Flash Failure Mitigation Yaffs NAND Flash Failure Mitigation Charles Manning 2012-03-07 NAND flash is one of very few types of electronic device which are knowingly shipped with errors and are expected to generate further errors

More information

Data remanence in Flash Memory Devices

Data remanence in Flash Memory Devices Data remanence in Flash Memory Devices Sergei Skorobogatov 1 Data remanence Residual representation of data after erasure Magnetic media SRAM and DRAM Low-temperature data remanence Long-term retention

More information

ECE410 Design Project Spring 2008 Design and Characterization of a CMOS 8-bit Microprocessor Data Path

ECE410 Design Project Spring 2008 Design and Characterization of a CMOS 8-bit Microprocessor Data Path ECE410 Design Project Spring 2008 Design and Characterization of a CMOS 8-bit Microprocessor Data Path Project Summary This project involves the schematic and layout design of an 8-bit microprocessor data

More information

Chapter 7 Memory and Programmable Logic

Chapter 7 Memory and Programmable Logic NCNU_2013_DD_7_1 Chapter 7 Memory and Programmable Logic 71I 7.1 Introduction ti 7.2 Random Access Memory 7.3 Memory Decoding 7.5 Read Only Memory 7.6 Programmable Logic Array 77P 7.7 Programmable Array

More information

Handout 17. by Dr Sheikh Sharif Iqbal. Memory Unit and Read Only Memories

Handout 17. by Dr Sheikh Sharif Iqbal. Memory Unit and Read Only Memories Handout 17 by Dr Sheikh Sharif Iqbal Memory Unit and Read Only Memories Objective: - To discuss different types of memories used in 80x86 systems for storing digital information. - To learn the electronic

More information

The MOSFET Transistor

The MOSFET Transistor The MOSFET Transistor The basic active component on all silicon chips is the MOSFET Metal Oxide Semiconductor Field Effect Transistor Schematic symbol G Gate S Source D Drain The voltage on the gate controls

More information

Sequential Circuit Design

Sequential Circuit Design Sequential Circuit Design Lan-Da Van ( 倫 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2009 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines

More information

Lecture 5: Gate Logic Logic Optimization

Lecture 5: Gate Logic Logic Optimization Lecture 5: Gate Logic Logic Optimization MAH, AEN EE271 Lecture 5 1 Overview Reading McCluskey, Logic Design Principles- or any text in boolean algebra Introduction We could design at the level of irsim

More information

Contents. Overview... 5-1 Memory Compilers Selection Guide... 5-2

Contents. Overview... 5-1 Memory Compilers Selection Guide... 5-2 Memory Compilers 5 Contents Overview... 5-1 Memory Compilers Selection Guide... 5-2 CROM Gen... 5-3 DROM Gen... 5-9 SPSRM Gen... 5-15 SPSRM Gen... 5-22 SPRM Gen... 5-31 DPSRM Gen... 5-38 DPSRM Gen... 5-47

More information

Flash Memories. João Pela (52270), João Santos (55295) December 22, 2008 IST

Flash Memories. João Pela (52270), João Santos (55295) December 22, 2008 IST Flash Memories João Pela (52270), João Santos (55295) IST December 22, 2008 João Pela (52270), João Santos (55295) (IST) Flash Memories December 22, 2008 1 / 41 Layout 1 Introduction 2 How they work 3

More information

1 / 25. CS 137: File Systems. Persistent Solid-State Storage

1 / 25. CS 137: File Systems. Persistent Solid-State Storage 1 / 25 CS 137: File Systems Persistent Solid-State Storage Technology Change is Coming Introduction Disks are cheaper than any solid-state memory Likely to be true for many years But SSDs are now cheap

More information

Semiconductor Memory Design

Semiconductor Memory Design CHAPTER 8 Semiconductor Memory Design CHAPTER OUTLINE 8.1 Introduction 8.2 MOS Decoders 8.3 Static RAM Cell Design 8.4 SRAM Column I/O Circuitry 8.5 Memory Architecture 8.6 Summary References Prolems 8.1

More information

CHAPTER 7: The CPU and Memory

CHAPTER 7: The CPU and Memory CHAPTER 7: The CPU and Memory The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides

More information

Data Distribution Algorithms for Reliable. Reliable Parallel Storage on Flash Memories

