Design and Analysis of Algorithms


 Ruby Randall
 1 years ago
 Views:
Transcription
1 Design and Analysis of Algorithms CSE 5311 Lecture 3 DivideandConquer Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms 1
2 Reviewing: Θnotation Definition: Θ(g(n)) = { f (n) : there exist positive constants c 1, c 2, and n 0 such that 0 c 1 g(n) f (n) c 2 g(n) for all n n 0 } Basic Manipulations: Drop loworder terms; ignore leading constants. Example: 3n n 2 5n = Q(n 3 ) CSE5311 Design and Analysis of Algorithms 2
3 Reviewing: Insertion Sort Analysis Worst case: Input reverse sorted. T( n) = n j= 2 Θ( j) =Θ ( n2 ) Average case: All permutations equally likely. [arithmetic series] T( n) = n j= 2 Θ( j/2) =Θ ( n2 ) Is insertion sort a fast sorting algorithm? Moderately so, for small n. Not at all, for large n. CSE5311 Design and Analysis of Algorithms 3
4 Reviewing: Recurrence for Merge Sort T(n) = Θ(1) if n = 1; 2T(n/2) + Θ(n) if n > 1. We shall usually omit stating the base case when T(n) = Θ(1) for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence. Next Lecture will provide several ways to find a good upper bound on T(n). CSE5311 Design and Analysis of Algorithms 4
5 Reviewing: Recursion Tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn cn/2 cn/2 cn h = lg n cn/4 cn/4 cn/4 cn/4 cn Θ(1) #leaves = n Θ(n) Total = Θ(n lg n) CSE5311 Design and Analysis of Algorithms 5
6 Solving Recurrences Recurrence The analysis of integer multiplication from last lecture required us to solve a recurrence Recurrences are a major tool for analysis of algorithms Divide and Conquer algorithms which are analyzable by recurrences. Three steps at each level of the recursion: Divide the problem into a number of subproblems that are smaller instances of the same problem. Conquer the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner. Combine the solutions to the subproblems into the solution for the original problem. CSE5311 Design and Analysis of Algorithms 6
7 Recall: Integer Multiplication Let X = A B and Y = C D where A,B,C and D are n/2 bit integers Simple Method: XY = (2 n/2 A+B)(2 n/2 C+D) Running Time Recurrence T(n) < 4T(n/2) + Θ(n) How do we solve it? CSE5311 Design and Analysis of Algorithms 7
8 Substitution Method The most general method: 1. Guess the form of the solution. 2. Verify by induction. 3. Solve for constants. Example: T(n) = 4T(n/2) + Θ(n) [Assume that T(1) = Θ(1).] Guess O(n 3 ). (Prove O and Ω separately.) Assume that T(k) ck 3 for k < n. Prove T(n) cn 3 by induction. CSE5311 Design and Analysis of Algorithms 8
9 Example of substitution T ( n ) = = = 4T 4c( n ( c cn cn / ( n 3 3 / / 2) n 2) (( 2) 3 3 c + + / + Θ(n) Θ(n) Θ(n) 2) n desired 3 Θ(n) desired residual We can imagine Θ(n)=100n. Then, whenever (c/2)n 3 100n 0, for example, if c 200 and n 1. ) residual CSE5311 Design and Analysis of Algorithms 9
10 Example We must also handle the initial conditions, that is, ground the induction with base cases. Base: T(n) = Θ(1) for all n < n 0, where n 0 is a suitable constant. For 1 n < n 0, we have Θ(1) cn 3, if we pick c big enough. This bound is not tight! CSE5311 Design and Analysis of Algorithms 10
