Requirements engineering
|
|
|
- Dylan Mosley
- 10 years ago
- Views:
Transcription
1 Learning Unit 2 Requirements engineering Contents Introduction Important concepts Stakeholders and concerns Software requirements Requirements engineering Use cases Three types of requirements Functional requirements Quality requirements ISO 9126 quality model Quint2 quality model Change scenarios Constraints Steps in requirements engineering Discussion questions
2 LEARNING UNIT 2. REQUIREMENTS ENGINEERING I N T R O D U C T I O N Choosing the software architecture for a system is the first step toward a system that fulfills the requirements. Software requirements, therefore, are important to the field of software architecture. As the name implies, software requirements define what a system should do and how it should to do that [24]. In this chapter, we will discuss the concepts of stakeholder and concern, which are both important with respect to requirements. We will discuss the different types of requirements, and show a way to categorize them. We will show you different ways to elicit requirements from stakeholders, ways to specify them, and ways to validate them. Use cases are often used for specification of software requirements; we will discuss them in more detail. LEARNING GOALS After having studied this learning unit you should be able to: explain the notions of stakeholder and concerns, summarize the different types of requirements, state the steps to be taken in the requirements engineering process for the different types of requirement, describe the relationship netween tactics and requirements. Reading assignments The course website, on studienet.ou.nl, contains the reading assignments for textbook and reader, for all learning units. An indication of the number of hours which, in our estimation, you will need for this learning unit, is also given on the course website. K E R N E L 2.1 Important concepts Stakeholders and concerns The notions of stakeholder and concern are defined in the first learning unit, in definitions 1.3 and 1.5. Customers should be distinguished from end users. The customer pays for the development; the end user uses the product. The customer is concerned with costs, often to the point of compromising usability. End users can be categorised in those who provide input, those who administer the system, and those who receive output. All these groups of users have different concerns. The concerns of different stakeholders are often mutually incompatible. Examples of such incompatible concerns are performance versus security or modifiability versus low cost. Concerns of the developing organization are not the same as those of the customer. A customer may have already invested in existing architectures which may result in constraints with respect to the architecture. This means that the architecture of a system is usually a compromise or trade-off among incompatible concerns. It is Open Universiteit Nederland 21
3 Software architecture important to document and explicitly prioritize concerns. An architecture is the earliest artifact that allows the priorities among competing concerns to be analyzed. Standard architectures and architectural patterns have well known effects on the quality attributes of a system. This makes it possible to reason about the effect of the chosen architecture on the qualities of the system that are requested by the different stakeholders. Therefore, architectural decisions can be analyzed at an early stage (before design starts), to determine their impact on the quality attributes of the system. It is worth doing this analysis because it is virtually impossible to change the architecture at a later stage of development Software requirements According to the IEEE Standard Glossary of Software Engineering Terminology [22], the definition of a software requirement is: DEFINITION 2.1 A software requirement is a condition or capacity needed by a user to solve a problem or achieve an objective. Requirements come in three types: functional, non-functional and constraints: Functional requirements present what the system should do. The rules of an online game are examples of functional requirements. Non-functional requirements specify with what quality the system should work. A possible non-functional requirement for an online game is that the game should provide an interface that is easy to understand, or that the response on an action of the user should be given within less than a certain maximum time. Constraints show the limits within which the system should be realized. For an online game, a constraint could be that it should work with both Firefox and Internet Explorer, without the need for a plugin. We will discuss these different types of requirements further on in this learning unit Requirements engineering Requirements engineering is a cyclic process involving [48]: requirements elicitation; requirements specification; requirements validation; requirements verification. DEFINITION 2.2 Requirements elicitation means: the activities for discovering the requirements of a system [24]. Techniques for requirements elicitation are: Asking: interview, (structured) brainstorm, questionnaire, Scenario-based analysis: think aloud, use case analysis, Ethnography: active observation, Form and document analysis, Start from an existing system, 22
4 LEARNING UNIT 2. REQUIREMENTS ENGINEERING Prototyping, Following your own insight. None of these techniques guarantees correct requirements. Actually, it is impossible to formulate what correct requirements mean. It is generally advisable to use more than one technique. DEFINITION 2.3 Requirements specification means: rigorous modeling of requirements, to provide formal definitions for various aspects of the system ([27]). A requirements specification document should be: as precise as possible: it is the starting point for architecture and design, as readable as possible: it should be understandable for the user. Other preferred properties of a requirements specification are that the specification is correct, unambiguous, complete, consistent, ranked for importance, verifiable, modifiable and traceable. Among the techniques for requirements specification are Entity-Relationship (E-R) modeling, the Structured Analysis and Design Technique (SADT), Finite State Machines, use cases and UML. E-R modeling is a semantic data modeling technique, developed as an extension to the relational database model (to compensate for its absence of typing and inadequate modeling of relations), not unlike the UML class diagram. SADT has been developed in the late 1970s by Ross [36]. It is based on a dataflow model that views the system as a set of interacting activities. As notation it uses rectangles representing system activity, with four arrows. An arrow from the left signifies input, an arrow to the right signifies output, an arrow from above signifies control or database, and an arrow from below signifies a mechanism or algorithm. Finite state machines show states and transitions, with guards and actions. A finite state machine models the different states the system can be in, where a state is characterized by the actions that are enabled. Finite state machine modeling is part of UML as state diagrams. UML incorporates class models, state diagrams and use cases but not data flow (data flow diagrams mix static and dynamic information, and are replaced by activity and collaboration diagrams). Use cases will be treated in more detail below. DEFINITION 2.4 Requirements validation is concerned with checking the requirements document for consistency, completeness and accuracy ([24]). Requirements verification is something else: a mathematical analysis, possibly automated, of formal specifications for consistency. Verification only checks consistency; completeness or accuracy cannot be checked with mathematical analysis. You need user interaction to validate requirements: the requirements document may not reflect the real requirements. Open Universiteit Nederland 23