Data Distribution Algorithms for Reliable. Reliable Parallel Storage on Flash Memories Data Distribution Algorithms for Reliable Parallel Storage on Flash Memories Zuse Institute Berlin November 2008, MEMICS Workshop Motivation Nonvolatile storage Flash memory - Invented by Dr. Fujio Masuoka

More information

Local Heating Attacks on Flash Memory Devices. Dr Sergei Skorobogatov

Local Heating Attacks on Flash Memory Devices. Dr Sergei Skorobogatov Local Heating Attacks on Flash Memory Devices Dr Sergei Skorobogatov http://www.cl.cam.ac.uk/~sps32 email: sps32@cam.ac.uk Introduction Semi-invasive attacks were introduced in 2002 ( Optical fault induction

More information

Sequential 4-bit Adder Design Report

Sequential 4-bit Adder Design Report UNIVERSITY OF WATERLOO Faculty of Engineering E&CE 438: Digital Integrated Circuits Sequential 4-bit Adder Design Report Prepared by: Ian Hung (ixxxxxx), 99XXXXXX Annette Lo (axxxxxx), 99XXXXXX Pamela

More information

NAND Flash FAQ. Eureka Technology. apn5_87. NAND Flash FAQ

NAND Flash FAQ. Eureka Technology. apn5_87. NAND Flash FAQ What is NAND Flash? What is the major difference between NAND Flash and other Memory? Structural differences between NAND Flash and NOR Flash What does NAND Flash controller do? How to send command to

More information

Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards

Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards Points ddressed in this Lecture Lecture 8: ROM Programmable Logic Devices Professor Peter Cheung Department of EEE, Imperial College London Read-only memory Implementing logic with ROM Programmable logic

More information

Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology

Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology Nahid Rahman Department of electronics and communication FET-MITS (Deemed university), Lakshmangarh, India B. P. Singh Department

More information

Flash Memory Jan Genoe KHLim Universitaire Campus, Gebouw B 3590 Diepenbeek Belgium

Flash Memory Jan Genoe KHLim Universitaire Campus, Gebouw B 3590 Diepenbeek Belgium Flash Memory Jan Genoe KHLim Universitaire Campus, Gebouw B 3590 Diepenbeek Belgium http://www.khlim.be/~jgenoe [1] http://en.wikipedia.org/wiki/flash_memory Geheugen 1 Product evolution Jan Genoe: Geheugen

More information

CMOS Logic Integrated Circuits

CMOS Logic Integrated Circuits CMOS Logic Integrated Circuits Introduction CMOS Inverter Parameters of CMOS circuits Circuits for protection Output stage for CMOS circuits Buffering circuits Introduction Symetrical and complementary

More information

Memory Testing. Memory testing.1

Memory Testing. Memory testing.1 Memory Testing Introduction Memory Architecture & Fault Models Test Algorithms DC / AC / Dynamic Tests Built-in Self Testing Schemes Built-in Self Repair Schemes Memory testing.1 Memory Market Share in

More information

MODELING THE PHYSICAL CHARACTERISTICS OF NAND FLASH MEMORY

MODELING THE PHYSICAL CHARACTERISTICS OF NAND FLASH MEMORY MODELING THE PHYSICAL CHARACTERISTICS OF NAND FLASH MEMORY A Thesis Presented to the Faculty of the School of Engineering and Applied Science University of Virginia In Partial Fulfillment of the Requirements

More information

Pass Gate Logic An alternative to implementing complex logic is to realize it using a logic network of pass transistors (switches).

Pass Gate Logic An alternative to implementing complex logic is to realize it using a logic network of pass transistors (switches). Pass Gate Logic n alternative to implementing complex logic is to realize it using a logic network of pass transistors (switches). Switch Network Regeneration is performed via a buffer. We have already

More information

SLC vs MLC: Proper Flash Selection for SSDs in Industrial, Military and Avionic Applications. A TCS Space & Component Technology White Paper

SLC vs MLC: Proper Flash Selection for SSDs in Industrial, Military and Avionic Applications. A TCS Space & Component Technology White Paper SLC vs MLC: Proper Flash Selection for SSDs in Industrial, Military and Avionic Applications A TCS Space & Component Technology White Paper Introduction As with most storage technologies, NAND Flash vendors

