EXPERIMENT 2 Stoichiometry. Introduction

Size: px
Start display at page:

Download "EXPERIMENT 2 Stoichiometry. Introduction"

Transcription

1 EXPERIMENT 2 Stoichiometry Introduction Stoichiometry is the study of the quantitative relationships in chemical reactions. By studying stoichiometry, you can calculate the quantity of reactants that will be consumed in a chemical reaction, and the amount of product produced. Consider the reaction of vinegar with baking soda. As you may know, this reaction produces carbon dioxide gas which bubbles out of the vinegar. But if you want to know how much gas would be produced from combining a teaspoon of baking soda with a cup of vinegar, you would need to consider the stoichiometry of the reaction. Stoichiometry answers questions about chemical reactions dealing with how much and how many. In the first part of this experiment you will investigate the reaction of copper metal with oxygen in the air. Using stoichiometry, you can predict the amount of copper oxide (CuO) that could be produced if all the copper would react. However, when you perform the reaction yourself, you will discover that only some of the copper reacts to form black copper oxide. A stoichiometric calculation will allow you to determine the amount of copper oxide produced and the amount of unreacted copper remaining. In the second part of the experiment, you will use the techniques learned in the first part to investigate the chemical composition of an unknown compound. The solid compound will contain a certain quantity of water trapped inside it, and your task will be to calculate the amount of water it contains. Based on the amount of water released, you should be able to identify your unknown compound as one of the three possible compounds described in the experiment. You will need to make stoichiometric calculations in order to find out how much water should be released by each of the three unknown compounds, and compare that result with the amount of water actually released by your compound. Discussion Investigation of a Copper Reaction When heated in the presence of oxygen in the air, copper metal reacts to form copper oxide, CuO: 2 Cu (s) + O 2 (g) 2 CuO (s) Because only the surface of the copper metal will react to form copper oxide, you will use finely powdered copper in order to maximize its surface area. You will heat the copper powder in a crucible, which is a small thimble-shaped porcelain container used to heat substances to high temperatures. By heating the copper in a crucible using an intense gas flame from a Bunsen burner, you will be able to make much of the copper react to form copper oxide. However, despite the use of fine copper powder, some of the copper will not be exposed to oxygen in the air, and hence will remain unreacted. It is often the case that chemical reactions will not proceed entirely to completion, and this copper reaction is an example of such a reaction. With such a reaction, the amount of product Experiment 2 1

2 actually formed will be less than what could theoretically be produced in ideal circumstances. The amount of product formed is often reported in terms of a percent yield. The percent yield for a given reaction is defined as: mass of product formed precent yield 100 % theoretical maximum mass of product In this experiment, as the copper reacts to form copper oxide, the mass of the contents of the crucible will increase. This mass increase will correspond to the mass of oxygen consumed during the reaction. A stoichiometric calculation will enable you to determine the mass of copper oxide actually produced based on the mass of oxygen in the final product. The theoretical maximum mass of copper oxide can be calculated using stoichiometry based on the amount of copper used in the reaction. By comparing the mass of copper oxide actually produced with this theoretical amount, you can calculate the percent yield for your reaction. You would hope to get 100% yield in every chemical reaction, but in reality a perfect yield is rarely attained. Investigation of a Hydrated Salt At one time, you may have seen simple humidity indicators that change color to indicate the amount of water in the air. Or perhaps you have seen clothes that change color when wet, or children s bath toys that behave similarly. These items all depend on substances known as hydrated salts. A hydrated salt is a solid substance that contains water bound within the solid. For instance, the natural mineral bieberite has the formula CoSO 4 7H 2 O. This means that, for every atom of cobalt in the solid, there are 7 molecules of water also trapped within the solid. By heating the solid, the trapped water molecules can be released as water vapor: CoSO 4 7H 2 O (s) CoSO 4 (s) + 7 H 2 O (g) Note that the resulting solid will weigh less due to the water lost in the process. The release of the bound water is often accompanied by a color change. In the above example, the hydrated salt CoSO 4 7H 2 O is red-pink, while the anhydrous ( no water ) salt CoSO 4 is dark blue. These types of substances can be used to indicate the ambient humidity, because they will release water in dry environments and absorb water in moist environments, changing color in the process. In the second part of the experiment, you will be given one of the following hydrated salts, but will not be told which one you have: CuSO 4 5H 2 O CuCl 2 2H 2 O CoCl 2 6H 2 O Your task will be to remove all the water from your hydrated salt, determine how much water was removed, and thus discover which of the unknown salts you were given. You will report the quantity of water removed in terms of the ratio of moles of water released per mole of anhydrous salt. For instance, if your salt were CuSO 4 5H 2 O, you would expect to report that 5 moles of water were released per mole of anhydrous CuSO 4. In addition, you should observe any color changes during the course of the reaction. As described above, these color changes will indicate the progress of the reaction. Experiment 2 2

