Electric Engineering II EE 326 Lecture 4 & 5


 Kimberly Eaton
 2 years ago
 Views:
Transcription
1 Electric Engineering II EE 326 Lecture 4 & 5 <Dr Ahmed ElShenawy> Transformers ١
2 Transformers Electrical transformers have many applications: Step up voltages (for electrical energy transmission with minimized losses) Step down voltages to suite load requirements Provide electrical isolation between different grids Provide impedance matching for maximum power transfer (X L = X C ) Provide reduced AC voltages and currents for protection and metering purposes Transformers Construction 1. Magnetic sheet steel to reduce eddy currents 2. Primary windings (receive power from source) 3. Secondary windings (delivers power to load) ٢
3 Transformers Construction The typical transformer has two windings insulated electrically from each other. These windings are wound on a common magnetic core made of laminated sheet steel. The principal parts of a transformer and their functions are given in table. Types of transformer construction: A. Core type; B. Shell type ٣
4 Core type transformer There are two main shapes of cores used in laminatedsteelcore transformers. One is the CORE Type, so named because the core is shaped with a hollow square through the center. Figure illustrates this shape of core. Notice that the core is made up of many laminations of steel and transformer windings are wrapped around both sides of the core. Shell type transformer The most popular and efficient transformer core is the SHELL. As shown, each layer of the core consists of E and Ishaped sections of metal. These sections are butted together to form the laminations. The laminations are insulated from each other and then pressed together to form the core. ٤
5 Types of Transformer Applications There are many different types of transformers. Transformers are a type of passive electronic component that are used to step up or step down the voltage in a circuit or system. The voltage transformer The power transformer The current transformer The auto transformer Theory of Operation A TRANSFORMER is a device that transfers electrical energy from one circuit to another by electromagnetic induction (transformer action). The electrical energy is always transferred without a change in frequency, but may involve changes in magnitudes of voltage and current. Because a transformer works on the principle of electromagnetic induction, it must be used with an input source voltage that varies in amplitude. There are many types of power that fit this description; for ease of explanation and understanding, transformer action will be explained using an ac voltage as the input source. ٥
6 Faraday s law of electromagnetic Electric Engineering induction, II Dr. Ahmed ElShenawy The magnetic field produced by the first coil will induce a voltage in the second coil. This is transformer action. To ensure that the coils are closely coupled the coils should be wound on an iron core, which will provide a path for the mutual flux linking the coils (Q: Why will this be better than air?), to further improve the coupling the second coil should be wound on top of the first coil. For now the coupling between the coils will be assumed to be ideal. ٦
7 Ideal Transformers The current that produces the mutual flux will be a sine wave that lags the voltage by 90 degrees the flux will be in phase with the current. In the case of the ideal transformer the reluctance of the core will be zero (μ r = ) and the current required to produce the mutual flux will be zero. No core or copper losses No leakage fluxes Infinite core permeability Same m.m.f for both sides ٧
8 Theory of Operation With reference to the figure and by applying Faraday s and Lenz s laws, we can say: ٨
9 The Real Transformer In practice the transformer windings will have resistance they will not be perfectly coupled, the transformer core will not have zero reluctance and the alternating flux in the core will result in core losses. In a real transformer these all need to be included in the analysis. To take these factors into account the equivalent circuit of the transformer will be of the form shown in figure ٩
10 Winding Resistance (R 1 and R 2 ) Both the primary and the secondary winding will have resistance. These are represented by R 1 and R 2 in the equivalent circuit. There will be a voltage drop and a power loss associated with these resistances. The power loss is often referred to as the copper loss of the transformer. Leakage Inductance (l 1 and l 2 ) As the windings are not perfectly coupled some of the flux in the primary will not link the secondary and some of the flux in the secondary will not link the primary. This can be taken into account by introducing the primary and secondary leakage inductance s l 1 and l 2. These represent a voltage loss (loss of flux) but not a power loss. ١٠