More information

Low Power AMD Athlon 64 and AMD Opteron Processors

Low Power AMD Athlon 64 and AMD Opteron Processors Low Power AMD Athlon 64 and AMD Opteron Processors Hot Chips 2004 Presenter: Marius Evers Block Diagram of AMD Athlon 64 and AMD Opteron Based on AMD s 8 th generation architecture AMD Athlon 64 and AMD

More information

Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS

Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS Outline 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation 3. I-V characteristics Reading Assignment: Howe and Sodini, Chapter 4, Sections

More information

Layout and Cross-section of an inverter. Lecture 5. Layout Design. Electric Handles Objects. Layout & Fabrication. A V i

Layout and Cross-section of an inverter. Lecture 5. Layout Design. Electric Handles Objects. Layout & Fabrication. A V i Layout and Cross-section of an inverter Lecture 5 A Layout Design Peter Cheung Department of Electrical & Electronic Engineering Imperial College London V DD Q p A V i V o URL: www.ee.ic.ac.uk/pcheung/

More information

Chapter 10 Advanced CMOS Circuits

Chapter 10 Advanced CMOS Circuits Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in

More information

1 Products A. MEMORY. Personal Computer. Portable Permanent Storage. Main Unit. Main Permanent Storage. Display. Keyboard.

1 Products A. MEMORY. Personal Computer. Portable Permanent Storage. Main Unit. Main Permanent Storage. Display. Keyboard. 1 Products A. MEMORY Memory and data storage take many forms, even in a single computer system. Figure 1-1 shows a simplified block diagram of a personal computer, indicating the various active sections

More information

SLC vs MLC: Which is best for high-reliability apps?

SLC vs MLC: Which is best for high-reliability apps? SLC vs MLC: Which is best for high-reliability apps? Here's an examination of trade-offs, with an emphasis on how they affect the reliability of storage targeted at industrial, military and avionic applications.

More information

Modeling Power Consumption of NAND Flash Memories using FlashPower

Modeling Power Consumption of NAND Flash Memories using FlashPower 1 Modeling Power Consumption of NAND Flash Memories using FlashPower Vidyabhushan Mohan, Trevor Bunker, Laura Grupp, Sudhanva Gurumurthi Senior Member, IEEE, Mircea R. Stan Senior Member, IEEE, and Steven

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory 1 1. Memory Organisation 2 Random access model A memory-, a data byte, or a word, or a double

More information

Intel Q3GM ES 32 nm CPU (from Core i5 660)

Intel Q3GM ES 32 nm CPU (from Core i5 660) Intel Q3GM ES Structural Analysis For comments, questions, or more information about this report, or for any additional technical needs concerning semiconductor and electronics technology, please call

More information

NEW adder cells are useful for designing larger circuits despite increase in transistor count by four per cell.

NEW adder cells are useful for designing larger circuits despite increase in transistor count by four per cell. CHAPTER 4 THE ADDER The adder is one of the most critical components of a processor, as it is used in the Arithmetic Logic Unit (ALU), in the floating-point unit and for address generation in case of cache

More information

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Technische Elektronik Power Efficient and Robust Sense Amplifiers for Embedded Non-Volatile Memories in High-Speed Microcontrollers for Automotive Applications

More information

Embedded STT-MRAM for Mobile Applications:

Embedded STT-MRAM for Mobile Applications: Embedded STT-MRAM for Mobile Applications: Enabling Advanced Chip Architectures Seung H. Kang Qualcomm Inc. Acknowledgments I appreciate valuable contributions and supports from Kangho Lee, Xiaochun Zhu,

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer

Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer Computers CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 3, 2009 A computer performs 2 basic functions: 1.

More information

Features. DDR SODIMM Product Datasheet. Rev. 1.0 Oct. 2011

Features. DDR SODIMM Product Datasheet. Rev. 1.0 Oct. 2011 Features 200pin, unbuffered small outline dual in-line memory module (SODIMM) Fast data transfer rates: PC-2100, PC-2700, PC3-3200 Single or Dual rank 256MB(32Megx64), 512MB (64Meg x 64), 1GB(128 Meg x

More information

GR2DR4B-EXXX/YYY/LP 1GB & 2GB DDR2 REGISTERED DIMMs (LOW PROFILE)

GR2DR4B-EXXX/YYY/LP 1GB & 2GB DDR2 REGISTERED DIMMs (LOW PROFILE) GENERAL DESCRIPTION The Gigaram is a 128M/256M bit x 72 DDDR2 SDRAM high density JEDEC standard ECC Registered memory module. The Gigaram consists of eighteen CMOS 128MX4 DDR2 for 1GB and thirty-six CMOS