3 Procedure In this experiment you will work in partners. One partner will perform the copper experiment, while the other will independently perform the experiment with the hydrated salt. At the conclusion of the experiment you will swap data and discuss your observations and conclusions. Waste Disposal All waste produced in this experiment will be solid waste. Solid waste must be kept dry in order to dispose of it properly. After you are finished with the substances in your crucible, scrape the solid product into the container in the waste hood. Place the empty crucible in the appropriate dirty glassware container. Remember, do not use water to rinse the waste out of the crucibles. Use of the Crucible The crucible is a thin, porcelain container designed to withstand high temperatures. We will be heating the crucible using the gas flame of a Bunsen burner. Place a ceramic triangle on a metal tripod or ring stand. Obtain a crucible from the center bench, making sure it is not cracked, and place the crucible on the ceramic triangle. Connect a Bunsen burner to the gas outlet with a rubber hose and have your TF come and verify your setup. Your TF will show you how to light the burner and adjust the flame. The blue cone at the center of the burner flame should not be taller than one inch. Experiment 2 3

4

5 TF: 1/4 Name: Investigation of a Copper Reaction Data, Observations, and Notes First, take a clean, dry crucible from the center lab bench, bring it to the balance, and weigh the empty crucible. Using the analytical balance, weigh out approximately 1 gram of the copper powder. Add this powder to the empty crucible, and weigh the filled crucible. Return the crucible to the burner flame, and heat the copper powder. Do not heat the crucible so intensely that it glows red hot. Periodically remove the crucible from the flame and gently tap it against the benchtop in order to mix up the copper. While the crucible is away from the flame, note the color of the contents. Continue heating for at least 25 minutes, or until no more color change is observed. Mass of empty crucible: Mass: Mass of crucible with copper before heating: Mass: Color changes observed: Using the crucible tongs, carefully set the crucible aside to cool. When it has reached room temperature, weigh the crucible and its contents on an analytical balance. Final mass of crucible with product: Mass: Experiment 2 5

6 2/4 Investigation of a Hydrated Salt Data, Observations, and Notes This part of the experiment is performed very much like the copper reaction. In your prelab report, you will have to write out a detailed procedure. Your task will be to determine the mass of water released by heating one of the following hydrated salts: CuSO 4 5H 2 O, CuCl 2 2H 2 O, CoCl 2 6H 2 O. You will not know which of the salts you are heating, but should be able to deduce this from your final calculations. As part of your prelab, write up an appropriate data table in this space that you can use while performing the laboratory experiment. Don t forget to leave space in which to note the observed color changes. Here are some helpful hints for designing a successful procedure: You will be able to grind the sample into a fine powder using a mortar and pestle. Heat the compounds very gently. If the compound starts to turn brownish-black, gives off green gases, or starts to bubble and boil, then it is being overheated. Record all color changes observed for the compounds as they are heated. One of the compounds should exhibit more than one color change due to the formation of an intermediate stable hydrate with 2 moles of water per mole of anhydrous salt. The colors of the three anhydrous salts, in no particular order, are light blue, greenish-white, and yellow-brown. Once your entire sample has reached one of these colors, you should stop heating in order to avoid overheating. Experiment 2 6

7 TF: 3/4 Name: Lab Report Results 1. Determine the mass of CuO which was produced in the copper reaction, and calculate the percent yield of this reaction. Mass of CuO: Percent yield: 2. Calculate the mass of water released from the hydrated salt. Mass of water: 3. Determine the ratio of moles of water to moles of anhydrous salt assuming the unknown salt is CuSO 4. Ratio: Repeat this calculation assuming the salt is CuCl 2. Ratio: Repeat this calculation assuming the salt is CoCl 2. Ratio: 4. What is the most likely identity of your hydrated salt? Experiment 2 7

8

9 TF: 4/4 Name: Prelab 1. Provide a detailed procedure for determining the mass of water released upon heating a hydrated salt. Be sure you write up a data table in the appropriate space on that page of the experiment. 2. One student weighed gram of copper powder into a crucible and heated it to produce copper oxide. He was able to obtain only a 15% yield. What was the total mass of the crucible contents (CuO plus unreacted Cu) after the reaction? Mass of contents: 3. Another student heated gram of a red-pink hydrated salt until all the water had been removed. She was left with grams of a dark blue solid. Is it possible that the hydrated salt was bieberite, CoSO 4 7H 2 O? Why or why not? Calculations should be shown Provide a list of all the chemicals and equipment needed for this experiment. Be concise. Experiment 2 9