5 Software architecture Among the techniques for requirements validation are: Reviews (reading, checklists, discussion), Prototyping (the process of constructing and evaluating working models of a system to learn about certain aspects of the required system and/or its potential solution.). Animation (the ability to depict graphically the dynamic behavior of a system by interactively walking through specification fragments to follow some scenario [8]). 2.2 Use cases Use cases form a technique for specifying functional requirements: use cases are helpful to specify what the system should do. A use case captures a contract with the stakeholders of a system about its behavior. A use case describes the system s behavior under various conditions, as the system responds to a request from one of the stakeholders, called the primary actor. Use cases are fundamentally a description of usage scenarios in textual form. An example of a use case is the following: Use case: Withdraw cash from ATM Level: User goal Primary actor: Account holder Description: Customer enters ATM card ATM reads the bank ID, account number, encrypted PIN from the card, validates the bank ID and account number with the main banking system Customer enters PIN. ATM validates it against the encrypted PIN from the card. Customer selects Withdraw cash and withdrawal amount ATM notifies main banking system of customer account and amount, and receives bank acknowledgment ATM delivers cash, card, and a receipt ATM logs the transaction As you can see, the basic format for a use case is the following: Use case: <use case goal> Level: <one of: summary level, user-goal level, subfunction> Primary actor: <a role name for the actor who initiates the use case> Description: 24
6 LEARNING UNIT 2. REQUIREMENTS ENGINEERING ATM Withdraw cash Customer Check balance Main banking system Figure 2.1: Use cases for an ATM Handle claim <<include>> <<extend>> Assign claim Register loss Find policy holder <<include>> Figure 2.2: Different levels in use cases <the steps of the main success scenario from trigger to goal delivery and any cleanup after> Several use cases may be combined in a use case diagram. Figure 2.1 shows an example. The line drawn between an actor and a use case is an association: the participation of an actor in a use case. Instances of the actor and instances of the use case communicate with each other. This is the only relationship between actors and use cases. An actor can be thought of as a role. In Figure 2.1 we see two actors: the customer and the main banking system. Both actors are associated with two use cases: withdraw cash and check balance. Use cases can be described at different levels: A use case of summary level involves multiple user goals, shows the context of user goals, the life-cycle of user goals, or a table-of-contents. An example is a use case such as Handle an insurance claim (see Figure 2.2). A use case of user goal level shows the goal a primary actor has in trying to get work done. An example of a use case on the use level is Register a loss. A subfunction is a step needed to carry out a user goal. An example is Find policy holder s file. In Figure 2.2 we see three annotations on the relationships between the different levels. These are: Open Universiteit Nederland 25
7 Software architecture An extend relationship from a use case A to a use case B indicates that an instance of use case B may be augmented (subject to specific conditions specified in the extension) by the behavior specified by A. The behavior is inserted at the location defined by the extension point in B, which is referenced by the extend relationship. A generalization from a use case C to a use case D indicates that C is a specialization of D. An include relationship from a use case E to a use case F indicates that an instance of the use case E will also contain the behavior as specified by F. The behavior is included at the location which defined in E. (see [29]). Some advice on how to write use cases: A use case is a prose essay. Make the use cases easy to read using active voice, present tense, describing an actor successfully achieving a goal. Include sub-use cases where appropriate. Do not assume or describe specifics of the user interface. An actor is not the same as an organisational role: an actor is a person, organization, or external system that plays a role in one or more interactions with the system. Use UML use case diagrams to visualize relations between actors and use cases or among use cases. Use text to specify use cases themselves! It is hard, and important, to keep track of the various use cases. 2.3 Three types of requirements Functional requirements Pitfalls with respect to functional requirements are [26]: Having an undefined or inconsistent system boundary. The system boundary defines the scope of the system: what does and what does not belong to the system. The system boundary, therefore, determines which problems the system should solve (and which problems belong to the world outside the system). Describing use cases from the point of view of the system instead of describing them from the actor: the correct point of view is that from the actor. Using inconsistent actor names: actors names should be consistent throughout. Creating spiderwebs of actor-to-use case relations: relations between actors and use cases should be clear. Writing long, excessive, or confusing use case specifications, incomprehensible to the customer: use case descriptions should be clearly understandable (and understood) by the customer. Beware of: A shopping cart mentality. Stakeholders often have the tendency to treat requirements as items that can be put into a shopping cart. You should always make clear that every requirement comes at a price. The all requirements are equal fallacy: architectural requirements must be prioritized to indicate to the architect, or anyone else, which requirements are most important to the finished system. No design trade-offs can be made if all requirements are assigned the same priority. 26