11 Magnetising Inductance (L m ) As the transformer core will have a finite value of reactance (μ r ) then the self inductance of the windings will be finite. This will result in a magnetising current flowing in L m to produce the mutual flux. Magnetising Resistance (R m ) The process of producing an alternating flux in the transformer core produces loses in the core. These losses are a result of the hysteresis of the core material and the production of eddy currents in the core. The combined loss is called the iron loss of the transformer (Q: What form will the iron loss take?). This is represented in the equivalent circuit by a resistance R m. Hysteresis: Figure shows the form of the hysteresis loop for a transformer core. When the transformer winding is connected to an alternating supply the flux in the core will alternate at the same frequency as the supply. For each cycle of the supply the flux density in the core will traverse the hysteresis loop. The area enclosed by this loop is proportional to the loss associated with hysteresis. Transformers use core materials that minimise the size of this loop (Q: What are B and H?). ١١
12 Eddy Currents: The alternating flux in the transformer core can produce currents in the core material through transformer action. These unwanted currents are referred to as eddy currents and they produce losses in the core. To minimize eddy currents the transformer core is laminated. Each lamination will be less than 0.5 mm thick and a layer of insulating material separates each lamination. ١٢
13 Referred Equivalent Circuit To make performing calculations easier it is usual to refer the equivalent circuit parameters to either the primary or the secondary. In the next figure the equivalent circuit is referred to the primary winding using the following relations that can be verified by considering the relation between the primary and secondary voltage and current. The equivalent circuit can be further simplified by moving the magnetising branch to the primary input terminals. This will introduce some error in the representation but, as the magnetising current is small compared to the load current, the error will not be large Parameter Measurement It is possible to obtain the approximate equivalent circuit parameters of a transformer by conducting two tests, an opencircuit test and a shortcircuit test. As the names of these tests imply they are performed with the secondary of the transformer connected either in opencircuit or shortcircuit. ١٣
14 Regulation From the above exercise it can be seen that the output voltage of the transformer when loaded is not the same as for the noload condition. The voltage regulation is defined as: This is often quoted as a percentage evaluated at the full load condition. Loads with a lagging or unity power factor will have a positive regulation (output voltage reducing), for loads with a leading power factor the regulation may be negative. For high power transformers the regulation can be better than 1%, smaller transformers will have a higher value which could be greater than 40%. In some instances the leakage reactance of the windings is designed to be high, resulting in poor regulation, to prevent excessive current if the transformer is accidentally shortcircuited. ١٤
15 ١٥
Electrical Machines II. Week 1: Construction and theory of operation of single phase transformer
Electrical Machines II Week 1: Construction and theory of operation of single phase transformer Transformers Overview A transformer changes ac electric power at one frequency and voltage level to ac electric
More informationModule 7. Transformer. Version 2 EE IIT, Kharagpur
Module 7 Transformer Version EE IIT, Kharagpur Lesson 4 Practical Transformer Version EE IIT, Kharagpur Contents 4 Practical Transformer 4 4. Goals of the lesson. 4 4. Practical transformer. 4 4.. Core
More informationFunctions, variations and application areas of magnetic components
Westring 18 3314 Büren Germany T +49 951 60 01 0 F +49 951 60 01 3 www.schaffner.com energy efficiency and reliability 1.1 Transformers The transformer is one of the traditional components of electrical
More informationChapter 4. Magnetic Materials and Circuits
Chapter 4 Magnetic Materials and Circuits Objectives List six characteristics of magnetic field. Understand the righthand rule for current and magnetic fluxes. Define magnetic flux, flux density, magnetomotive
More informationCircuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49
Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large
More informationCoupled Inductors. Introducing Coupled Inductors
Coupled Inductors From power distribution across large distances to radio transmissions, coupled inductors are used extensively in electrical applications. Their properties allow for increasing or decreasing
More information1. Title Electrical fundamentals II (Mechanics Repair and Maintenance)
1. Title Electrical fundamentals II (Mechanics Repair and Maintenance) 2. Code EMAMBG429A 3. Range The knowledge is needed for a wide range of aircraft repair and maintenance works,e.g. applicable to aircrafts,
More informationExperiment A5. Hysteresis in Magnetic Materials
HYSTERESIS IN MAGNETIC MATERIALS A5 1 Experiment A5. Hysteresis in Magnetic Materials Objectives This experiment illustrates energy losses in a transformer by using hysteresis curves. The difference betwen
More informationExtra Questions  1. 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A
Extra Questions  1 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A 2. A current of 500mA flows in a resistance of 12Ω. What power is dissipated
More informationFall 12 PHY 122 Homework Solutions #10
Fall 12 PHY 122 Homework Solutions #10 HW10: Ch.30 Q5, 8, 15,17, 19 P 1, 3, 9, 18, 34, 36, 42, 51, 66 Chapter 30 Question 5 If you are given a fixed length of wire, how would you shape it to obtain the
More information2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?