The Formula Of A Compound

The Formula Of A Compound The Formula Of A Compound Introduction: A compound is a distinct substance composed of two or more elements chemically combined in fixed proportions. Atoms of the elements in a compound are combined in

More information

EXPERIMENT 3: DETERMINATION OF AN EMPIRICAL FORMULA

EXPERIMENT 3: DETERMINATION OF AN EMPIRICAL FORMULA EXPERIMENT 3: DETERMINATION OF AN EMPIRICAL FORMULA PURPOSE To find the empirical formula of a product based on experimental data. To determine the percentage of water of hydration in an unknown salt.

More information

Percent Composition of a Hydrate

Percent Composition of a Hydrate Chem 110 Lab Percent Composition of a Hydrate Clark College Percent composition will be discussed in your text, lecture and in lab. This concept is often used to determine how many grams of an element

More information

Determination of the Empirical Formula of Magnesium Oxide

Determination of the Empirical Formula of Magnesium Oxide Determination of the Empirical Formula of Magnesium Oxide GOAL AND OVERVIEW The quantitative stoichiometric relationships governing mass and amount will be studied using the combustion reaction of magnesium

More information

Option 2 will react tin with nitric acid to form a tin nitrate then the compound will be decomposed, by heating, to an oxide of tin.

Option 2 will react tin with nitric acid to form a tin nitrate then the compound will be decomposed, by heating, to an oxide of tin. EMPIRICAL FORMULA OF A COMPOUND 2009, 1986 by David A. Katz. All Rights reserved. Reproduction permitted for education use provided original copyright is included. OBJECTIVE In this experiment, a compound

More information

Determination of an Empirical Formula and % Composition

Determination of an Empirical Formula and % Composition Chem 110 Lab Clark College Determination of an Empirical Formula and % Composition Percent composition will be discussed in your text, lecture and in lab. This concept is often used to determine how many

More information

HYDRATES 2009 by David A. Katz. All Rights reserved. Reproduction permitted for education use provided original copyright is included.

HYDRATES 2009 by David A. Katz. All Rights reserved. Reproduction permitted for education use provided original copyright is included. HYDRATES 2009 by David A. Katz. All Rights reserved. Reproduction permitted for education use provided original copyright is included. OBJECTIVE In this experiment, the properties of a hydrated compound

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

Properties of Hydrates Prelab. 3. Give the chemical formula for copper(ii) nitrate pentahydrate.

Properties of Hydrates Prelab. 3. Give the chemical formula for copper(ii) nitrate pentahydrate. Properties of Hydrates Prelab Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment?. What is the definition of a hydrate? 3. Give the chemical formula for copper(ii)

More information

Austin Peay State University Department of Chemistry CHEM 1111. Copper Cycle

Austin Peay State University Department of Chemistry CHEM 1111. Copper Cycle Cautions Nitric acid and sulfuric acid are toxic and oxidizers and may burn your skin. Nitrogen dioxide gas produced is hazardous if inhaled. Sodium hydroxide is toxic and corrosive and will cause burns

More information

Experiment 7 GRAVIMETRIC ANALYSIS OF A TWO COMPONENT MIXTURE

Experiment 7 GRAVIMETRIC ANALYSIS OF A TWO COMPONENT MIXTURE Purpose Experiment 7 GRAVIMETRIC ANALYSIS OF A TWO COMPONENT MIXTURE The purpose of the experiment is to determine the percent composition by mass of a two component mixture made up of NaHCO 3 and Na 2

More information

WATER OF HYDRATION EXPERIMENT 7

WATER OF HYDRATION EXPERIMENT 7 WATER OF HYDRATION EXPERIMENT 7 OBJECTIVE The objective of this experiment is to determine the percentage of water in a hydrated salt of both known and unknown formulas. The experimental results will be

More information

Lab #1: Determining the Empirical Formula of a Compound

Lab #1: Determining the Empirical Formula of a Compound Ms. Sonderleiter AP Chemistry Name: Date: Lab #1: Determining the Empirical Formula of a Compound Background: How did early chemists ever manage to determine the chemical formulas of compounds? What kind

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction General Chemistry I (FC, 09-10) Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant, does not

