Fourier Analysis of Stochastic Processes


 Jayson Terry
 2 years ago
 Views:
Transcription
1 Fourier Analysis of Stochastic Processes. Time series Given a discrete time rocess ( n ) nz, with n :! R or n :! C 8n Z, we de ne time series a realization of the rocess, that is to say a series (x n ) nz of real or comlex numbers where x n = n (!)8n Z. In some cases we will use the notation x(n) instead of x n, with the same meaning. For convenience, we introduce the sace l of the time series such that P nz jx nj <. The nite value of the sum can be sometimes interreted as a form of the energy, and the time series belonging to l are called nite energy time series. Another imortant set is the sace l of the time series such that P nz jx nj <. Notice that the assumtion P nz jx nj < imlies P nz jx nj <, because P nz jx nj su nz jx n j P nz jx nj and su nz jx n j is bounded when P nz jx nj converges. Given two time series f(n) and g(n), we de ne the convolution of the two time series as h(n) = (f g)(n) = kz f (n k) g (k). Discrete time Fourier transform Given the realization of a rocess (x n ) nz l, we introduce the discrete time Fourier transform (DTFT), indicated either by the notation bx (!) or F [x] (!) and de ned by bx (!) = F [x] (!) = e i!n x n ;! [; ] : nz Note that the symbol b is used to indicate both DTFT and emirical estimates of rocess arameters; the variable! is used to indicate both the indeendent variable of the DTFT and the outcomes (elementary events) in a set of events. Which of the two meanings is the correct one will be always evident in both cases. The sequence x n can be reconstructed from its DTFT by means of the inverse Fourier transform x n = Z e i!n bx (!) d!: In fact, Z assuming that it is allowed to interchange the in nite summation with the integration, we have e i!n bx (!) d! = Z e i!n x k e i!k d! = Z x k e i!(n k) d! = x k (n k)=x n kz kz kz Remark. In the de nition using i!n as exonent, the increment of the indeendent variable between two consecutive samles is assumed to be. If the indeendent variable is time t and the i
2 ii FOURIER ANALYSIS OF STOCHASTIC PROCESSES time interval between two consecutive samles is t, in order to change the time scale, the exonent becomes i!nt. The quantity t is called samling frequency. Remark. The function bx (!) can be considered for all! R, but it is eriodic or t eriodic. In the last case,! is called angular frequency. Remark. Sometimes (in articular by hysicists), DTFT is de ned without the exonent; in this case the sign is obviously resent in the inverse transform. sign at the Remark 4. Sometimes the factor is not included in the de nition; in our de nition the factor is included for symmetry with the inverse transform or the Plancherel formula (without, a factor aears in one of them). Remark 5. Sometimes, it is referable to use the variant bx (f) = e ifn x n ; f [; ] : where f =!. When the factor t is resent in the exonent, f ; nz is called frequency. t In the following, we will use our de nition of DTFT, indeendently of the fact that in certain alications it is customary or convenient to make other choices. The reader is warned!! Of course, in ractical cases, in nite samling times do not exist. Let us therefore introduce a samling window of width ( N contaning N + samles from time N to time N (also called boxcar if N n N window) [ N;N] (n) = and the truncation x N (n) of the time series x n de ned otherwise ( x n if N n N as x N (n) = x n [ N;N] (n) =. The DTFT of the truncated time series is otherwise de ned as bx N (!) = e i!n x n : Remark 6. In order to de ne roerly the DTFT for a rocess, we must assure that it is ossible to calculate the DTFT of every of its realization. Therefore the above de nition, involving only a nite summation, can be used also to de ne the truncated DTFT of a rocess: b N (!) = e i!n n : In fact, each realization bx N of a truncated rocess b N is a niteenergy time series that admits DTFT. We underline that b N (!) is a random variable for every! [; ], while bx N (!) is a function of!. The de nition of truncated DTFT for a rocess will be used in the roof of Wiener Khinchine theorem. Processes whose realizations are l or l time series are never stationary.