More information

MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS

MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS 1) Which is the microprocessor comprises: a. Register section b. One or more ALU c. Control unit 2) What is the store by register? a. data b. operands

More information

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit Modeling Sequential Elements with Verilog Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw 4-1 Sequential Circuit Outputs are functions of inputs and present states of storage elements

More information

SLC vs MLC NAND and The Impact of Technology Scaling. White paper CTWP010

SLC vs MLC NAND and The Impact of Technology Scaling. White paper CTWP010 SLC vs MLC NAND and The mpact of Technology Scaling White paper CTWP010 Cactus Technologies Limited Suite C, 15/F, Capital Trade Center 62 Tsun Yip Street, Kwun Tong Kowloon, Hong Kong Tel: +852-2797-2277

More information

Winbond W2E512/W27E257 EEPROM

Winbond W2E512/W27E257 EEPROM Construction Analysis Winbond W2E512/W27E257 EEPROM Report Number: SCA 9703-533 Global Semiconductor Industry the Serving Since 1964 15022 N. 75th Street Scottsdale, AZ 85260-2476 Phone: 602-998-9780 Fax:

More information

Layout of Multiple Cells

Layout of Multiple Cells Layout of Multiple Cells Beyond the primitive tier primitives add instances of primitives add additional transistors if necessary add substrate/well contacts (plugs) add additional polygons where needed

More information

Advanced VLSI Design CMOS Processing Technology

Advanced VLSI Design CMOS Processing Technology Isolation of transistors, i.e., their source and drains, from other transistors is needed to reduce electrical interactions between them. For technologies

More information

State-of-the-Art Flash Memory Technology, Looking into the Future

State-of-the-Art Flash Memory Technology, Looking into the Future State-of-the-Art Flash Memory Technology, Looking into the Future April 16 th, 2012 大 島 成 夫 (Jeff Ohshima) Technology Executive Memory Design and Application Engineering Semiconductor and Storage Products

More information

Solid State Drives Data Reliability and Lifetime. Abstract

Solid State Drives Data Reliability and Lifetime. Abstract Solid State Drives Data Reliability and Lifetime White Paper Alan R. Olson & Denis J. Langlois April 7, 2008 Abstract The explosion of flash memory technology has dramatically increased storage capacity

More information

Fabrication and Manufacturing (Basics) Batch processes

Fabrication and Manufacturing (Basics) Batch processes Fabrication and Manufacturing (Basics) Batch processes Fabrication time independent of design complexity Standard process Customization by masks Each mask defines geometry on one layer Lower-level masks

More information

Trabajo 4.5 - Memorias flash

Trabajo 4.5 - Memorias flash Memorias flash II-PEI 09/10 Trabajo 4.5 - Memorias flash Wojciech Ochalek This document explains the concept of flash memory and describes it s the most popular use. Moreover describes also Microdrive

More information

PLL frequency synthesizer

PLL frequency synthesizer ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 4 Lab 4: PLL frequency synthesizer 1.1 Goal The goals of this lab exercise are: - Verify the behavior of a and of a complete PLL - Find capture

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING Course Title VLSI DESIGN Course Code 57035 Regulation R09 COURSE DESCRIPTION Course Structure

More information

MirrorBit Technology: The Foundation for Value-Added Flash Memory Solutions FLASH FORWARD

MirrorBit Technology: The Foundation for Value-Added Flash Memory Solutions FLASH FORWARD MirrorBit Technology: The Foundation for Value-Added Flash Memory Solutions FLASH FORWARD MirrorBit Technology: The Future of Flash Memory is Here Today Spansion is redefining the Flash memory industry

More information

Memory unit. 2 k words. n bits per word

Memory unit. 2 k words. n bits per word 9- k address lines Read n data input lines Memory unit 2 k words n bits per word n data output lines 24 Pearson Education, Inc M Morris Mano & Charles R Kime 9-2 Memory address Binary Decimal Memory contents

More information

GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8

GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8 GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8 Robert G. Brown All Rights Reserved August 25, 2000 Alta Engineering 58 Cedar Lane New Hartford, CT 06057-2905 (860) 489-8003 www.alta-engineering.com