8 LEARNING UNIT 2. REQUIREMENTS ENGINEERING Stakeholders who will not read use case descriptions because they find them too technical or too complicated. It is important to assure that your stakeholders understand the value of taking time to understand the descriptions Quality requirements Quality requirements are the main category of non-functional requirements. Quality requirements are important parameters for defining or assessing an architecture. For example, the architecture of a safety critical system will differ from the architecture of a computer game. Quality requirements may be specified using a software quality model. A software quality model serves as a discussion framework, a scheme for users and developers to talk about different kinds of quality, to prioritize different kinds of quality, and to check the completeness of quality requirements ISO 9126 quality model ISO 9126 [23] is the international standard quality model. The model classifies software quality in a structured set of factors: Functionality Reliability Usability Efficiency Maintainability Portability Every factor is divided into a set of sub-characteristics. For example, Maintainability = {Stability, Analyzability, Changeability, Testability} Every sub-characteristic is divided into a set of attributes, an entity which can be measured or verified. The attributes aren t defined in the standard quality mode Quint2 quality model Quint2 (Quality in Information Technology) is a Dutch framework for software quality, extending ISO 9126 [37]. It has been introduced in the previous learning unit: see Figure 1.2. It adds new sub-characteristics, for example: Maintainability = ISO9126.Maintainability + {Manageability, Reusability} It also adds attributes to ISO 9126: e.g. Reusability has the attributes Ratio-reused-parts and Ratio-reusable-parts, where a part is a module, a component or a sub-system. It also provides metrics to measure quality; Ratio-reused-parts, for example, is measured as the size of the reused parts divided by the size of the entire software product. Open Universiteit Nederland 27
9 Software architecture When using Quint2 as a software quality model, keep in mind that not all 32 quality attributes are equally important. A requirements engineer should prioritize the requirements. Quality requirements should be measurable. For example, the requirement The system should perform well is not measurable, but the requirement The response time in interactive use is less than 200 ms is measurable Change scenarios Some quality requirements do not concern functionality but other aspects of the system. These quality requirements are mainly attributes from the Maintainability and Portability group, such as Changeability and Adaptability. These requirements cannot be linked to use cases. Such quality requirements should be linked to specific change scenarios. By doing that, you avoid being vague. For instance, instead of writing The system should be very portable, you should write The software can be installed on the Windows, Mac, and Unix platforms without changing the source code. Instead of writing The system should be changeable, you should write Functionality that makes it possible for users to transfer money from savings to checking account can be added to the ATM within one month Constraints Although functional and quality requirements specify the goal, constraints limit the (architectural) solution space. Stakeholders should therefore not only specify requirements, but also constraints. Possible constraint categories are the following: Technical constraints, such as platform, reuse of existing systems and components, use of standards; Financial constraints, such as budgets; Organizational constraints, such as processes, availability of customer; Time constraints, such as deadlines. 2.4 Steps in requirements engineering Summarizing: requirements engineering is a cyclic process involving requirements elicitation, requirements specification and requirements validation and verification. Use cases can be used to describe interaction between actors and the system. Quint2 can be used to describe the quality requirements linked to usage scenarios (use cases) or change scenarios. Steps to take in requirements specification are: Analyse stakeholders, concerns and scope; Define functional requirements; Define quality requirements; Refine quality requirements with use cases and change scenarios; 28
10 LEARNING UNIT 2. REQUIREMENTS ENGINEERING Specify constraints. Once determined, the quality requirements provide guidance for architectural decisions. An architectural decision that influences the qualities of the product is sometimes called a tactic. Mutually connected tactics are bundled together into architectural patterns: schemes for the structural organization of entire systems. We will discuss patterns in detail in the learning unit about patterns. As an example of tactics, we show some tactics to achieve recoverability (a subcharacteristic of the Reliability factor in ISO 9126): Voting between processes running on redundant processors. This tactic detects only processor faults; not algorithmic errors. In a hot restart, only a few processes will experience state loss. In a cold restart, the entire system looses state, and is completely reloaded. In a hot restart model, the application saves state information about the current activity of the system. The information is given to the standby component so it is ready to take over quickly. There may be redundant standby components, that respond in parallel. The first response is used, the others are discarded. Passive redundancy means switching to a standby backup on failure. This tactic is often used in databases. Rollback: a consistent state is recorded in response to specific events, which makes it possible to go back to the recorded state in case of an error. This is often used in databases, or with software installation. Some tactics for changeability (a subcharacteristic of Maintainability) are: Maintaining semantic coherence: high cohesion within every module, loose coupling to other modules; Hiding information. Provide public responsibilities through specified interfaces that are maintained when the program evolves. Using an intermediary. For example, a data repository uncouples producer and consumer; design patterns such as Facade, Mediator, and Proxy translate syntax. Brokers hide identity. D I S C U S S I O N Q U E S T I O N S 1. Buildability is defined as the ease of constructing a desired system in a timely manner. Possible tactics are decomposition into modules with minimal coupling and assignment of modules to parallel development teams. This results in minimization of construction cost and time. Where in ISO9126/Quint2 would you locate this quality? 2. Can you think of other important qualities that are not explicitly mentioned in these models? 3. What tactics would you advocate to promote the Security sub-characteristic? Open Universiteit Nederland 29
Requirements engineering and quality attributes
Open Learning Universiteit Unit 2 Learning Unit 2 Requirements engineering and quality attributes Contents Introduction............................................... 21 2.1 Important concepts........................................