11 A Tighter Upper Bound? We shall prove that T(n) = O(n 2 ). Assume that T(k) ck 2 for k < n: T ( n ) = 4T ( n / 2) + 100n cn cn n 2 for no choice of c > 0. Lose! CSE5311 Design and Analysis of Algorithms 11
12 A Tighter Upper Bound! IDEA: Strengthen the inductive hypothesis. Subtract a loworder term. Inductive hypothesis: T(k) c 1 k 2 c 2 k for k < n. T ( n ) = = = 4T 4( c c c c n n n ( n / ( n 2) 2) 2c ( c ( n 2)) + if c 2 > 100. Pick c 1 big enough to handle the initial conditions. / c c n n 2 n 100n + c 2 100n 2 n / 100n ) 100n CSE5311 Design and Analysis of Algorithms 12
13 Recursiontree Method A recursion tree models the costs (time) of a recursive execution of an algorithm. The recursion tree method is good for generating guesses for the substitution method. The recursiontree method can be unreliable, just like any method that uses ellipses ( ). However, the recursiontree method promotes intuition CSE5311 Design and Analysis of Algorithms 13
14 Example of Recursion Tree Solve T(n) = T(n/4) + T(n/2) + n 2 : CSE5311 Design and Analysis of Algorithms 14
15 Example of Recursion Tree Solve T(n) = T(n/4) + T(n/2) + n 2 : T(n) CSE5311 Design and Analysis of Algorithms 15
16 Example of Recursion Tree Solve T(n) = T(n/4) + T(n/2) + n 2 : n 2 T(n/4) T(n/2) CSE5311 Design and Analysis of Algorithms 16
17 Example of Recursion Tree Solve T(n) = T(n/4) + T(n/2) + n 2 : n 2 (n/4) 2 (n/2) 2 T(n/16) T(n/8) T(n/8) T(n/4) CSE5311 Design and Analysis of Algorithms 17
18 Example of Recursion Tree Solve T(n) = T(n/4) + T(n/2) + n 2 : n 2 (n/4) 2 (n/2) 2 (n/16) 2 (n/8) 2 (n/8) 2 (n/4) 2 Θ(1) CSE5311 Design and Analysis of Algorithms 18
19 Example of Recursion Tree Solve T(n) = T(n/4) + T(n/2) + n 2 : n 2 n 2 (n/4) 2 (n/2) 2 (n/16) 2 (n/8) 2 (n/8) 2 (n/4) 2 Θ(1) CSE5311 Design and Analysis of Algorithms 19
20 Example of Recursion Tree Solve T(n) = T(n/4) + T(n/2) + n 2 : n 2 (n/4) 2 (n/2) 2 (n/16) 2 (n/8) 2 (n/8) 2 (n/4) 2 n2 5 n 2 16 Θ(1) CSE5311 Design and Analysis of Algorithms 20
21 Example of Recursion Tree Solve T(n) = T(n/4) + T(n/2) + n 2 : n 2 (n/4) 2 (n/2) 2 (n/16) 2 (n/8) 2 (n/8) 2 (n/4) 2 n2 5 n n Θ(1) CSE5311 Design and Analysis of Algorithms 21
22 Example of Recursion Tree Solve T(n) = T(n/4) + T(n/2) + n 2 : n 2 (n/4) 2 (n/2) 2 (n/16) 2 (n/8) 2 (n/8) 2 (n/4) 2 n2 5 n n Θ(1) Total = n 2 = Θ(n 2 ) ( ( ) ( ) ) L 16 5 CSE5311 Design and Analysis of Algorithms geometric series
23 CSE5311 Design and Analysis of Algorithms 23 Appendix: Geometric Series x x x = L for x < x x x x x n n = L for x 1
24 The Master Method The master method applies to recurrences of the form T(n) = a T(n/b) + f (n), where a 1, b > 1, and f is asymptotically positive. CSE5311 Design and Analysis of Algorithms 24
25 Idea of Master Theorem Recursion tree: f (n) a f (n/b) f (n/b) a h = log b n f (n/b 2 ) f (n/b 2 ) f (n/b 2 ) f (n/b) f (n) a f (n/b) a 2 f (n/b 2 ) Τ (1) #leaves = a h = a log bn = n log ba n log ba Τ (1) CSE5311 Design and Analysis of Algorithms 25
26 Case (I) Compare f (n) with n log ba : 1. f (n) = O(n log ba ε ) for some constant ε > 0. f (n) grows polynomially slower than n log ba (by an n ε factor). Solution: T(n) = Θ(n log ba ). CSE5311 Design and Analysis of Algorithms 26