Extra Questions  2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux
More informationFull representation of the real transformer
TRASFORMERS EQVALET CRCT OF TWOWDG TRASFORMER TR Dots show the points of higher potential. There are applied following conventions of arrow directions: for primary circuit the passive sign convention
More informationOutline. Systems and Signals 214 / 244 & Energy Systems 244 / 344. Ideal Inductor. Ideal Inductor (cont... )
Outline Systems and Signals 214 / 244 & Energy Systems 244 / 344 Inductance, Leakage Inductance, Mutual Inductance & Transformers 1 Inductor revision Ideal Inductor NonIdeal Inductor Dr. P.J. Randewijk
More informationQuestion Bank. 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction
1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction 1. Diagram below shows a freely suspended magnetic needle. A copper wire is held parallel to the axis of magnetic
More informationDC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.
DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into
More informationChapter 14 Magnets and
Chapter 14 Magnets and Electromagnetism How do magnets work? What is the Earth s magnetic field? Is the magnetic force similar to the electrostatic force? Magnets and the Magnetic Force! We are generally
More informationInductors & Inductance. Electronic Components
Electronic Components Induction In 1824, Oersted discovered that current passing though a coil created a magnetic field capable of shifting a compass needle. Seven years later, Faraday and Henry discovered
More informationLab 14: 3phase alternator.
Lab 14: 3phase alternator. Objective: to obtain the noload saturation curve of the alternator; to determine the voltage regulation characteristic of the alternator with resistive, capacitive, and inductive
More informationMutual Inductance and Transformers F3 3. r L = ω o
utual Inductance and Transformers F3 1 utual Inductance & Transformers If a current, i 1, flows in a coil or circuit then it produces a magnetic field. Some of the magnetic flux may link a second coil
More informationEE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits
EE Circuits II Chapter 3 Magnetically Coupled Circuits Magnetically Coupled Circuits 3. What is a transformer? 3. Mutual Inductance 3.3 Energy in a Coupled Circuit 3.4 inear Transformers 3.5 Ideal Transformers
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3  MAGNETISM and INDUCTION
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 3  MAGNETISM and INDUCTION 3 Understand the principles and properties of magnetism Magnetic field:
More informationDIRECT CURRENT GENERATORS
DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle
More informationTransformers. AC Theory. Module
Module 11 AC Theory What you ll learn in Module 11. Section 11.1 Transformer Operation. Transformer Operation. Transformer Losses. Off Load Current. Volts per Turn. Section 11.2 Magnetic Circuits & Transformer
More informationRevision Calcs. 1. The flux produced by a magnet is 10mWb. Determine the flux density if the area of the pole is 250 mm 2
EMA Revision Calcs Miller College Revision Calcs Revision Calcs 1. The flux produced by a magnet is 10mWb. Determine the flux density if the area of the pole is 250 mm 2 2. For the magnet in the previous
More informationMAGNETISM MAGNETISM. Principles of Imaging Science II (120)
Principles of Imaging Science II (120) Magnetism & Electromagnetism MAGNETISM Magnetism is a property in nature that is present when charged particles are in motion. Any charged particle in motion creates
More informationDHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302  ELECTRICAL MACHINES II UNITI SYNCHRONOUS GENERATOR
1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Constructional details Types of rotors EE2302  ELECTRICAL MACHINES II UNITI SYNCHRONOUS GENERATOR PART A 1.