VALLIAMMAI ENGINEERING COLLEGE S.R.M. Nagar, Kattankulathur DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
VALLIAMMAI ENGINEERING COLLEGE S.R.M. Nagar, Kattankulathur DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Sub Code : CP7007 Sub Name: SOFTWARE REQUIREMENTS ENGINEERING Branch / Year : ME CSE / I Year
Questions? Assignment. Techniques for Gathering Requirements. Gathering and Analysing Requirements
Questions? Assignment Why is proper project management important? What is goal of domain analysis? What is the difference between functional and non- functional requirements? Why is it important for requirements
Use Cases. Massimo Felici. Massimo Felici Use Cases c 2004 2011
Use Cases Massimo Felici Use Cases 1 Support requirements engineering activities and the requirement process Capture what a system is supposed to do, i.e., systems functional requirements Describe sequences
11 Tips to make the requirements definition process more effective and results more usable
1 11 Tips to make the s definition process more effective and results more usable This article discusses what I believe are the key techniques for making s definition process repeatable from project to
Architecture Design & Sequence Diagram. Week 7
Architecture Design & Sequence Diagram Week 7 Announcement Reminder Midterm I: 1:00 1:50 pm Wednesday 23 rd March Ch. 1, 2, 3 and 26.5 Hour 1, 6, 7 and 19 (pp.331 335) Multiple choice Agenda (Lecture)
Do you know? "7 Practices" for a Reliable Requirements Management. by Software Process Engineering Inc. translated by Sparx Systems Japan Co., Ltd.
Do you know? "7 Practices" for a Reliable Requirements Management by Software Process Engineering Inc. translated by Sparx Systems Japan Co., Ltd. In this white paper, we focus on the "Requirements Management,"
Sub Code: CP7007 Sub Name: SOFTWARE REQUIREMENTS ENGINEERING Branch / Year: ME CSE / I Year Staff in charge: Dr.M.Senthil Kumar
VALLIAMMAI ENGINEERING COLLEGE S.R.M. Nagar, Kattankulathur DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Sub Code: CP7007 Sub Name: SOFTWARE REQUIREMENTS ENGINEERING Branch / Year: ME CSE / I Year Staff
Requirements Engineering Process
Software Engineering Requirements Engineering Process Based on Software Engineering, 7 th Edition by Ian Sommerville Objectives To describe the principal requirements engineering activities and d their
Lecture 9: Requirements Modelling
A little refresher: What are we modelling? Lecture 9: Requirements Modelling Requirements; Systems; Systems Thinking Role of Modelling in RE Why modelling is important Limitations of modelling Brief overview
NASCIO EA Development Tool-Kit Solution Architecture. Version 3.0
NASCIO EA Development Tool-Kit Solution Architecture Version 3.0 October 2004 TABLE OF CONTENTS SOLUTION ARCHITECTURE...1 Introduction...1 Benefits...3 Link to Implementation Planning...4 Definitions...5
Interactive system specification. Interactive system definition. Issues to be taken into account for interactive systems
Interactive system specification From Requirements Engineering Processes and Techniques by G. Kotonya and I. Sommerville 1998 Slide 1 Interactive system definition Interactive systems can be defined as
The Role of Information Technology Studies in Software Product Quality Improvement
The Role of Information Technology Studies in Software Product Quality Improvement RUDITE CEVERE, Dr.sc.comp., Professor Faculty of Information Technologies SANDRA SPROGE, Dr.sc.ing., Head of Department
Software Engineering Reference Framework
Software Engineering Reference Framework Michel Chaudron, Jan Friso Groote, Kees van Hee, Kees Hemerik, Lou Somers, Tom Verhoeff. Department of Mathematics and Computer Science Eindhoven University of
Decomposition into Parts. Software Engineering, Lecture 4. Data and Function Cohesion. Allocation of Functions and Data. Component Interfaces
Software Engineering, Lecture 4 Decomposition into suitable parts Cross cutting concerns Design patterns I will also give an example scenario that you are supposed to analyse and make synthesis from The
Quiz Examination in Software Engineering Theory
LINKÖPINGS UNIVERSITET IDA Kristian Sandahl, David Broman Quiz Examination in Software Engineering Theory Date: 2008-09-19 Time: 16.20-17.00 This quiz examination is optional. If the student passes the
CREDENTIALS & CERTIFICATIONS 2015
THE COMMUNITY FOR TECHNOLOGY LEADERS www.computer.org CREDENTIALS & CERTIFICATIONS 2015 KEYS TO PROFESSIONAL SUCCESS CONTENTS SWEBOK KNOWLEDGE AREA CERTIFICATES Software Requirements 3 Software Design
Quality Management. Lecture 12 Software quality management
Quality Management Lecture 12 Software quality management doc.dr.sc. Marko Jurčević prof.dr.sc. Roman Malarić University of Zagreb Faculty of Electrical Engineering and Computing Department of Fundamentals
Engineering Process Software Qualities Software Architectural Design
Engineering Process We need to understand the steps that take us from an idea to a product. What do we do? In what order do we do it? How do we know when we re finished each step? Production process Typical
Software Requirements
Software Engineering Software Requirements Based on Software Engineering, 7 th Edition by Ian Sommerville Objectives To introduce the concepts of user and system requirements To describe functional and
Contents. Introduction and System Engineering 1. Introduction 2. Software Process and Methodology 16. System Engineering 53
Preface xvi Part I Introduction and System Engineering 1 Chapter 1 Introduction 2 1.1 What Is Software Engineering? 2 1.2 Why Software Engineering? 3 1.3 Software Life-Cycle Activities 4 1.3.1 Software
Use-Case Analysis. ! What is it? ! From where did it come? ! Now part of UML
Use-Case Analysis Use-Case Analysis! What is it?! An informal, user-friendly, technique useful for functional requirements analysis and specification! From where did it come?! Ivar Jacobson, a Swedish
CHAPTER 11 REQUIREMENTS
Lecture Software Engineering CHAPTER 11 REQUIREMENTS Lecture Software Engineering Topics Determining What the Client Needs Overview of the Requirements Workflow Understanding the Domain The Business Model
TECH. Requirements. Why are requirements important? The Requirements Process REQUIREMENTS ELICITATION AND ANALYSIS. Requirements vs.