More information

ESP-CV Custom Design Formal Equivalence Checking Based on Symbolic Simulation

ESP-CV Custom Design Formal Equivalence Checking Based on Symbolic Simulation Datasheet -CV Custom Design Formal Equivalence Checking Based on Symbolic Simulation Overview -CV is an equivalence checker for full custom designs. It enables efficient comparison of a reference design

More information

Solid State Drive (SSD) FAQ

Solid State Drive (SSD) FAQ Solid State Drive (SSD) FAQ Santosh Kumar Rajesh Vijayaraghavan O c t o b e r 2 0 1 1 List of Questions Why SSD? Why Dell SSD? What are the types of SSDs? What are the best Use cases & applications for

More information

University of Texas at Dallas. Department of Electrical Engineering. EEDG 6306 - Application Specific Integrated Circuit Design

University of Texas at Dallas. Department of Electrical Engineering. EEDG 6306 - Application Specific Integrated Circuit Design University of Texas at Dallas Department of Electrical Engineering EEDG 6306 - Application Specific Integrated Circuit Design Synopsys Tools Tutorial By Zhaori Bi Minghua Li Fall 2014 Table of Contents

More information

3D NAND Technology Implications to Enterprise Storage Applications

3D NAND Technology Implications to Enterprise Storage Applications 3D NAND Technology Implications to Enterprise Storage Applications Jung H. Yoon Memory Technology IBM Systems Supply Chain Outline Memory Technology Scaling - Driving Forces Density trends & outlook Bit

More information

Introduction to CMOS VLSI Design

Introduction to CMOS VLSI Design Introduction to CMOS VLSI esign Slides adapted from: N. Weste,. Harris, CMOS VLSI esign, Addison-Wesley, 3/e, 24 Introduction Integrated Circuits: many transistors on one chip Very Large Scale Integration

More information

Intel s Revolutionary 22 nm Transistor Technology

Intel s Revolutionary 22 nm Transistor Technology Intel s Revolutionary 22 nm Transistor Technology Mark Bohr Intel Senior Fellow Kaizad Mistry 22 nm Program Manager May, 2011 1 Key Messages Intel is introducing revolutionary Tri-Gate transistors on its

More information

STMicroelectronics. Deep Sub-Micron Processes 130nm, 65 nm, 40nm, 28nm CMOS, 28nm FDSOI. SOI Processes 130nm, 65nm. SiGe 130nm

STMicroelectronics. Deep Sub-Micron Processes 130nm, 65 nm, 40nm, 28nm CMOS, 28nm FDSOI. SOI Processes 130nm, 65nm. SiGe 130nm STMicroelectronics Deep Sub-Micron Processes 130nm, 65 nm, 40nm, 28nm CMOS, 28nm FDSOI SOI Processes 130nm, 65nm SiGe 130nm CMP Process Portfolio from ST Moore s Law 130nm CMOS : HCMOS9GP More than Moore

More information

Charge-Trapping (CT) Flash and 3D NAND Flash Hang-Ting Lue

Charge-Trapping (CT) Flash and 3D NAND Flash Hang-Ting Lue Charge-Trapping (CT) Flash and 3D NAND Flash Hang-Ting Lue Macronix International Co., Ltd. Hsinchu,, Taiwan Email: htlue@mxic.com.tw 1 Outline Introduction 2D Charge-Trapping (CT) NAND 3D CT NAND Summary

More information

Computer Architecture

Computer Architecture Computer Architecture Slide Sets WS 2013/2014 Prof. Dr. Uwe Brinkschulte M.Sc. Benjamin Betting Part 11 Memory Management Computer Architecture Part 11 page 1 of 44 Prof. Dr. Uwe Brinkschulte, M.Sc. Benjamin

More information

Micron MT29F2G08AAB 2 Gbit NAND Flash Memory Structural Analysis

Micron MT29F2G08AAB 2 Gbit NAND Flash Memory Structural Analysis August 17, 2006 Micron MT29F2G08AAB 2 Gbit NAND Flash Memory Structural Analysis For comments, questions, or more information about this report, or for any additional technical needs concerning semiconductor

More information

DDR SDRAM SODIMM. MT9VDDT1672H 128MB 1 MT9VDDT3272H 256MB MT9VDDT6472H 512MB For component data sheets, refer to Micron s Web site: www.micron.