More informationMarch 20. Physics 272. Spring 2014 Prof. Philip von Doetinchem
Physics 272 March 20 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272  Spring 14  von Doetinchem  129 Summary No magnetic
More informationTransformer Calculations
Transformer Calculations Transformers Transformers are one of the most basic yet practical devices used today. No matter where you are there is always a transformer nearby. They are used throughout alternatingcurrent
More informationTHE ROLE OF MAGNETIC COMPONENTS IN POWER ELECTRONICS
THE ROLE OF MAGNETIC COMPONENTS IN POWER ELECTRONICS Magnetic components are used to perform many functions in a power conversion system. These functions are broadly divided between power handling magnetics
More informationApplication Note. So You Need to Measure Some Inductors?
So You Need to Measure Some nductors? Take a look at the 1910 nductance Analyzer. Although specifically designed for production testing of inductors and coils, in addition to measuring inductance (L),
More informationEdmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).
INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes
More informationDirection of current flow through conductor. Fig. 1 Magnetic field generated by current flow
ingle Conductor Cable Copper heathed Cable heath Currents ingle conductor cables present certain application considerations that do not arise in multiconductor cable installations. These considerations
More informationChapter 16. Current Transformer Design. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.
Chapter 16 Current Transformer Design Table of Contents 1. Introduction 2. Analysis of the Input Current Component 3. Unique to a Current Transformer 4. Current Transformer Circuit Applications 5. Current
More informationMAGNETIC EFFECTS OF ELECTRIC CURRENT
CHAPTER 13 MAGNETIC EFFECT OF ELECTRIC CURRENT In this chapter, we will study the effects of electric current : 1. Hans Christian Oersted (17771851) Oersted showed that electricity and magnetism are related
More informationBasics of Electricity
Basics of Electricity Generator Theory PJM State & Member Training Dept. PJM 2014 8/6/2013 Objectives The student will be able to: Describe the process of electromagnetic induction Identify the major components
More informationDigital Energy ITI. Instrument Transformer Basic Technical Information and Application
g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER
More informationEquipment: Power Supply, DAI, Universal motor (8254), Electrodynamometer (8960), timing belt.
Lab 12: The universal motor. Objective: to examine the construction of the universal motor; to determine its noload and fullload characteristics while operating on AC; to determine its noload and fullload
More informationLine Reactors and AC Drives
Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences
More informationDOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 4 of 4
DOEHDBK1011/492 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 4 of 4 U.S. Department of Energy Washington, D.C. 20585 FSC6910 Distribution Statement A. Approved for public release;
More informationTamura Open Loop Hall Effect Current Sensors
Tamura Open Loop Hall Effect Current Sensors AC, DC, & Complex Currents Galvanic Isolation Fast Response 50kHz small signal frequency bandwidth Quality & Reliability RoHs compliance Overview The following
More informationCHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR
47 CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR 4.1 INTRODUCTION This chapter deals with the design of 24 slots 8 poles, 48 slots 16 poles and 60 slots 16 poles brushless dc
More informationBack to the Basics Current Transformer (CT) Testing
Back to the Basics Current Transformer (CT) Testing As test equipment becomes more sophisticated with better features and accuracy, we risk turning our field personnel into test set operators instead of
More information1. E&M induction requires change, of the intensity of a magnetic field or of motion in a magnetic field.
Chapter 25 EXERCISE key 1. E&M induction requires change, of the intensity of a magnetic field or of motion in a magnetic field. 2. Magnetic induction will not occur in nylon, since it has no magnetic
More informationThe Polyphase Induction Motor
Experiment No. 4 The Polyphase Induction Motor The polyphase induction motor is the most commonly used industrial motor, finding application in many situations where speed regulation is not essential.
More informationPHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
More informationChapter 22: Electric motors and electromagnetic induction
Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on
More informationIntroduction to Electricity & Magnetism. Dr Lisa JardineWright Cavendish Laboratory
Introduction to Electricity & Magnetism Dr Lisa JardineWright Cavendish Laboratory Examples of uses of electricity Christmas lights Cars Electronic devices Human body Electricity? Electricity is the presence
More informationPower Quality paper #4
THE BEHAVIOUR OF CONTACTORS DURING VOLTAGE DIPS by: IT De Villiers SYNOPSIS Electrically heldin contactors may drop out during voltage depressions. The time that contactors take to drop out depends on
More informationWhen we do not get specific resistor values we have to either use variable resistors such as
RESISTOR COMBINATIONS When we do not get specific resistor values we have to either use variable resistors such as potentiometers or presets to obtain such precise values. Pots are too expensive to use
More informationTutorial One: Calculation of leakage inductance of transformer using FEM. 31.5 MVA, 132 kv/33kv, Y/, Ampereturns: 135024, No.
Tutorial One: Calculation of leakage inductance of transformer using FEM Consider a transformer with the following rating: 31.5 MVA, 132 kv/33kv, Y/, Ampereturns: 135024, No. of HV turns = 980 Although
More information8 Speed control of Induction Machines
8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque
More informationChapter 11. Inductors ISU EE. C.Y. Lee
Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive
More informationAn equivalent circuit of a loop antenna.
3.2.1. Circuit Modeling: Loop Impedance A loop antenna can be represented by a lumped circuit when its dimension is small with respect to a wavelength. In this representation, the circuit parameters (generally
More informationThe Ideal Transformer. Description and Circuit Symbol
The Ideal Transformer Description and Circuit Symbol As with all the other circuit elements, there is a physical transformer commonly used in circuits whose behavior can be discussed in great detail. However,
More informationChapter 20. Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields
Chapter 20 Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields Introduction The motion of a magnet can induce current in practical ways. If a credit card has a magnet strip on its
More informationTheory of Heating by Induction
CHAPTER 2 Theory of Heating by Induction INDUCTION HEATING was first noted when it was found that heat was produced in transformer and motor windings, as mentioned in the Chapter Heat Treating of Metal
More informationGenerator Stator Protection, under/over voltage, under /over frequency and unbalanced loading. Ramandeep Kaur Aujla S.NO 250447392
1 Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading By Ramandeep Kaur Aujla S.NO 250447392 ES 586b: Theory and applications of protective relays Department of
More informationPPT No. 26. Uniformly Magnetized Sphere in the External Magnetic Field. Electromagnets
PPT No. 26 Uniformly Magnetized Sphere in the External Magnetic Field Electromagnets Uniformly magnetized sphere in external magnetic field The Topic Uniformly magnetized sphere in external magnetic field,
More informationSYNCHRONOUS MACHINES
SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a threephase synchronous machine are practically identical
More informationInductors. AC Theory. Module 3
Module 3 AC Theory What you ll learn in Module 3. Section 3.1 Electromagnetic Induction. Magnetic Fields around Conductors. The Solenoid. Section 3.2 Inductance & Back e.m.f. The Unit of Inductance. Factors
More informationIron Powder Cores for Switchmode Power Supply Inductors. by: Jim Cox
HOME APPLICATION NOTES Iron Powder Cores for Switchmode Power Supply Inductors by: Jim Cox Purpose: The purpose of this application note is to cover the properties of iron powder as a magnetic core material
More information13 ELECTRIC MOTORS. 13.1 Basic Relations
13 ELECTRIC MOTORS Modern underwater vehicles and surface vessels are making increased use of electrical actuators, for all range of tasks including weaponry, control surfaces, and main propulsion. This
More informationPHASOR DIAGRAMS HANDSON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER  BPA
PHASOR DIAGRAMS HANDSON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER  BPA What are phasors??? In normal practice, the phasor represents the rms maximum value of the positive half cycle of the sinusoid
More informationChapter 10. AC Inductor Design. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.