3 . DISCRETE TIME FOURIER TRANSFORM iii Proerties of DTFT ) The L theory of Fourier series guarantees that the series P nz e i!n x n converges in mean square with resect to!, namely, there exists a square integrable function bx (!) such that ) Plancherel formula Proof. Z n;mz jx n j assuming that it is correct to interchange the in nite summation with the inte x n x n = nz nz gration. jbx (!)j d! = lim N! Z Z jx n j = nz x n x me i!n e i!m A d! = jbx N (!) bx (!)j d! = : Z bx (!) (bx (!)) d! = n;mz x n x m jbx (!)j d! Z Z! e i!n x n nz e i!(n m) d! = n;mz! e i!m x m d! = mz x n x m(n m) = The meaning of Plancherel formula is that the energy contained in a time series and the energy contained in its DTFT is the same (a factor can aear in one of the two members when a di ernt detinition of DTFT is used). ) If the time series g(n) is real, then bg (!) = bg (!).! Proof. bg (!)= g(n)e i(!)n = g(n) e i!n = g(n)e i!n =g (!) nz 4) The DTFT of the convolution of two time series corresonds (a factor can be resent,deending on the de nition of DTFT) to the roduct of the DTFT of the two time series Proof. F[f g] (!) = nz F [f g] (!) = b f (!) bg (!) : (f g)(n)e i!n = nz f(n k)e i!(n k) = nz nz f(n kz k)g(k)! e i!n = g(k)e i!k b f(!) = g(k)e i!k g(k)e i!k f(m)e i!m = kz nz kz mz kz f(!)bg(!), b assuming that it is correct to commute the two in nite summations. The is not resent when the de nition of DTFT without is used. " 6) Combining roerties # 4) and " 5), we obtain # F f (n + k) g (k) (!) = F f (n k) g ( k) (!) = f b (!) bg (!) = f b (!) bg (!), where kz kz
4 iv FOURIER ANALYSIS OF STOCHASTIC PROCESSES the last equality is valid only for a real time series g. This roerty is used in the calculation of DTFT of correlation function. Again, the resence of factor deends on the de nition of DTFT adoted. 7) When jx n j <, then the series P nz e i!n x n is absolutely convergent, uniformly in! nz [; ], simly because su nz![;] e i!n x n = nz su![;] e i!n jx n j = nz jx n j < : In this case, we may also say that bx (!) is a bounded continuous function, not only square integrable.. Generalized discrete time Fourier transform One can do the DTFT also for sequences which do not satisfy the assumtion P nz jx nj <, in secial cases. Consider for instance the sequence Comute the DFTT of the truncated sequence Recall that Hence sin (! n) = ei! n e i! n i x n = a sin (! n) : bx N (!) = e i!n a sin (! n) = i sin t = eit e i!n a sin (! n) : e it : i e i(!! )n i e i(!+! )n : The next lemma makes use of the concet of generalized function or distribution, which is outside the scoe of these notes. We still given the result, to be understood in some intuitive sense. We use the generalized function (t) called Dirac delta (not to be confused with the dircrete time de ned in examle for white noise), which is characterized by the roerty (.) Z (t t ) f (t) dt = f (t ) for all continuous comact suort functions f. No usual function has this roerty. A way to get intuition is the following one. Consider a function n (t) which is equal to zero for t outside n ; n, interval of length n around the origin; and equal to n in ; n. Hence n (t t ) is equal to zero for t outside t n ; t + n, equal to n in t n ; t + n. We have Z n (t) dt = :
5 . GENERALIZED DISCRETE TIME FOURIER TRANSFORM v Now, Z Z t + n n (t t ) f (t) dt = n f (t) dt t n which is the average of f around t. As n!, this average converges to f (t ) when f is continuous. Namely. we have Z lim n (t t ) f (t) dt = f (t ) n! which is the analog of identity (.), but exressed by means of traditional concets. In a sense, thus, the generalized function (t) is the limit of the traditional functions n (t). But we see that n (t) converges to zero for all t 6=, and to for t =. So, in a sense, (t) is equal to zero for t 6=, and to for t = ; but this is a very oor information, because it does not allow to deduce identity (.) (the way n (t) goes to in nity is essential, not only the fact that (t) is for t = ). Lemma. Denote by (t) the generalized function such that Z (t t ) f (t) dt = f (t ) for all continuous comact suort functions f (it is called the delta Dirac distribution). Then lim e itn = (t) : N! From this lemma it follows that lim e i!n a sin (! n) = i (!! ) In other words, N! Corollary. The sequence has a generalized DTFT bx (!) = lim N! bx N (!) = x n = a sin (! n) i (! +! ) : i ( (!! ) (! +! )) : This is only one examle of the ossibility to extend the de nition and meaning of DTFT outside the assumtion P nz jx nj <. It is also very interesting for the interretation of the concet of DTFT. If the signal x n has a eriodic comonent (notice that DTFT is linear) with angular frequency!, then its DTFT has two symmetric eaks (delta Dirac comonents) at!. This way, the DTFT reveals the eriodic comonents of the signal. Exercise. Prove that the sequence has a generalized DTFT bx (!) = lim N! bx N (!) = x n = a cos (! n) ( (!! ) + (! +! )) :