More information

STOICHIOMETRY: The Reaction of Iron with Copper (II) Sulfate

STOICHIOMETRY: The Reaction of Iron with Copper (II) Sulfate STOICHIOMETRY: The Reaction of Iron with Copper (II) Sulfate Introduction In this experiment we will use stoichiometric principles to deduce the appropriate equation for the reaction between metallic iron

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL SUPPLEMENTARY MATERIAL (Student Instructions) Determination of the Formula of a Hydrate A Greener Approach Objectives To experimentally determine the formula of a hydrate salt. To learn to think in terms

More information

Chemistry 1215 Experiment #9 Copper and its Compounds

Chemistry 1215 Experiment #9 Copper and its Compounds Chemistry 1215 Experiment #9 Copper and its Compounds Objective The objective of this experiment is to take a piece of copper as efficiently as possible through a series of chemical reactions. The final

More information

Preparation of a Compound and Calculation of an Empirical Formula. By Justin Wright Portland Community College General Chemistry II 2/6/2013

Preparation of a Compound and Calculation of an Empirical Formula. By Justin Wright Portland Community College General Chemistry II 2/6/2013 Preparation of a Compound and Calculation of an Empirical Formula By Justin Wright Portland Community College General Chemistry II 2/6/2013 Abstract The purpose of this experiment was to determine the

More information

Physical and Chemical Properties

Physical and Chemical Properties Physical and Chemical Properties Introduction Matter can be classified in different ways using physical and chemical properties. Physical properties include color, odor, density, hardness, structure, solubility,

More information

EXPERIMENT 18: Formula of a Hydrate

EXPERIMENT 18: Formula of a Hydrate EXPERIMENT 18: Formula of a Hydrate Materials: Ring stand Ring crucible tongs Large evaporating dish Hot plate Balance Stirring rod Small dropper for water CuSO 4 5H 2 O Unknowns: MgSO 4 XH 2 O, FeSO 4

More information

Austin Peay State University Department of Chemistry CHEM 1111. Empirical Formula of a Compound

Austin Peay State University Department of Chemistry CHEM 1111. Empirical Formula of a Compound Cautions Magnesium ribbon is flammable. Nitric acid (HNO 3 ) is toxic, corrosive and contact with eyes or skin may cause severe burns. Ammonia gas (NH 3 ) is toxic and harmful. Hot ceramic crucibles and

More information

Unit 6 The Mole Concept

Unit 6 The Mole Concept Chemistry Form 3 Page 62 Ms. R. Buttigieg Unit 6 The Mole Concept See Chemistry for You Chapter 28 pg. 352-363 See GCSE Chemistry Chapter 5 pg. 70-79 6.1 Relative atomic mass. The relative atomic mass

More information

Determination of the Empirical Formula of Silver Oxide

Determination of the Empirical Formula of Silver Oxide P.O. Box 219 Batavia, Illinois 60510 1-800-452-1261 flinn@flinnsci.com Visit our website at: www.flinnsci.com Determination of the Empirical Formula of Silver Oxide AP Chemistry Laboratory # 1 Catalog

More information

Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide.

Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide. The Empirical Formula of a Copper Oxide Reading assignment: Chang, Chemistry 10 th edition, pp. 55-58. Goals The reaction of hydrogen gas with a copper oxide compound will be studied quantitatively. By

More information

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD Objective To gain familiarity with basic laboratory procedures, some chemistry of a typical transition element, and the concept of percent yield. Apparatus

More information

Mixtures and Pure Substances

Mixtures and Pure Substances Unit 2 Mixtures and Pure Substances Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances. They

More information

DETERMINATION OF THE PERCENT COMPOSITION OF A MIXTURE

DETERMINATION OF THE PERCENT COMPOSITION OF A MIXTURE Chemistry 111 Lab: Percent Composition Page D-3 DETERMINATION OF THE PERCENT COMPOSITION OF A MIXTURE In this experiment you are to determine the composition of a mixture containing unknown proportions

More information

Return to Lab Menu. Stoichiometry Exploring the Reaction between Baking Soda and Vinegar

Return to Lab Menu. Stoichiometry Exploring the Reaction between Baking Soda and Vinegar Return to Lab Menu Stoichiometry Exploring the Reaction between Baking Soda and Vinegar Objectives -to observe and measure mass loss in a gas forming reaction -to calculate CO 2 loss and correlate to a

More information

MOLES, MOLECULES, FORMULAS. Part I: What Is a Mole And Why Are Chemists Interested in It?