Chapter 10 AC Inductor Design Table of Contents 1. Introduction 2. Requirements 3. Relationship of, A p, to the Inductor VoltAmp Capability 4. Relationship of, K g, to the Inductor VoltAmp Capability
More informationElectroMagnetic Induction. AP Physics B
ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday
More informationEMI and t Layout Fundamentals for SwitchedMode Circuits
v sg (t) (t) DT s V pp = n  1 2 V pp V g n V T s t EE core insulation primary return secondary return Supplementary notes on EMI and t Layout Fundamentals for SwitchedMode Circuits secondary primary
More informationChapter 12: Basic Magnetics Theory
Chapter 12. Basic Magnetics Theory 12.1. Review of basic magnetics 12.1.1. Basic relations 12.1.2. Magnetic circuits 12.2. Transformer modeling 12.2.1. The ideal transformer 12.2.3. Leakage inductances
More information3 Synchronous Generator Operation
3 Synchronous Generator Operation 3.1 Cylindrical Rotor Machine xa xl ra xa E xl ra E Load A (a) (b)phasor diagram for R load xs ra Zs Xs Zs Load (c) φ (d)phasor diagram for RL load Ι Figure 30: Equivalent
More informationOPERATIONAL AMPLIFIERS. o/p
OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A
More informationAPPLICATION NOTE Innovative shunt design techniques optimise power measurement accuracy
APPLICATION NOTE  012 Innovative shunt design techniques optimise power measurement accuracy Introduction Rapid developments in power conversion technologies combined with a need for better product efficiency
More informationThe purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 171 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
More informationε: Voltage output of Signal Generator (also called the Source voltage or Applied
Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and
More informationThe Importance of the X/R Ratio in LowVoltage Short Circuit Studies
The Importance of the X/R Ratio in LowVoltage Short Circuit Studies DATE: November 17, 1999 REVISION: AUTHOR: John Merrell Introduction In some short circuit studies, the X/R ratio is ignored when comparing
More informationMeasuring Impedance and Frequency Response of Guitar Pickups
Measuring Impedance and Frequency Response of Guitar Pickups Peter D. Hiscocks Syscomp Electronic Design Limited phiscock@ee.ryerson.ca www.syscompdesign.com April 30, 2011 Introduction The CircuitGear
More informationELECTRICAL ENGINEERING Vol. I  Electromagnetic Devices and Magnetic Circuits  W.L. Chan and K.K. Li ELECTROMAGNETIC DEVICES AND MAGNETIC CIRCUITS
ELECTROMAGNETIC DEVICES AND MAGNETIC CIRCUITS W.L. Chan and K.K. Li Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P R China Keywords: Electromagnetic
More informationTamura Closed Loop Hall Effect Current Sensors
Tamura Closed Loop Hall Effect Current Sensors AC, DC, & Complex Currents Galvanic Isolation Fast Response Wide Frequency Bandwidth Quality & Reliability RoHs Compliance Closed Loop Hall Effect Sensors
More information5. Measurement of a magnetic field
H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of
More informationStudent Name Instructor Name. High School or Vocational Center Grade. COMPETENCY RECORD FOR ARTICULATION Muskegon Community College Electronics
Student Name Instructor Name High School or Vocational Center Grade COMPETENCY RECORD FOR ARTICULATION Muskegon Community College Electronics Please check below each skill the student has mastered as described,
More informationBasics of Ferrite and Noise Countermeasures
TDK EMC Technology Basic Section Basics of Ferrite and Noise Countermeasures TDK Corporation Magnetics Business Group Shinichiro Ito 1 What is Ferrite? Ferrite was invented by Dr. Kato and Dr. Takei in
More informationNZQA registered unit standard 20431 version 2 Page 1 of 7. Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians
NZQA registered unit standard 0431 version Page 1 of 7 Title Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians Level 3 Credits 7 Purpose This unit standard covers
More informationPower Quality Paper #3
The Effect of Voltage Dips On Induction Motors by: M D McCulloch 1. INTRODUCTION Voltage depressions caused by faults on the system affect the performance of induction motors, in terms of the production
More informationSelecting Current Transformers Part 1 By Darrell G. Broussard, P.E.