6 vi FOURIER ANALYSIS OF STOCHASTIC PROCESSES 4. Power sectral density Given a stationary rocess ( n ) nz with correlation function R (n) = E [ n ], n Z, we call ower sectral density (PSD) the function S (!) = e i!n R (n) ;! [; ] : Alternatively, one can use the exression S (f) = e ifn R (n) ; f [; ] nz nz which roduces easier visualizations because we catch more easily the fractions of the interval [; ]. Remark 7. In rincile, to de ne roerly the PSD, the condition P nz jr (n)j < should be required, or at least P nz jr (n)j <. In ractice, on a side the convergence may haen also in unexected cases due to cancellations, on the other side it may be accetable to use a nitetime variant, something like P e i!n R (n), for ractical uroses or from the comutational viewoint. A riori, one may think that S (f) may be not real valued. However, the function R (n) is nonnegative de nite (this means P n i= R (t i t j ) a i a j for all t ; :::; t n and a ; :::; a n ) and a theorem states that the Fourier transform of nonnegative de nite function is a nonnegative function. Thus, at the end, it turns out that S (f) is real and also nonnegative. We do not give the details of this fact here because it will be a consequence of the fundamental theorem below. hence 4.. Examle: white noise. We have S (!) = R (n) = (n) ;! R: The sectra density is constant. This is the origin of the name, white noise. 4.. Examle: erturbed eriodic time series. This examle is numeric only. Produce with R software the following time series: t < : y< sin(t/)+.*rnorm() ts.lot(y)
7 The emirical autocorrelation function, obtained by acf(y), is 4. POWER SPECTRAL DENSITY vii and the ower sectral density, suitable smoothed, obtained by sectrum(y,san=c(,)), is 4.. Pink, Brown, Blue, Violet noise. In certain alications one meets PSD of secial tye which have been given names similarly to white noise. Recall that white noise has a constant PSD. Pink noise has PSD of the form Brown noise: S (f) f : Blue noise S (f) f : S (f) f : Violet noise S (f) f : if f where, chosen such that < <, (f) = otherwise
8 viii FOURIER ANALYSIS OF STOCHASTIC PROCESSES 5. A fundamental theorem on PSD The following theorem is often stated without assumtions in the alied literature. One of the reasons is that it can be roved under various level of generality, with di erent meanings of the limit oeration (it is a limit of functions). We shall give a rigorous statement under a very recise assumtion on the autocorrelation function R (n); the convergence we rove is rather strong. The assumtion (a little bit strange, but satis ed in all our examles) is (5.) R (n) < for some (; ) : nn This is just a little bit more restrictive than the condition P nn jr (n)j < which is natural to imose if we want uniform convergence of PnZ e i!n R (n) to S (!). Theorem (WienerKhinchin). If ( (n)) nz is a widesense stationary rocess satisfying assumtion (5.), then S (!) = lim N! N + E N b (!) : The limit is uniform for! [; ]. Here N is the truncated rocess [ N;N]. In articular, it follows that S (!) is real an nonnegative. Proof. Ste. Let us rove the following main identity: (5.) S (!) = where the remainder r N is given by r N (!) = N + F N + E 4 b N (!) + r N (!) n(n;t) E [ (t + n) (n)] 5 (!) and (N; t) is a subinterval of [ N; N] to be de ned later. Since R (t) = E [ (t + n) (n)] for all n, we obviously have, for every t, R (t) = E [ (t + n) (n)] : N + Thus (5.) S (!)= b R (!)= N + F 4 E [ (t + n) (n)] 5(!)= N + [E [ (t + n) (n)]] e i!t tz To invert the in nite sum over t with the calculation of mean value, we need to introduce truncated rocess N (n) = (n) [ N;N] (n), for which we have, for t N N (t + n) N (n) = nz N t (t + n) (n) ; n= N
9 5. A FUNDAMENTAL THEOREM ON PSD ix for N t < ve have N N (t + n) N (n) = (t + n) (n) ; nz n= N t for t > N or t < with N, we have N (t + n) N (n) = 8n. In general, N (t + n) N (n) = (t + n) (n) : nz n[n t ;N t + ] 8 ; if t < N >< [N t ; N t + ] = [ N t; N] if N t < [ N; N t] if t N >: ; if t > N Therefore, remembering roerty 6) of DTFT, N + " # t F 4 (t + n) (n) 5 (!) = F N (t + n) N (n) (!) = b N (!) b N (!) = b N (!) : n=n t nz Taking the mean value of rst and last term, we obtain N t + N t + F 4 E [ (t + n) (n)] 5 (!) = E 4F 4 (t + n) (n) 5 (!) 5 = E N b (!) : n=n t n=n t Now, it is ossible to decomose the sum running from N to +N into a sum running from N t to N t + and a remainder r N containing the other terms, from N to N t or from N t + to N. S(!) = N + F 4 N E [ (t + n) (n)] 5 t + (!) = N + F 4 E [ (t + n) (n)] 5 (!) + n=n t N + F 4 E [ (t + n) (n)] 5 (!) = N + E N b (!) + r N (!) ; with n(n;t) 8 >< (N; t) = >: [ N; N] if t < N [ N; N t ] if N t < ; if t = [N t + ; N] if < t N [ N; N] if t > N
10 x FOURIER ANALYSIS OF STOCHASTIC PROCESSES Ste. The roof is comlete if we show that lim N! r N (!) = uniformly in! [; ]. Let " n = R (n). As P nn R (n) <, we have R (n)!, and therefore also " n!. Moreover, R (n) = R (n) < : " n nn We can write n(n;t) nn E [ (t + n) (n)] = n(n;t) R (t) = " jtj R (t) " jtj j (N; t)j where j (N; t)j denotes the cardinality of (N; t). If (N + )^jtj denotes the smallest value between (N + ) and jtj, we have j (N; t)j = (N + ) ^ jtj hence N + E [ (t + n) (n)] jr (t)j ((N + ) ^ jtj) " jtj = : " jtj N + n(n;t) t N+ Given >, let t be such that " jtj for all t t. Then take N t such that N N. It is not restrictive to assume " jtj for all t. Then, for N N, if t t then ((N + ) ^ jtj) " jtj N + t " jtj N + t N + and if t t then ((N + ) ^ jtj) " jtj ((N + ) ^ jtj) : N + N + We have roved the following statement: for all > there exists N such that ((N + ) ^ jtj) " jtj N + for all N N, uniformly in t. Then also N + E [ (t + n) (n)] n(n;t) jr (t)j " jtj for all N N, uniformly in t. Therefore jr N (!)j = e i!t 4 E [ (t + n) (n)] 5 N + tz n(n;t) N + E [ (t + n) (n)] jr (t)j = C " jtj jr(t)j tz n(n;t) tz for all where C = P tz " jtj <. This is the de nition of lim N! r N (!) = uniformly in! [; ]. The roof is comlete.