MOLES, MOLECULES, FORMULAS. Part I: What Is a Mole And Why Are Chemists Interested in It? NAME PARTNERS SECTION DATE_ MOLES, MOLECULES, FORMULAS This activity is designed to introduce a convenient unit used by chemists and to illustrate uses of the unit. Part I: What Is a Mole And Why Are Chemists

More information

Recovery of Elemental Copper from Copper (II) Nitrate

Recovery of Elemental Copper from Copper (II) Nitrate Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform

More information

Sugar or Salt? Ionic and Covalent Bonds

Sugar or Salt? Ionic and Covalent Bonds Lab 11 Sugar or Salt? Ionic and Covalent Bonds TN Standard 2.1: The student will investigate chemical bonding. Have you ever accidentally used salt instead of sugar? D rinking tea that has been sweetened

More information

The Mole Concept. The Mole. Masses of molecules

The Mole Concept. The Mole. Masses of molecules The Mole Concept Ron Robertson r2 c:\files\courses\1110-20\2010 final slides for web\mole concept.docx The Mole The mole is a unit of measurement equal to 6.022 x 10 23 things (to 4 sf) just like there

More information

This acid is strong. Be careful.

This acid is strong. Be careful. Copper Conversions Lab Name Introduction In this multi-day lab you will start with a sample of copper metal and run several successive reactions which produce different copper compounds. The last reaction

More information

Chemical Changes. Measuring a Chemical Reaction. Name(s)

Chemical Changes. Measuring a Chemical Reaction. Name(s) Chemical Changes Name(s) In the particle model of matter, individual atoms can be bound tightly to other atoms to form molecules. For example, water molecules are made up of two hydrogen atoms bound to

More information

EXPERIMENT 12: Empirical Formula of a Compound

EXPERIMENT 12: Empirical Formula of a Compound EXPERIMENT 12: Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996 by David A. Katz. All rights reserved

AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996 by David A. Katz. All rights reserved AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996 by David A. Katz. All rights reserved INTRODUCTION One of the goals of the ancient alchemists was to convert base metals into gold. Although

More information

Determination of Aspirin using Back Titration

Determination of Aspirin using Back Titration Determination of Aspirin using Back Titration This experiment is designed to illustrate techniques used in a typical indirect or back titration. You will use the NaH you standardized last week to back

More information

Lecture Notes Chemistry E-1. Chapter 3

Lecture Notes Chemistry E-1. Chapter 3 Lecture Notes Chemistry E-1 Chapter 3 http://inserbia.info/news/wp-content/uploads/2013/05/tamiflu.jpg http://nutsforhealthcare.files.wordpress.com/2013/01/tamiflu-moa.jpg The Mole A mole is a certain

More information

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 Standard Enthalpy Change Standard Enthalpy Change for a reaction, symbolized as H 0 298, is defined as The enthalpy change when the molar quantities of reactants

More information

Chemical calculations

Chemical calculations Chemical calculations Stoichiometry refers to the quantities of material which react according to a balanced chemical equation. Compounds are formed when atoms combine in fixed proportions. E.g. 2Mg +

More information

The Synthesis of trans-dichlorobis(ethylenediamine)cobalt(iii) Chloride

The Synthesis of trans-dichlorobis(ethylenediamine)cobalt(iii) Chloride CHEM 122L General Chemistry Laboratory Revision 2.0 The Synthesis of trans-dichlorobis(ethylenediamine)cobalt(iii) Chloride To learn about Coordination Compounds and Complex Ions. To learn about Isomerism.

More information

Name: Unit 2- Elements, Compounds and Mixtures and Physical/Chemical Properties and Changes. Elements, Compounds and Mixtures

Name: Unit 2- Elements, Compounds and Mixtures and Physical/Chemical Properties and Changes. Elements, Compounds and Mixtures Name: Unit 2- Elements, Compounds and Mixtures and Physical/Chemical Properties and Changes Day Page # Description IC/HW All 2 Warm-up IC 1 3 5 Matter Notes IC 1 6 Nuts & Bolts IC 1 7 Elements, Compounds

More information

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed: Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Your Name: Date: Partner(s) Names: Objectives: React magnesium metal with hydrochloric acid, collecting the hydrogen over water. Calculate the grams

More information

Calcium Carbonate Content of Limestone

Calcium Carbonate Content of Limestone EXPERIMENT Calcium Carbonate Content of Limestone 01 Prepared by Paul C. Smithson, Berea College OBJECTIVE Using chips of limestone rocks, students prepare a powdered sample of limestone, react it with

More information

COMMON LABORATORY APPARATUS

COMMON LABORATORY APPARATUS COMMON LABORATORY APPARATUS Beakers are useful as a reaction container or to hold liquid or solid samples. They are also used to catch liquids from titrations and filtrates from filtering operations. Bunsen