CH04 Capturing the Requirements Understanding what the customers and users expect the system to do * The Requirements Process * Types of Requirements * Characteristics of Requirements * How to Express
Software Engineering Compiled By: Roshani Ghimire Page 1
Unit 7: Metric for Process and Product 7.1 Software Measurement Measurement is the process by which numbers or symbols are assigned to the attributes of entities in the real world in such a way as to define
Software Test Plan (STP) Template
(STP) Template Items that are intended to stay in as part of your document are in bold; explanatory comments are in italic text. Plain text is used where you might insert wording about your project. This
How To Develop Software
Software Engineering Prof. N.L. Sarda Computer Science & Engineering Indian Institute of Technology, Bombay Lecture-4 Overview of Phases (Part - II) We studied the problem definition phase, with which
Requirements Engineering for Web Applications
Web Engineering Requirements Engineering for Web Applications Copyright 2013 Ioan Toma & Srdjan Komazec 1 What is the course structure? # Date Title 1 5 th March Web Engineering Introduction and Overview
To introduce software process models To describe three generic process models and when they may be used
Software Processes Objectives To introduce software process models To describe three generic process models and when they may be used To describe outline process models for requirements engineering, software
Sofware Requirements Engineeing
Sofware Requirements Engineeing Three main tasks in RE: 1 Elicit find out what the customers really want. Identify stakeholders, their goals and viewpoints. 2 Document write it down (). Understandable
DEVELOPING REQUIREMENTS FOR DATA WAREHOUSE SYSTEMS WITH USE CASES
DEVELOPING REQUIREMENTS FOR DATA WAREHOUSE SYSTEMS WITH USE CASES Robert M. Bruckner Vienna University of Technology [email protected] Beate List Vienna University of Technology [email protected]
Non-Functional Requirements
IBM Software Group Non-Functional Requirements Peter Eeles [email protected] Agenda IBM Software Group Rational software Definitions Types of requirement Classifying requirements Capturing NFRs Summary
Syllabus. REQB Certified Professional for Requirements Engineering. Foundation Level
Syllabus REQB Certified Professional for Requirements Engineering Version 2.1 2014 The copyright to this edition of the syllabus in all languages is held by the Global Association for Software Quality,
Applying 4+1 View Architecture with UML 2. White Paper
Applying 4+1 View Architecture with UML 2 White Paper Copyright 2007 FCGSS, all rights reserved. www.fcgss.com Introduction Unified Modeling Language (UML) has been available since 1997, and UML 2 was
Software Architecture. Schahram Dustdar Distributed Systems Group TU Wien
Software Architecture Schahram Dustdar Distributed Systems Group TU Wien 1 Main Topics Software Architecture: Introduction Architecture and Architecture Disciplines Architectural Requirements Architectural
Requirements Engineering Processes. Feasibility studies. Elicitation and analysis. Problems of requirements analysis
Requirements engineering processes Requirements Engineering Processes The processes used for RE vary widely depending on the application domain, the people involved and the organisation developing the.