11 5. A FUNDAMENTAL THEOREM ON PSD xi This theorem gives us the interretation of PSD. The Fourier transform b T (!) identi es the frequency structure of the signal. The square b T (!) dros the information about the hase and kees the information about the amlitude, but in the sense of energy (a square). It gives us the energy sectrum, in a sense. So the PSD is the average amlitude of the oscillatory comonent at frequency f =!. Thus PSD is a very useful tool if you want to identify oscillatory signals in your time series data and want to know their amlitude. By PSD, one can get a "feel" of data at an early stage of time series analysis. PSD tells us at which frequency ranges variations are strong. Remark 8. A riori one could think that it were more natural to comute the Fourier transform b (!) = P nz ei!n n without a cuto of size N. But the rocess ( n ) is stationary. Therefore, it does not satisfy the assumtion P nz n < or similar ones which require a decay at in nity. Stationarity is in contradiction with a decay at in nity (it can be roved, but we leave it at the obvious intuitive level). Remark 9. Under more assumtions (in articular a strong ergodicity one) it is ossible to rove that S (!) = lim N! N + b N (!) without exectation. Notice that N+ b N (!) is a random quantity, but the limit is deterministic.
1 Gambler s Ruin Problem
Coyright c 2009 by Karl Sigman 1 Gambler s Ruin Problem Let N 2 be an integer and let 1 i N 1. Consider a gambler who starts with an initial fortune of $i and then on each successive gamble either wins
More informationwhere a, b, c, and d are constants with a 0, and x is measured in radians. (π radians =
Introduction to Modeling 3.61 3.6 Sine and Cosine Functions The general form of a sine or cosine function is given by: f (x) = asin (bx + c) + d and f(x) = acos(bx + c) + d where a, b, c, and d are constants
More informationStochastic Derivation of an Integral Equation for Probability Generating Functions
Journal of Informatics and Mathematical Sciences Volume 5 (2013), Number 3,. 157 163 RGN Publications htt://www.rgnublications.com Stochastic Derivation of an Integral Equation for Probability Generating
More information6.042/18.062J Mathematics for Computer Science December 12, 2006 Tom Leighton and Ronitt Rubinfeld. Random Walks
6.042/8.062J Mathematics for Comuter Science December 2, 2006 Tom Leighton and Ronitt Rubinfeld Lecture Notes Random Walks Gambler s Ruin Today we re going to talk about onedimensional random walks. In
More informationPRIME NUMBERS AND THE RIEMANN HYPOTHESIS
PRIME NUMBERS AND THE RIEMANN HYPOTHESIS CARL ERICKSON This minicourse has two main goals. The first is to carefully define the Riemann zeta function and exlain how it is connected with the rime numbers.
More informationAn important observation in supply chain management, known as the bullwhip effect,
Quantifying the Bullwhi Effect in a Simle Suly Chain: The Imact of Forecasting, Lead Times, and Information Frank Chen Zvi Drezner Jennifer K. Ryan David SimchiLevi Decision Sciences Deartment, National
More informationRepresentation of functions as power series
Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions
More informationAs we have seen, there is a close connection between Legendre symbols of the form
Gauss Sums As we have seen, there is a close connection between Legendre symbols of the form 3 and cube roots of unity. Secifically, if is a rimitive cube root of unity, then 2 ± i 3 and hence 2 2 3 In
More informationPoint Location. Preprocess a planar, polygonal subdivision for point location queries. p = (18, 11)
Point Location Prerocess a lanar, olygonal subdivision for oint location ueries. = (18, 11) Inut is a subdivision S of comlexity n, say, number of edges. uild a data structure on S so that for a uery oint
More informationLarge Sample Theory. Consider a sequence of random variables Z 1, Z 2,..., Z n. Convergence in probability: Z n
Large Samle Theory In statistics, we are interested in the roerties of articular random variables (or estimators ), which are functions of our data. In ymtotic analysis, we focus on describing the roerties
More informationComplex Conjugation and Polynomial Factorization
Comlex Conjugation and Polynomial Factorization Dave L. Renfro Summer 2004 Central Michigan University I. The Remainder Theorem Let P (x) be a olynomial with comlex coe cients 1 and r be a comlex number.