More information

Laboratory Exercise: Smelting of Lead

Laboratory Exercise: Smelting of Lead CHEM 109 Introduction to Chemistry Revision 1.0 Laboratory Exercise: Smelting of Lead In this laboratory exercise we will carry out a pyrometallurgical conversion of Lead Oxide into elemental Lead. This

More information

Determination of a Chemical Formula

Determination of a Chemical Formula 1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl

More information

Percent Composition, Empirical and Molecular Formulas

Percent Composition, Empirical and Molecular Formulas Percent Composition, Empirical and Molecular Formulas Chemists create new compounds for industry, pharmaceutical, and home use Analytical chemist analyzes new compound to provide proof of composition and

More information

Experiment 8: Chemical Moles: Converting Baking Soda to Table Salt

Experiment 8: Chemical Moles: Converting Baking Soda to Table Salt Experiment 8: Chemical Moles: Converting Baking Soda to Table Salt What is the purpose of this lab? We want to develop a model that shows in a simple way the relationship between the amounts of reactants

More information

Chapter 6, Lesson 3: Forming a Precipitate

Chapter 6, Lesson 3: Forming a Precipitate Chapter 6, Lesson 3: Forming a Precipitate Key Concepts The ions or molecules in two solutions can react to form a solid. A solid formed from two solutions is called a precipitate. Summary Students will

More information

Determining Equivalent Weight by Copper Electrolysis

Determining Equivalent Weight by Copper Electrolysis Purpose The purpose of this experiment is to determine the equivalent mass of copper based on change in the mass of a copper electrode and the volume of hydrogen gas generated during an electrolysis reaction.

More information

CH3 Stoichiometry. The violent chemical reaction of bromine and phosphorus. P.76

CH3 Stoichiometry. The violent chemical reaction of bromine and phosphorus. P.76 CH3 Stoichiometry The violent chemical reaction of bromine and phosphorus. P.76 Contents 3.1 Counting by Weighing 3.2 Atomic Masses 3.3 The Mole 3.4 Molar Mass 3.5 Percent Composition of Compounds 3.6

More information

General Chemistry Lab Experiment 4. Limiting Reactant

General Chemistry Lab Experiment 4. Limiting Reactant General Chemistry Lab Experiment 4 Limiting Reactant INTRODUCTION Two factors affect the yield of products in a chemical reaction: (1) the amounts of starting materials (reactants) and (2) the percent

More information

Chemical Reactions. Chemistry 100. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 4

Chemical Reactions. Chemistry 100. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 4 Chemistry 100 Bettelheim, Brown, Campbell & Farrell Ninth Edition Introduction to General, Organic and Biochemistry Chapter 4 Chemical Reactions Chemical Reactions In a chemical reaction, one set of chemical

More information

Experiment 12- Classification of Matter Experiment

Experiment 12- Classification of Matter Experiment Experiment 12- Classification of Matter Experiment Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances.

More information

IDENTIFYING CARBOHYDRATES

IDENTIFYING CARBOHYDRATES (adapted from Blackburn et al., Laboratory Manual to Accompany World of Chemistry, 2 nd ed., (1996) Saunders College Publishing: Fort Worth) Purpose: To become familiar with some of the characteristic

More information

Chemical Equations & Stoichiometry

Chemical Equations & Stoichiometry Chemical Equations & Stoichiometry Chapter Goals Balance equations for simple chemical reactions. Perform stoichiometry calculations using balanced chemical equations. Understand the meaning of the term

More information

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1. What is a hydrocarbon? 2. What products form in the complete combustion of a hydrocarbon? 3. Combustion is an exothermic reaction. What

More information

Molar Mass of Butane

Molar Mass of Butane Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures

More information

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

SEPARATION OF A MIXTURE OF SUBSTANCES LAB SEPARATION OF A MIXTURE OF SUBSTANCES LAB Purpose: Every chemical has a set of defined physical properties, and when combined they present a unique fingerprint for that chemical. When chemicals are present

More information

Synthesis of Alum from Aluminum

Synthesis of Alum from Aluminum SYNTHESIS OF ALUM FROM ALUMINUM 53 OBJECTIVES Synthesis of Alum from Aluminum Become more familiar with single-replacement redox reactions Practice mass and volume measurement techniques Calculate the

More information

The Reaction of Calcium Chloride with Carbonate Salts

The Reaction of Calcium Chloride with Carbonate Salts The Reaction of Calcium Chloride with Carbonate Salts PRE-LAB ASSIGNMENT: Reading: Chapter 3 & Chapter 4, sections 1-3 in Brown, LeMay, Bursten, & Murphy. 1. What product(s) might be expected to form when

More information

Molar Mass of Butane

Molar Mass of Butane Suggested reading: Chang 10 th edition text pages 175-201 Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine

More information

For the highest level of protection, safety goggles that completely cover the. seal against the face are recommended.