JOURNAL OF OBJECT TECHNOLOGY
JOURNAL OF OBJECT TECHNOLOGY Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering JOT, 2006 Vol. 5. No. 8, November-December 2006 Requirements Engineering Tasks Donald Firesmith,
SOFTWARE ENGINEERING INTERVIEW QUESTIONS
SOFTWARE ENGINEERING INTERVIEW QUESTIONS http://www.tutorialspoint.com/software_engineering/software_engineering_interview_questions.htm Copyright tutorialspoint.com Dear readers, these Software Engineering
Business Modeling with UML
Business Modeling with UML Hans-Erik Eriksson and Magnus Penker, Open Training Hans-Erik In order to keep up and be competitive, all companies Ericsson is and enterprises must assess the quality of their
3SL. Requirements Definition and Management Using Cradle
3SL Requirements Definition and Management Using Cradle November 2014 1 1 Introduction This white paper describes Requirements Definition and Management activities for system/product development and modification
Partnering for Project Success: Project Manager and Business Analyst Collaboration
Partnering for Project Success: Project Manager and Business Analyst Collaboration By Barbara Carkenord, CBAP, Chris Cartwright, PMP, Robin Grace, CBAP, Larry Goldsmith, PMP, Elizabeth Larson, PMP, CBAP,
Requirements Engineering: Elicitation Techniques
2008:PR003 Requirements Engineering: Elicitation Techniques Sai Ganesh. Gunda Source:http://www.marcocioffi.com/archives/2005/04/requirements-engineering/ MASTER S THESIS Software Engineering, 2008 Department
Software Metrics & Software Metrology. Alain Abran. Chapter 4 Quantification and Measurement are Not the Same!
Software Metrics & Software Metrology Alain Abran Chapter 4 Quantification and Measurement are Not the Same! 1 Agenda This chapter covers: The difference between a number & an analysis model. The Measurement
Design Specification for IEEE Std 1471 Recommended Practice for Architectural Description IEEE Architecture Working Group 0 Motivation
Design Specification for IEEE Std 1471 Recommended Practice for Architectural Description IEEE Architecture Working Group 0 Motivation Despite significant efforts to improve engineering practices and technologies,
SysML Modelling Language explained
Date: 7 th October 2010 Author: Guillaume FINANCE, Objet Direct Analyst & Consultant UML, the standard modelling language used in the field of software engineering, has been tailored to define a modelling
Foundations for Systems Development
Foundations for Systems Development ASSIGNMENT 1 Read this assignment introduction. Then, read Chapter 1, The Systems Development Environment, on pages 2 25 in your textbook. What Is Systems Analysis and
Data Modeling Basics
Information Technology Standard Commonwealth of Pennsylvania Governor's Office of Administration/Office for Information Technology STD Number: STD-INF003B STD Title: Data Modeling Basics Issued by: Deputy
Chap 1. Software Quality Management
Chap 1. Software Quality Management Part 1.1 Quality Assurance and Standards Part 1.2 Software Review and Inspection Part 1.3 Software Measurement and Metrics 1 Part 1.1 Quality Assurance and Standards
Surveying and evaluating tools for managing processes for software intensive systems
Master Thesis in Software Engineering 30 Credits, Advanced Level Surveying and evaluating tools for managing processes for software intensive systems Anuradha Suryadevara IDT Mälardalen University, ABB
Chapter 4, Requirements Elicitation
Using UML, Patterns, and Java Object-Oriented Software Engineering Chapter 4, Requirements Elicitation Software Lifecycle Definition Software lifecycle Models for the development of software Set of activities
SOFTWARE ARCHITECTURE QUALITY EVALUATION
SOFTWARE ARCHITECTURE QUALITY EVALUATION APPROACHES IN AN INDUSTRIAL CONTEXT Frans Mårtensson Blekinge Institute of Technology Licentiate Dissertation Series No. 2006:03 School of Engineering Software
Software Requirements 1
Software Requirements 1 Requirements are descriptions of the services that a software system must provide and the constraints under which it must operate Requirements can range from high-level abstract
Metrics for Requirements Engineering
Metrics for Requirements Engineering Mohammed Javeed Ali June 15, 2006 Master s Thesis, 10 credits Supervisor Jurgen Borstler Umeå University Department of Computing Science SE-901 87 UMEÅ SWEDEN Abstract
SOFTWARE DEVELOPMENT STANDARD FOR SPACECRAFT
SOFTWARE DEVELOPMENT STANDARD FOR SPACECRAFT Mar 31, 2014 Japan Aerospace Exploration Agency This is an English translation of JERG-2-610. Whenever there is anything ambiguous in this document, the original
Introduction to software architecture
Learning Unit 1 Introduction to software architecture Contents Introduction............................................... 7 1.1 What is software architecture?................................. 7 1.1.1
What is a requirement? Software Requirements. Descriptions and specifications of a system
What is a requirement? Software Requirements Descriptions and specifications of a system May range from a high-level abstract statement of a service or a statement of a system constraint to a detailed
Designing a Semantic Repository
Designing a Semantic Repository Integrating architectures for reuse and integration Overview Cory Casanave Cory-c (at) modeldriven.org ModelDriven.org May 2007 The Semantic Metadata infrastructure will
Procurement Programmes & Projects P3M3 v2.1 Self-Assessment Instructions and Questionnaire. P3M3 Project Management Self-Assessment