More informationPOISSON PROCESSES. Chapter 2. 2.1 Introduction. 2.1.1 Arrival processes
Chater 2 POISSON PROCESSES 2.1 Introduction A Poisson rocess is a simle and widely used stochastic rocess for modeling the times at which arrivals enter a system. It is in many ways the continuoustime
More informationOn the predictive content of the PPI on CPI inflation: the case of Mexico
On the redictive content of the PPI on inflation: the case of Mexico José Sidaoui, Carlos Caistrán, Daniel Chiquiar and Manuel RamosFrancia 1 1. Introduction It would be natural to exect that shocks to
More information160 CHAPTER 4. VECTOR SPACES
160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results
More informationUniversiteitUtrecht. Department. of Mathematics. Optimal a priori error bounds for the. RayleighRitz method
UniversiteitUtrecht * Deartment of Mathematics Otimal a riori error bounds for the RayleighRitz method by Gerard L.G. Sleijen, Jaser van den Eshof, and Paul Smit Prerint nr. 1160 Setember, 2000 OPTIMAL
More informationTRANSCENDENTAL NUMBERS
TRANSCENDENTAL NUMBERS JEREMY BOOHER. Introduction The Greeks tried unsuccessfully to square the circle with a comass and straightedge. In the 9th century, Lindemann showed that this is imossible by demonstrating
More informationMonitoring Frequency of Change By Li Qin
Monitoring Frequency of Change By Li Qin Abstract Control charts are widely used in rocess monitoring roblems. This aer gives a brief review of control charts for monitoring a roortion and some initial
More informationPARAMETER CHOICE IN BANACH SPACE REGULARIZATION UNDER VARIATIONAL INEQUALITIES
PARAMETER CHOICE IN BANACH SPACE REGULARIZATION UNDER VARIATIONAL INEQUALITIES BERND HOFMANN AND PETER MATHÉ Abstract. The authors study arameter choice strategies for Tikhonov regularization of nonlinear
More informationIntroduction to NPCompleteness Written and copyright c by Jie Wang 1
91.502 Foundations of Comuter Science 1 Introduction to Written and coyright c by Jie Wang 1 We use timebounded (deterministic and nondeterministic) Turing machines to study comutational comlexity of
More informationRisk in Revenue Management and Dynamic Pricing
OPERATIONS RESEARCH Vol. 56, No. 2, March Aril 2008,. 326 343 issn 0030364X eissn 15265463 08 5602 0326 informs doi 10.1287/ore.1070.0438 2008 INFORMS Risk in Revenue Management and Dynamic Pricing Yuri
More informationComputational Finance The Martingale Measure and Pricing of Derivatives
1 The Martingale Measure 1 Comutational Finance The Martingale Measure and Pricing of Derivatives 1 The Martingale Measure The Martingale measure or the Risk Neutral robabilities are a fundamental concet
More informationDAYAHEAD ELECTRICITY PRICE FORECASTING BASED ON TIME SERIES MODELS: A COMPARISON
DAYAHEAD ELECTRICITY PRICE FORECASTING BASED ON TIME SERIES MODELS: A COMPARISON Rosario Esínola, Javier Contreras, Francisco J. Nogales and Antonio J. Conejo E.T.S. de Ingenieros Industriales, Universidad
More informationEconomics 241B Hypothesis Testing: Large Sample Inference
Economics 241B Hyothesis Testing: Large Samle Inference Statistical inference in largesamle theory is base on test statistics whose istributions are nown uner the truth of the null hyothesis. Derivation
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
More informationFour Derivations of the BlackScholes Formula by Fabrice Douglas Rouah www.frouah.com www.volopta.com
Four Derivations of the BlackScholes Formula by Fabrice Douglas Rouah www.frouah.com www.volota.com In this note we derive in four searate ways the wellknown result of Black and Scholes that under certain
More informationA Modified Measure of Covert Network Performance
A Modified Measure of Covert Network Performance LYNNE L DOTY Marist College Deartment of Mathematics Poughkeesie, NY UNITED STATES lynnedoty@maristedu Abstract: In a covert network the need for secrecy
More informationOn Multicast Capacity and Delay in Cognitive Radio Mobile Adhoc Networks
On Multicast Caacity and Delay in Cognitive Radio Mobile Adhoc Networks Jinbei Zhang, Yixuan Li, Zhuotao Liu, Fan Wu, Feng Yang, Xinbing Wang Det of Electronic Engineering Det of Comuter Science and Engineering
More informationSECTION 6: FIBER BUNDLES
SECTION 6: FIBER BUNDLES In this section we will introduce the interesting class o ibrations given by iber bundles. Fiber bundles lay an imortant role in many geometric contexts. For examle, the Grassmaniann
More informationThe fast Fourier transform method for the valuation of European style options inthemoney (ITM), atthemoney (ATM) and outofthemoney (OTM)
Comutational and Alied Mathematics Journal 15; 1(1: 16 Published online January, 15 (htt://www.aascit.org/ournal/cam he fast Fourier transform method for the valuation of Euroean style otions inthemoney
More informationLocal Connectivity Tests to Identify Wormholes in Wireless Networks
Local Connectivity Tests to Identify Wormholes in Wireless Networks Xiaomeng Ban Comuter Science Stony Brook University xban@cs.sunysb.edu Rik Sarkar Comuter Science Freie Universität Berlin sarkar@inf.fuberlin.de
More informationThe MagnusDerek Game
The MagnusDerek Game Z. Nedev S. Muthukrishnan Abstract We introduce a new combinatorial game between two layers: Magnus and Derek. Initially, a token is laced at osition 0 on a round table with n ositions.