For the highest level of protection, safety goggles that completely cover the. seal against the face are recommended. Lab Equipment Safety Goggles For the highest level of protection, safety goggles that completely cover the eye and eye socket and seal against the face are recommended. Lab Apron (folded) Beaker Beakers

More information

PREPARATION AND PROPERTIES OF A SOAP

PREPARATION AND PROPERTIES OF A SOAP (adapted from Blackburn et al., Laboratory Manual to Accompany World of Chemistry, 2 nd ed., (1996) Saunders College Publishing: Fort Worth) Purpose: To prepare a sample of soap and to examine its properties.

More information

Physical and Chemical Properties and Changes

Physical and Chemical Properties and Changes Physical and Chemical Properties and Changes An understanding of material things requires an understanding of the physical and chemical characteristics of matter. A few planned experiments can help you

More information

Chapter Three: STOICHIOMETRY

Chapter Three: STOICHIOMETRY p70 Chapter Three: STOICHIOMETRY Contents p76 Stoichiometry - The study of quantities of materials consumed and produced in chemical reactions. p70 3-1 Counting by Weighing 3-2 Atomic Masses p78 Mass Mass

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration. 81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum

More information

Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc

Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc O B J E C T I V E 1. Using a simple calorimeter, Determine the heat of fusion of ice

More information

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4) Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical

More information

CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS

CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS Purpose: It is important for chemists to be able to determine the composition of unknown chemicals. This can often be done by way of chemical tests.

More information

11-1 Stoichiometry. Represents

11-1 Stoichiometry. Represents 11-1 Stoichiometry What is stoichiometry? Calculations that relate the quantities of substances. It is the study of quantitative (measurable amounts) relationships in chemical reactions and equations.

More information

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB Purpose: Most ionic compounds are considered by chemists to be salts and many of these are water soluble. In this lab, you will determine the solubility,

More information

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Introduction Many metals react with acids to form hydrogen gas. In this experiment, you will use the reactions

More information

1. The Solubility of a Salt

1. The Solubility of a Salt 1. The Solubility of a Salt Objective In this experiment, you will determine the solubility of a given salt at various temperatures. Also you will prepare the solubility curve for your salt. Introduction

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

Stoichiometry Review

Stoichiometry Review Stoichiometry Review There are 20 problems in this review set. Answers, including problem set-up, can be found in the second half of this document. 1. N 2 (g) + 3H 2 (g) --------> 2NH 3 (g) a. nitrogen

More information

Analysis of Commerical Antacids Containing Calcium Carbonate Prelab (Week 1)

Analysis of Commerical Antacids Containing Calcium Carbonate Prelab (Week 1) Analysis of Commerical Antacids Containing Calcium Carbonate Prelab (Week 1) Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Show the calculation for determining

More information

Lab 3046 Identifying Nutrients in Foods. Students will use chemical tests to determine composition of foods and practice safe laboratory procedures.

Lab 3046 Identifying Nutrients in Foods. Students will use chemical tests to determine composition of foods and practice safe laboratory procedures. Lab 3046 Identifying Nutrients in Foods ACTIVITY OBJECTIVES Students will use chemical tests to determine composition of foods and practice safe laboratory procedures. PURPOSE/OVERVIEW Students will determine

More information

Coordination Compounds with Copper (II) Prelab (Week 2)

Coordination Compounds with Copper (II) Prelab (Week 2) Coordination Compounds with Copper (II) Prelab (Week 2) Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Write the generic chemical formula for the coordination

More information

PREPARATION AND PROPERTIES OF OXYGEN EXPERIMENT 3

PREPARATION AND PROPERTIES OF OXYGEN EXPERIMENT 3 PREPARATION AND PROPERTIES OF OXYGEN EXPERIMENT 3 OBJECTIVE The objective of this experiment is to demonstrate various reactions that occur with oxygen, and how concentrations of reactants affect the rate

More information

PROBLEM / QUESTION The purpose of this lab is to figure out how to make the best tasting fizzy drink, or suffer the consequences of bad math!