By Darrell G. Broussard, P.E. Introduction: As engineers, we are aware that electrical power systems have grown. How much have they grown? When was the last time you specified a 2400volt system, a 4160volt
More informationInduction Heating Principles
Induction Heating Principles PRESENTATION www.ceiapower.com Main Applications of Induction Heating Hard (Silver) Brazing Tin Soldering Heat Treatment (Hardening, Annealing, Tempering, ) Melting Applications
More informationMagnetic Circuits. Outline. Ampere s Law Revisited Review of Last Time: Magnetic Materials Magnetic Circuits Examples
Magnetic Circuits Outline Ampere s Law Revisited Review of Last Time: Magnetic Materials Magnetic Circuits Examples 1 Electric Fields Magnetic Fields S ɛ o E da = ρdv B V = Q enclosed S da =0 GAUSS GAUSS
More informationPH102 Lab: Mutual Inductance. Consider two coaxial solenoids, one inside the other, a situation we discussed recently in lecture:
Group member s names: For this lab, you will need: PH10 Lab: Mutual Inductance 1  function generator 1  handheld multimeter 1  pair of coaxial solenoids 4  banana cables 1  male BNC to banana plug
More informationChapter 35 Alternating Current Circuits
hapter 35 Alternating urrent ircuits acircuits Phasor Diagrams Resistors, apacitors and nductors in acircuits R acircuits acircuit power. Resonance Transformers ac ircuits Alternating currents and
More informationImpedance Matching and Matching Networks. Valentin Todorow, December, 2009
Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing  Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines
More informationUSER MANUAL THE RESOLVER
USR MANUAL TH RSOLVR ICP Department 4 has developed and produced a wide range of transmitter type resolvers for military and industrial applications. From a mechanical viewpoint, these products have been
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4  ALTERNATING CURRENT
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4  ALTERNATING CURRENT 4 Understand singlephase alternating current (ac) theory Single phase AC
More informationEEE1001/PHY1002. Magnetic Circuits. The circuit is of length l=2πr. B andφ circulate
1 Magnetic Circuits Just as we view electric circuits as related to the flow of charge, we can also view magnetic flux flowing around a magnetic circuit. The sum of fluxes entering a point must sum to
More informationDRAFT. University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits  Modeling and Measurement Techniques
University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits  Modeling and Measurement Techniques 1. Introduction. Students are often frustrated in their attempts to execute
More informationDrive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance
ndustrial Circuits Application Note Drive circuit basics For a given size of a stepper motor, a limited space is available for the windings. n the process of optimizing a stepper motor drive system, an
More informationTransformer Basics Information Guide
Property of Motion Laboratories, Inc. Transformer Basics Information Guide 2014 Motion Laboratories, Inc. Created By: Jim Herrick / Michael Shaw Approved By: Peter Herrmann Page: 1 Transformer Definition
More informationTransformer Modeling for Simulation of Low Frequency Transients
IEEE PES General Meeting July 1317, 23, Toronto Transformer Modeling for Simulation of Low Frequency Transients J.A. MARTINEZVELASCO Univ. Politècnica Catalunya Barcelona, Spain B.A MORK Michigan Tech..
More information1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole.
Exam Name 1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole. 2) Which of the following statements is correct? A) Earth's north pole is magnetic north. B) The north
More informationInstrument Transformers By: Kiran Kelapure
Yadav Measurements Pvt. Ltd. Instrument Transformers By: Kiran Kelapure A specifically designed programme for Da Afghanistan Breshna Sherkat (DABS) Afghanistan 1 Electricity Metering technologies and systems
More informationEquipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt.
Lab 9: Synchronous motor. Objective: to examine the design of a 3phase synchronous motor; to learn how to connect it; to obtain its starting characteristic; to determine the fullload characteristic of
More informationParallel Path Magnetic Technology for High Efficiency Power Generators and Motor Drives
Parallel Path Magnetic Technology for High Efficiency Power Generators and Motor Drives Patents & Copyright  Flynn Research, Greenwood MO, 64034 PARALLEL PATH MAGNETIC TECHNOLOGY (PPMT) BACKGROUND Parallel
More informationCoupling Magnetic Signals to a SQUID Amplifier
SQUID Application Note 1050 Coupling Magnetic Signals to a SQUID Amplifier Matching the effective inductances of the Pickup Coil and the Input Coil to detect and couple magnetic flux maximizes the sensitivity
More informationThe Synchronous Machine
Experiment No. 5 The Synchronous Machine Synchronous ac machines find application as motors in constant speed applications and, when interfaced to the power source with a variablefrequency converter system,
More information