DDR SDRAM SODIMM. MT9VDDT1672H 128MB 1 MT9VDDT3272H 256MB MT9VDDT6472H 512MB For component data sheets, refer to Micron s Web site: www.micron. Features DDR SDRAM SODIMM MT9VDDT1672H 128MB 1 MT9VDDT3272H 256MB MT9VDDT6472H 512MB For component data sheets, refer to Micron s Web site: www.micron.com Features 200-pin, small-outline dual in-line memory

More information

Long Term Data Retention of Flash Cells Used in Critical Applications

Long Term Data Retention of Flash Cells Used in Critical Applications Office of the Secretary of Defense National Aeronautics and Space Administration Long Term Data Retention of Flash Cells Used in Critical Applications Keith Bergevin (DMEA) Rich Katz (NASA) David Flowers

More information

Memory Systems. Static Random Access Memory (SRAM) Cell

Memory Systems. Static Random Access Memory (SRAM) Cell Memory Systems This chapter begins the discussion of memory systems from the implementation of a single bit. The architecture of memory chips is then constructed using arrays of bit implementations coupled

More information

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 LECTURE 030 - DEEP SUBMICRON (DSM) CMOS TECHNOLOGY LECTURE ORGANIZATION Outline Characteristics of a deep submicron CMOS technology Typical deep submicron

More information

NAND Flash memory. Samsung Electronics, co., Ltd Flash design team 2010. 05. 07. Kihwan Choi - 1/48 - ELECTRONICS

NAND Flash memory. Samsung Electronics, co., Ltd Flash design team 2010. 05. 07. Kihwan Choi - 1/48 - ELECTRONICS NAND Flash memory Samsung Electronics, co., Ltd Flash design team 2010. 05. 07 Kihwan Choi - 1/48 - Contents Introduction Flash memory 101 Basic operations Current issues & approach In the near future

More information

Features. DDR3 SODIMM Product Specification. Rev. 1.7 Feb. 2016

Features. DDR3 SODIMM Product Specification. Rev. 1.7 Feb. 2016 Features DDR3 functionality and operations supported as defined in the component data sheet 204pin, small-outline dual in-line memory module (SODIMM) Fast data transfer rates: DDR3-1066(PC3-8500) DDR3-1333(PC3-10600)

More information

DS18B20 Programmable Resolution 1-Wire Digital Thermometer

DS18B20 Programmable Resolution 1-Wire Digital Thermometer www.dalsemi.com FEATURES Unique 1-Wire interface requires only one port pin for communication Multidrop capability simplifies distributed temperature sensing applications Requires no external components

More information

Module 4 : Propagation Delays in MOS Lecture 22 : Logical Effort Calculation of few Basic Logic Circuits

Module 4 : Propagation Delays in MOS Lecture 22 : Logical Effort Calculation of few Basic Logic Circuits Module 4 : Propagation Delays in MOS Lecture 22 : Logical Effort Calculation of few Basic Logic Circuits Objectives In this lecture you will learn the following Introduction Logical Effort of an Inverter

More information

A 10,000 Frames/s 0.18 µm CMOS Digital Pixel Sensor with Pixel-Level Memory

A 10,000 Frames/s 0.18 µm CMOS Digital Pixel Sensor with Pixel-Level Memory Presented at the 2001 International Solid State Circuits Conference February 5, 2001 A 10,000 Frames/s 0.1 µm CMOS Digital Pixel Sensor with Pixel-Level Memory Stuart Kleinfelder, SukHwan Lim, Xinqiao

More information

Interfacing 3V and 5V applications

Interfacing 3V and 5V applications Authors: Tinus van de Wouw (Nijmegen) / Todd Andersen (Albuquerque) 1.0 THE NEED FOR TERFACG BETWEEN 3V AND 5V SYSTEMS Many reasons exist to introduce 3V 1 systems, notably the lower power consumption

More information

Microprocessor or Microcontroller?

Microprocessor or Microcontroller? Microprocessor or Microcontroller? A little History What is a computer? [Merriam-Webster Dictionary] one that computes; specifically : programmable electronic device that can store, retrieve, and process

More information

Lecture Notes 3 Introduction to Image Sensors

Lecture Notes 3 Introduction to Image Sensors Lecture Notes 3 Introduction to Image Sensors EE 392B Handout #5 Prof. A. El Gamal Spring 01 CCDs basic operation well capacity charge transfer efficiency and readout speed CMOS Passive Pixel Sensor (PPS)

More information