PROBLEM / QUESTION The purpose of this lab is to figure out how to make the best tasting fizzy drink, or suffer the consequences of bad math! What the Fizz?! OBJECTIVES The learner will be able to: Calculate the correct molar ratios of substances in a chemical reaction. The learner will calculate the mass of a particular compound formed from

More information

What is a MOLE? January 13, 2010

What is a MOLE? January 13, 2010 What is a MOLE? January 13, 2010 Unit 5 MOLES MOLE = A unit used in chemistry to identify a quantity of a substance. (Can be done by individual count or by mass.) Mole Preparation lab: new words were introduced

More information

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

EXPERIMENT 16: Charles Law of Gases V vs T

EXPERIMENT 16: Charles Law of Gases V vs T EXPERIMENT 16: Charles Law of Gases V vs T Materials: Thermometer Bunsen burner Ring stand Clamps 600ml beakers (2) Closed-tip syringe Ice Water Objectives 1. To put to work the model to verify Charles

More information

Lab 4. Reaction of Hydrogen Peroxide and Bleach: Stoichiometry, Limiting Reagents and Percent Yield

Lab 4. Reaction of Hydrogen Peroxide and Bleach: Stoichiometry, Limiting Reagents and Percent Yield Lab 4. Reaction of Hydrogen Peroxide and : Stoichiometry, Limiting Reagents and Percent Yield Prelab Assignment Before coming to lab: Use the handout "Lab Notebook Policy" as a guide to complete the following

More information

Introducing Measurements in the Laboratory

Introducing Measurements in the Laboratory Introducing Measurements in the Laboratory Objectives The objectives of this laboratory are: a) To use a metric ruler to measure the dimensions of regular geometric shapes, and to use these measurements

More information

A Study On Fire And Global Warming

A Study On Fire And Global Warming A Study On Fire And Global Warming By Nicole Curran,Doireann Lynam and Alesi Horan Introduction Our project is a study on fire and global warming. Nicole Curran, Doireann Lynam and Alesi Horan from Colaiste

More information

Experiment 1: Colligative Properties

Experiment 1: Colligative Properties Experiment 1: Colligative Properties Determination of the Molar Mass of a Compound by Freezing Point Depression. Objective: The objective of this experiment is to determine the molar mass of an unknown

More information

PERCENT COMPOSITION EXPERIMENT 6

PERCENT COMPOSITION EXPERIMENT 6 PERCENT COMPOSITION EXPERIMENT 6 OBJECTIVE The objective of this eperiment is to determine the percent composition of potassium chloride and oygen in a sample of potassium chlorate and to compare the eperimental

More information

Experiment 8 Synthesis of Aspirin

Experiment 8 Synthesis of Aspirin Experiment 8 Synthesis of Aspirin Aspirin is an effective analgesic (pain reliever), antipyretic (fever reducer) and anti-inflammatory agent and is one of the most widely used non-prescription drugs. The

More information

Lab Session 5, Experiment 4: Law of Definite Proportions

Lab Session 5, Experiment 4: Law of Definite Proportions Lab Session 5, Experiment 4: Law of Definite Proportions The law of definite proportions states that when two or more elements combine to form a iven compound, they do so in fixed proportions by mass.

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

q = (mass) x (specific heat) x T = m c T (1)

q = (mass) x (specific heat) x T = m c T (1) Experiment: Heat Effects and Calorimetry Heat is a form of energy, sometimes called thermal energy, which can pass spontaneously from an object at a high temperature to an object at a lower temperature.

More information

PHYSICAL SEPARATION TECHNIQUES. Introduction

PHYSICAL SEPARATION TECHNIQUES. Introduction PHYSICAL SEPARATION TECHNIQUES Lab #2 Introduction When two or more substances, that do not react chemically, are blended together, the result is a mixture in which each component retains its individual

More information

20.2 Chemical Equations

20.2 Chemical Equations All of the chemical changes you observed in the last Investigation were the result of chemical reactions. A chemical reaction involves a rearrangement of atoms in one or more reactants to form one or more

More information

CONSERVATION OF MASS During a chemical reaction, matter is neither created nor destroyed. - i. e. the number of atoms of each element remains constant

CONSERVATION OF MASS During a chemical reaction, matter is neither created nor destroyed. - i. e. the number of atoms of each element remains constant 1 CHEMICAL REACTINS Example: Hydrogen + xygen Water H + H + + - Note there is not enough hydrogen to react with oxygen - It is necessary to balance equation. reactants products + H + H (balanced equation)

More information

Moles and Empirical Formula

Moles and Empirical Formula Privacy Statement Site Map Contact Us Home Papers Revision Community Blog Games Advertise GCSE: Biology Commerce Statistics A-Level: Physics Economics Home Revision GCSE Moles and Empirical Formula Moles

More information