Procurement Programmes & Projects P3M3 v2.1 Self-Assessment Instructions and Questionnaire P3M3 Project Management Self-Assessment Contents Introduction 3 User Guidance 4 P3M3 Self-Assessment Questionnaire
How To Write Software
Overview of Software Engineering Principles 1 Software Engineering in a Nutshell Development of software systems whose size/ complexity warrants a team or teams of engineers multi-person construction of
Life Cycle Quality Gates
1 Operations Release Life Cycle Quality Gates 8 Post Implement Validation 6 Implement Build Product Test Quality Assurance 2 Versions 3 4 5 Patches 7 Design 1 10 9 Requirements Requirements Sources: Executive
Software Engineering. Software Processes. Based on Software Engineering, 7 th Edition by Ian Sommerville
Software Engineering Software Processes Based on Software Engineering, 7 th Edition by Ian Sommerville Objectives To introduce software process models To describe three generic process models and when
Writing Use Case Scenarios for Model Driven Development
Writing Use Case Scenarios for Model Driven Development This guide outlines how to use Enterprise Architect to rapidly build Use Cases and increase your productivity through Model Driven Development. Use
Section C. Requirements Elicitation
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this
Overview of major concepts in the service oriented extended OeBTO
Modelling business policies and behaviour based on extended Open edi Business Transaction Ontology (OeBTO) Introduction Model Driven Development (MDD) provides a basis for the alignment between business
Software development life cycle. Software Engineering - II ITNP92 - Object Oriented Software Design. Requirements. Requirements. Dr Andrea Bracciali
Software development life cycle Software life cycle: Software Engineering - II ITNP92 - Object Oriented Software Design Dr Andrea Bracciali Module Co-ordinator 4B86 [email protected] Spring 2014 (elicitation)
Architecture. Reda Bendraou reda.bendraou{{@}}lip6.fr http://pagesperso-systeme.lip6.fr/reda.bendraou/
Architecture Reda Bendraou reda.bendraou{{@}}lip6.fr http://pagesperso-systeme.lip6.fr/reda.bendraou/ Some slides were adapted from L. Osterweil, B. Meyer, and P. Müller material Reda Bendraou LI386-S1
Quality-Oriented Requirements Engineering for Agile Development of RESTful Participation Service
Quality-Oriented Requirements Engineering for Agile Development of RESTful Participation Service Michael Gebhart iteratec GmbH Stuttgart, Germany [email protected] Pascal Giessler, Pascal Burkhardt,
System Requirements Specification (SRS) (Subsystem and Version #)
of the (Subsystem and Version #) () (Document Revision Number) Contract (No.) Task (No.) GSA Contract (No.) Prepared for: The United States Department of Agriculture Food & Nutrition Service (FNS)/ Information
Towards Collaborative Requirements Engineering Tool for ERP product customization
Towards Collaborative Requirements Engineering Tool for ERP product customization Boban Celebic, Ruth Breu, Michael Felderer, Florian Häser Institute of Computer Science, University of Innsbruck 6020 Innsbruck,
Classical Software Life Cycle Models
Classical Software Life Cycle Models SWEN 301 Trimester 1, 2015 Lecturer: Dr Hui Ma Engineering and Computer Science Lecture slides make use of material provided on the textbook's companion website Motivation
Agile Model-Based Systems Engineering (ambse)
Agile Model-Based Systems Engineering (ambse) Bruce Powel Douglass, Ph.D. Chief Evangelist, Global Technology Ambassador IBM Rational [email protected] Twitter: @BruceDouglass Yahoo: tech.groups.yahoo.com/group/rt-uml/
CS 389 Software Engineering. Lecture 2 Chapter 2 Software Processes. Adapted from: Chap 1. Sommerville 9 th ed. Chap 1. Pressman 6 th ed.
CS 389 Software Engineering Lecture 2 Chapter 2 Software Processes Adapted from: Chap 1. Sommerville 9 th ed. Chap 1. Pressman 6 th ed. Topics covered Software process models Process activities Coping
Swirl. Multiplayer Gaming Simplified. CS4512 Systems Analysis and Design. Assignment 1 2010. Marque Browne 0814547. Manuel Honegger - 0837997
1 Swirl Multiplayer Gaming Simplified CS4512 Systems Analysis and Design Assignment 1 2010 Marque Browne 0814547 Manuel Honegger - 0837997 Kieran O' Brien 0866946 2 BLANK MARKING SCHEME 3 TABLE OF CONTENTS
Requirements Engineering: A Roadmap
Requirements Engineering: A Roadmap Bashar Nuseibeh & Steve Easterbrook Department of Computing Imperial College of Science, Technology & Medicine London SW7 2BZ, UK Email: [email protected] http://www-dse.doc.ic.ac.uk/~ban/
Menouer Boubekeur, Gregory Provan
Software Requirements Menouer Boubekeur, Gregory Provan Lectures Introduction to UML Introduction to Requirements Analysis Advanced techniques for Requirement Analysis M. Boubekeur, CSL, University College
White Paper. Business Analysis meets Business Information Management
White Paper BABOK v2 & BiSL Business Analysis meets Business Information Management Business Analysis (BA) and Business Information Management (BIM) are two highly-interconnected fields that contribute
Use Cases. Reference: Craig Larman, Applying UML and Patterns, Ch. 6
Use Cases Reference: Craig Larman, Applying UML and Patterns, Ch. 6 Use Case What it is: Text story Widely used to discover and record (mostly functional) requirements What is it about: Some actor(s) using
Ten steps to better requirements management.