More informationA Complete Operational Amplifier Noise Model: Analysis and Measurement of Correlation Coefficient
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATION, VOL. 47, NO. 3, MARCH 000 40 for ractical alication, oening the ath for widesread adotion of the clockgating technique
More informationMATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform
MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish
More informationTaylor Polynomials and Taylor Series Math 126
Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will
More informationContinued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More information4.6 Null Space, Column Space, Row Space
NULL SPACE, COLUMN SPACE, ROW SPACE Null Space, Column Space, Row Space In applications of linear algebra, subspaces of R n typically arise in one of two situations: ) as the set of solutions of a linear
More informationThe risk of using the Q heterogeneity estimator for software engineering experiments
Dieste, O., Fernández, E., GarcíaMartínez, R., Juristo, N. 11. The risk of using the Q heterogeneity estimator for software engineering exeriments. The risk of using the Q heterogeneity estimator for
More informationThe Online Freezetag Problem
The Online Freezetag Problem Mikael Hammar, Bengt J. Nilsson, and Mia Persson Atus Technologies AB, IDEON, SE3 70 Lund, Sweden mikael.hammar@atus.com School of Technology and Society, Malmö University,
More informationSome Notes on Taylor Polynomials and Taylor Series
Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationLarge firms and heterogeneity: the structure of trade and industry under oligopoly
Large firms and heterogeneity: the structure of trade and industry under oligooly Eddy Bekkers University of Linz Joseh Francois University of Linz & CEPR (London) ABSTRACT: We develo a model of trade
More informationDETERMINANTS. b 2. x 2
DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in
More informationDiscrete Stochastic Approximation with Application to Resource Allocation
Discrete Stochastic Aroximation with Alication to Resource Allocation Stacy D. Hill An otimization roblem involves fi nding the best value of an obective function or fi gure of merit the value that otimizes
More informationTaylor Series and Asymptotic Expansions
Taylor Series and Asymptotic Epansions The importance of power series as a convenient representation, as an approimation tool, as a tool for solving differential equations and so on, is pretty obvious.
More informationFREQUENCIES OF SUCCESSIVE PAIRS OF PRIME RESIDUES
FREQUENCIES OF SUCCESSIVE PAIRS OF PRIME RESIDUES AVNER ASH, LAURA BELTIS, ROBERT GROSS, AND WARREN SINNOTT Abstract. We consider statistical roerties of the sequence of ordered airs obtained by taking
More informationc 2009 Je rey A. Miron 3. Examples: Linear Demand Curves and Monopoly
Lecture 0: Monooly. c 009 Je rey A. Miron Outline. Introduction. Maximizing Pro ts. Examles: Linear Demand Curves and Monooly. The Ine ciency of Monooly. The Deadweight Loss of Monooly. Price Discrimination.
More informationSTABILITY OF PNEUMATIC and HYDRAULIC VALVES
STABILITY OF PNEUMATIC and HYDRAULIC VALVES These three tutorials will not be found in any examination syllabus. They have been added to the web site for engineers seeking knowledge on why valve elements
More information1.2 Solving a System of Linear Equations
1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems  Basic De nitions As noticed above, the general form of a linear system of m equations in n variables
More informationMultiperiod Portfolio Optimization with General Transaction Costs
Multieriod Portfolio Otimization with General Transaction Costs Victor DeMiguel Deartment of Management Science and Oerations, London Business School, London NW1 4SA, UK, avmiguel@london.edu Xiaoling Mei
More informationSOME PROPERTIES OF EXTENSIONS OF SMALL DEGREE OVER Q. 1. Quadratic Extensions
SOME PROPERTIES OF EXTENSIONS OF SMALL DEGREE OVER Q TREVOR ARNOLD Abstract This aer demonstrates a few characteristics of finite extensions of small degree over the rational numbers Q It comrises attemts
More information36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?
36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this
More informationSupplemental material for: Dynamic jump intensities and risk premiums: evidence from S&P500 returns and options
Sulemental material for: Dynamic jum intensities and risk remiums: evidence from S&P5 returns and otions Peter Christo ersen University of Toronto, CBS and CREATES Kris Jacobs University of Houston and
More information14.451 Lecture Notes 10
14.451 Lecture Notes 1 Guido Lorenzoni Fall 29 1 Continuous time: nite horizon Time goes from to T. Instantaneous payo : f (t; x (t) ; y (t)) ; (the time dependence includes discounting), where x (t) 2
More informationStatic and Dynamic Properties of Smallworld Connection Topologies Based on Transitstub Networks
Static and Dynamic Proerties of Smallworld Connection Toologies Based on Transitstub Networks Carlos Aguirre Fernando Corbacho Ramón Huerta Comuter Engineering Deartment, Universidad Autónoma de Madrid,
More informationAn Associative Memory Readout in ESN for Neural Action Potential Detection
g An Associative Memory Readout in ESN for Neural Action Potential Detection Nicolas J. Dedual, Mustafa C. Ozturk, Justin C. Sanchez and José C. Princie Abstract This aer describes how Echo State Networks
More informationComparing Dissimilarity Measures for Symbolic Data Analysis
Comaring Dissimilarity Measures for Symbolic Data Analysis Donato MALERBA, Floriana ESPOSITO, Vincenzo GIOVIALE and Valentina TAMMA Diartimento di Informatica, University of Bari Via Orabona 4 76 Bari,
More informationPrecalculus Prerequisites a.k.a. Chapter 0. August 16, 2013
Precalculus Prerequisites a.k.a. Chater 0 by Carl Stitz, Ph.D. Lakeland Community College Jeff Zeager, Ph.D. Lorain County Community College August 6, 0 Table of Contents 0 Prerequisites 0. Basic Set
More informationI. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
More informationPinhole Optics. OBJECTIVES To study the formation of an image without use of a lens.