White paper June 2009 Ten steps to better requirements management. Dominic Tavassoli, IBM Actionable enterprise architecture management Page 2 Contents 2 Introduction 2 Defining a good requirement 3 Ten
The SPES Methodology Modeling- and Analysis Techniques
The SPES Methodology Modeling- and Analysis Techniques Dr. Wolfgang Böhm Technische Universität München [email protected] Agenda SPES_XT Project Overview Some Basic Notions The SPES Methodology SPES_XT
The Role of the Software Architect
IBM Software Group The Role of the Software Architect Peter Eeles [email protected] 2004 IBM Corporation Agenda Architecture Architect Architecting Requirements Analysis and design Implementation
Service Level Agreements based on Business Process Modeling
Service Level Agreements based on Business Process Modeling Holger Schmidt Munich Network Management Team University of Munich, Dept. of CS Oettingenstr. 67, 80538 Munich, Germany Email: [email protected]
D6.1: Service management tools implementation and maturity baseline assessment framework
D6.1: Service management tools implementation and maturity baseline assessment framework Deliverable Document ID Status Version Author(s) Due FedSM- D6.1 Final 1.1 Tomasz Szepieniec, All M10 (31 June 2013)
A Case Study of the Systems Engineering Process in Healthcare Informatics Quality Improvement. Systems Engineering. Ali M. Hodroj
A Case Study of the Systems Engineering Process in Healthcare Informatics Quality Improvement By Ali M. Hodroj Project Report submitted to the Faculty of the Maseeh School of Engineering and Computer Science
Process Models and Metrics
Process Models and Metrics PROCESS MODELS AND METRICS These models and metrics capture information about the processes being performed We can model and measure the definition of the process process performers
Modernized and Maintainable Code. Frank Weil, Ph.D. UniqueSoft, LLC
Modernized and Maintainable Code Frank Weil, Ph.D. UniqueSoft, LLC UniqueSoft is a provider of next-generation software development tools and services specializing in modernizing legacy software using
Measurement Information Model
mcgarry02.qxd 9/7/01 1:27 PM Page 13 2 Information Model This chapter describes one of the fundamental measurement concepts of Practical Software, the Information Model. The Information Model provides
Mastering increasing product complexity with Collaborative Systems Engineering and PLM
Mastering increasing product complexity with Collaborative Systems Engineering and PLM Thierry Ambroisine Dassault Systèmes 10 rue Marcel Dassault, 78140 Vélizy Villacoublay, France [email protected]
Multi-view Architecting
by Gerrit Muller, JürgenMüller, Jan Gerben Wijnstra College, Philips Research e-mail: [email protected] www.gaudisite.nl Buskerud University Abstract The development of large SW-intensive products needs
Software Requirements, Third Edition
j Microsoft Software Requirements, Third Edition Karl Wiegers and Joy Beatty Contents Introduction Acknowledgments xxv xxxi PART I SOFTWARE REQUIREMENTS: WHAT, WHY, AND WHO Chapter 1 The essential software
What s a BA to do with Data? Discover and define standard data elements in business terms. Susan Block, Program Manager The Vanguard Group
What s a BA to do with Data? Discover and define standard data elements in business terms Susan Block, Program Manager The Vanguard Group Discussion Points Discovering Business Data The Data Administration
Bidirectional Tracing of Requirements in Embedded Software Development
Bidirectional Tracing of Requirements in Embedded Software Development Barbara Draxler Fachbereich Informatik Universität Salzburg Abstract Nowadays, the increased complexity of embedded systems applications
Software Requirements Specification
1 of 7 17.04.98 13:32 Software Requirements Specification The sub-sections : 1. What is a Software Requirements Specification 2. Why is a Software Requirement Specification Required 3. What is Contained
SOFTWARE REQUIREMENTS
SOFTWARE REQUIREMENTS http://www.tutorialspoint.com/software_engineering/software_requirements.htm Copyright tutorialspoint.com The software requirements are description of features and functionalities
D6 INFORMATION SYSTEMS DEVELOPMENT. SOLUTIONS & MARKING SCHEME. June 2013
D6 INFORMATION SYSTEMS DEVELOPMENT. SOLUTIONS & MARKING SCHEME. June 2013 The purpose of these questions is to establish that the students understand the basic ideas that underpin the course. The answers
Modeling Guidelines Manual
Modeling Guidelines Manual [Insert company name here] July 2014 Author: John Doe [email protected] Page 1 of 22 Table of Contents 1. Introduction... 3 2. Business Process Management (BPM)... 4 2.1.
BAL2-1 Professional Skills for the Business Analyst
1 BAL2-1 Professional Skills for the Business Analyst OVERVIEW This course trains participants to help business clients articulate their needs and wants, and to document them clearly, concisely, and completely.
Software Engineering/Courses Description Introduction to Software Engineering Credit Hours: 3 Prerequisite: 0306211(Computer Programming 2).
0305203 0305280 0305301 0305302 Software Engineering/Courses Description Introduction to Software Engineering Prerequisite: 0306211(Computer Programming 2). This course introduces students to the problems
The Concern-Oriented Software Architecture Analysis Method
The Concern-Oriented Software Architecture Analysis Method Author: E-mail: Student number: Supervisor: Graduation committee members: Frank Scholten [email protected] s0002550 Dr. ir. Bedir Tekinerdoǧan
Software Requirements. Objectives
Software Requirements cmsc435-1 Objectives To introduce the concepts of user and system requirements To describe functional and non-functional requirements To explain how software requirements may be organized