Pinhole Otics Science, at bottom, is really antiintellectual. It always distrusts ure reason and demands the roduction of the objective fact. H. L. Mencken (18801956) OBJECTIVES To study the formation
More informationManaging specific risk in property portfolios
Managing secific risk in roerty ortfolios Andrew Baum, PhD University of Reading, UK Peter Struemell OPC, London, UK Contact author: Andrew Baum Deartment of Real Estate and Planning University of Reading
More informationLectures 56: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5: Taylor Series Weeks 5 Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
More informationAlgorithms for Constructing ZeroDivisor Graphs of Commutative Rings Joan Krone
Algorithms for Constructing ZeroDivisor Grahs of Commutative Rings Joan Krone Abstract The idea of associating a grah with the zerodivisors of a commutative ring was introduced in [3], where the author
More informationSoftware Cognitive Complexity Measure Based on Scope of Variables
Software Cognitive Comlexity Measure Based on Scoe of Variables Kwangmyong Rim and Yonghua Choe Faculty of Mathematics, Kim Il Sung University, D.P.R.K mathchoeyh@yahoo.com Abstract In this aer, we define
More informationCAPM, Arbitrage, and Linear Factor Models
CAPM, Arbitrage, and Linear Factor Models CAPM, Arbitrage, Linear Factor Models 1/ 41 Introduction We now assume all investors actually choose meanvariance e cient portfolios. By equating these investors
More informationPrinciples of Hydrology. Hydrograph components include rising limb, recession limb, peak, direct runoff, and baseflow.
Princiles of Hydrology Unit Hydrograh Runoff hydrograh usually consists of a fairly regular lower ortion that changes slowly throughout the year and a raidly fluctuating comonent that reresents the immediate
More informationMeasuring relative phase between two waveforms using an oscilloscope
Measuring relative hase between two waveforms using an oscilloscoe Overview There are a number of ways to measure the hase difference between two voltage waveforms using an oscilloscoe. This document covers
More informationPartial Derivatives. @x f (x; y) = @ x f (x; y) @x x2 y + @ @x y2 and then we evaluate the derivative as if y is a constant.
Partial Derivatives Partial Derivatives Just as derivatives can be used to eplore the properties of functions of 1 variable, so also derivatives can be used to eplore functions of 2 variables. In this
More information1 Short Introduction to Time Series
ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The
More informationLECTURE NOTES IN MEASURE THEORY. Christer Borell Matematik Chalmers och Göteborgs universitet 412 96 Göteborg (Version: January 12)
1 LECTURE NOTES IN MEASURE THEORY Christer Borell Matematik Chalmers och Göteborgs universitet 412 96 Göteborg (Version: January 12) 2 PREFACE These are lecture notes on integration theory for a eightweek
More informationNumber Theory Naoki Sato <ensato@hotmail.com>
Number Theory Naoki Sato 0 Preface This set of notes on number theory was originally written in 1995 for students at the IMO level. It covers the basic background material that an
More informationI. Pointwise convergence
MATH 40  NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.
More informationElementary Number Theory We begin with a bit of elementary number theory, which is concerned
CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,
More informationImplementation of Statistic Process Control in a Painting Sector of a Automotive Manufacturer
4 th International Conference on Industrial Engineering and Industrial Management IV Congreso de Ingeniería de Organización Donostia an ebastián, etember 8 th  th Imlementation of tatistic Process Control
More informationx if x 0, x if x < 0.
Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the
More informationLoad Balancing Mechanism in Agentbased Grid
Communications on Advanced Comutational Science with Alications 2016 No. 1 (2016) 5762 Available online at www.isacs.com/cacsa Volume 2016, Issue 1, Year 2016 Article ID cacsa00042, 6 Pages doi:10.5899/2016/cacsa00042
More informationCRITICAL AVIATION INFRASTRUCTURES VULNERABILITY ASSESSMENT TO TERRORIST THREATS
Review of the Air Force Academy No (23) 203 CRITICAL AVIATION INFRASTRUCTURES VULNERABILITY ASSESSMENT TO TERRORIST THREATS Cătălin CIOACĂ Henri Coandă Air Force Academy, Braşov, Romania Abstract: The
More informationModeling and Simulation of an Incremental Encoder Used in Electrical Drives
10 th International Symosium of Hungarian Researchers on Comutational Intelligence and Informatics Modeling and Simulation of an Incremental Encoder Used in Electrical Drives János Jób Incze, Csaba Szabó,
More informationAn inventory control system for spare parts at a refinery: An empirical comparison of different reorder point methods
An inventory control system for sare arts at a refinery: An emirical comarison of different reorder oint methods Eric Porras a*, Rommert Dekker b a Instituto Tecnológico y de Estudios Sueriores de Monterrey,
More informationAutomatic Search for Correlated Alarms
Automatic Search for Correlated Alarms KlausDieter Tuchs, Peter Tondl, Markus Radimirsch, Klaus Jobmann Institut für Allgemeine Nachrichtentechnik, Universität Hannover Aelstraße 9a, 0167 Hanover, Germany
More informationEfficient Training of Kalman Algorithm for MIMO Channel Tracking
Efficient Training of Kalman Algorithm for MIMO Channel Tracking Emna Eitel and Joachim Seidel Institute of Telecommunications, University of Stuttgart Stuttgart, Germany Abstract In this aer, a Kalman
More informationProbability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special DistributionsVI Today, I am going to introduce
More informationProbabilistic models for mechanical properties of prestressing strands
Probabilistic models for mechanical roerties of restressing strands Luciano Jacinto a, Manuel Pia b, Luís Neves c, Luís Oliveira Santos b a Instituto Suerior de Engenharia de Lisboa, Rua Conselheiro Emídio
More informationEffect Sizes Based on Means
CHAPTER 4 Effect Sizes Based on Means Introduction Raw (unstardized) mean difference D Stardized mean difference, d g Resonse ratios INTRODUCTION When the studies reort means stard deviations, the referred
More informationPrice Elasticity of Demand MATH 104 and MATH 184 Mark Mac Lean (with assistance from Patrick Chan) 2011W
Price Elasticity of Demand MATH 104 and MATH 184 Mark Mac Lean (with assistance from Patrick Chan) 2011W The rice elasticity of demand (which is often shortened to demand elasticity) is defined to be the
More informationCS 103X: Discrete Structures Homework Assignment 3 Solutions
CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On wellordering and induction: (a) Prove the induction principle from the wellordering principle. (b) Prove the wellordering
More informationUndergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics
Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights
More informationMore Properties of Limits: Order of Operations
math 30 day 5: calculating its 6 More Proerties of Limits: Order of Oerations THEOREM 45 (Order of Oerations, Continued) Assume that!a f () L and that m and n are ositive integers Then 5 (Power)!a [ f
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationClass Notes, Econ 8801 Lump Sum Taxes are Awesome
Class Notes, Econ 8801 Lump Sum Taxes are Awesome Larry E. Jones 1 Exchange Economies with Taxes and Spending 1.1 Basics 1) Assume that there are n goods which can be consumed in any nonnegative amounts;
More informationSimple thermodynamic systems
Simle thermodynamic systems Asaf Pe er 1 October 30, 2013 1. Different statements of the second law We have seen that Clausius defined the second law as the entroy of an isolated system cannot decrease
More informationA Simple Model of Pricing, Markups and Market. Power Under Demand Fluctuations
A Simle Model of Pricing, Markus and Market Power Under Demand Fluctuations Stanley S. Reynolds Deartment of Economics; University of Arizona; Tucson, AZ 85721 Bart J. Wilson Economic Science Laboratory;
More informationModule 5: Multiple Random Variables. Lecture 1: Joint Probability Distribution
Module 5: Multile Random Variables Lecture 1: Joint Probabilit Distribution 1. Introduction irst lecture o this module resents the joint distribution unctions o multile (both discrete and continuous) random
More informationLecture 21 and 22: The Prime Number Theorem
Lecture and : The Prime Number Theorem (New lecture, not in Tet) The location of rime numbers is a central question in number theory. Around 88, Legendre offered eerimental evidence that the number π()
More informationPredicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products
Predicate Encrytion Suorting Disjunctions, Polynomial Equations, and Inner Products Jonathan Katz Amit Sahai Brent Waters Abstract Predicate encrytion is a new aradigm for ublickey encrytion that generalizes
More informationRisk and Return. Sample chapter. e r t u i o p a s d f CHAPTER CONTENTS LEARNING OBJECTIVES. Chapter 7
Chater 7 Risk and Return LEARNING OBJECTIVES After studying this chater you should be able to: e r t u i o a s d f understand how return and risk are defined and measured understand the concet of risk
More informationMatrix Norms. Tom Lyche. September 28, Centre of Mathematics for Applications, Department of Informatics, University of Oslo
Matrix Norms Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo September 28, 2009 Matrix Norms We consider matrix norms on (C m,n, C). All results holds for
More informationMA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
More informationChapter 8  Power Density Spectrum
EE385 Class Notes 8/8/03 John Stensby Chapter 8  Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is
More informationLargeScale IP Traceback in HighSpeed Internet: Practical Techniques and Theoretical Foundation
LargeScale IP Traceback in HighSeed Internet: Practical Techniques and Theoretical Foundation Jun Li Minho Sung Jun (Jim) Xu College of Comuting Georgia Institute of Technology {junli,mhsung,jx}@cc.gatech.edu
More informationMATH10212 Linear Algebra. Systems of Linear Equations. Definition. An ndimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0534405967. Systems of Linear Equations Definition. An ndimensional vector is a row or a column
More information