27 Idea of Master Theorem Recursion tree: f (n) a f (n/b) f (n/b) a h = log b n f (n/b 2 ) f (n/b 2 ) f (n/b 2 ) f (n/b) f (n) a f (n/b) a 2 f (n/b 2 ) Τ (1) f(n)= n log ba ε CASE 1: The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight. and a f(n/b)=a (n/b) log ba ε = b ε n log ba ε n log ba Τ (1) Θ(n log ba ) CSE5311 Design and Analysis of Algorithms 27
28 Case (II) Compare f (n) with n log ba : 2. f (n) = Θ(n log ba ) for some constant k 0. f (n) and n log ba grow at similar rates. Solution: T(n) = Θ(n log ba lgn). CSE5311 Design and Analysis of Algorithms 28
29 Idea of Master Theorem Recursion tree: f (n) a f (n/b) f (n/b) a h = log b n f (n/b 2 ) f (n/b 2 ) f (n/b 2 ) f (n/b) f (n) a f (n/b) a 2 f (n/b 2 ) Τ (1) f(n)=n log ba CASE 2: (k = 0) The weight is approximately the same on each of the log b n levels. and af(n/b)=a (n/b) log ba = n log ba n log ba Τ (1) Θ(n log ba lg n) CSE5311 Design and Analysis of Algorithms 29
30 Case (III) Compare f (n) with n log ba : 3. f (n) = Ω(n log ba + ε ) for some constant ε > 0. f (n) grows polynomially faster than n log ba (by an n ε factor), and f (n) satisfies the regularity condition that a f (n/b) c f (n) for some constant c < 1. Solution: T(n) = Θ( f (n) ). CSE5311 Design and Analysis of Algorithms 30
31 Idea of master theorem Recursion tree: Τ (1) f (n) f (n/b) f (n/b) a h = log b n f (n/b 2 ) f (n/b 2 ) f (n/b 2 ) f(n)= n log ba + ε a f (n/b) CASE 3: The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight. and a f(n/b)=a (n/b) log ba + ε = b ε n log ba + ε f (n) a f (n/b) a 2 f (n/b 2 ) n log ba Τ (1) Θ( f (n)) CSE5311 Design and Analysis of Algorithms 31
32 Examples Ex. T(n) = 4T(n/2) + n a = 4, b = 2 n log ba = n 2 ; f (n) = n. CASE 1: f(n) = O(n 2 ε ) for ε = 1. T(n) = Θ(n 2 ). Ex. T(n) = 4T(n/2) + n 2 a = 4, b = 2 n log ba = n 2 ; f (n) = n 2. CASE 2: f(n) = Θ(n 2 lg 0 n), that is, k = 0. T(n) = Θ(n 2 lg n). CSE5311 Design and Analysis of Algorithms 32
33 Examples Ex. T(n) = 4T(n/2) + n 3 a = 4, b = 2 n log ba = n 2 ; f (n) = n 3. CASE 3: f(n) = Ω(n 2 + ε ) for ε = 1 and 4(n/2) 3 cn 3 (reg. cond.) for c = ½<1 T(n) = Θ(n 3 ). Ex. T(n) = 4T(n/2) + n 2 /lgn a = 4, b = 2 n log ba = n 2 ; f (n) = n 2 /lgn. Master method does not apply. In particular, for every constant ε > 0, we have n ε = ω(lgn). CSE5311 Design and Analysis of Algorithms 33
DivideandConquer Algorithms Part Four
DivideandConquer Algorithms Part Four Announcements Problem Set 2 due right now. Can submit by Monday at 2:15PM using one late period. Problem Set 3 out, due July 22. Play around with divideandconquer
More informationMany algorithms, particularly divide and conquer algorithms, have time complexities which are naturally
Recurrence Relations Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally modeled by recurrence relations. A recurrence relation is an equation which
More informationCS 102: SOLUTIONS TO DIVIDE AND CONQUER ALGORITHMS (ASSGN 4)
CS 10: SOLUTIONS TO DIVIDE AND CONQUER ALGORITHMS (ASSGN 4) Problem 1. a. Consider the modified binary search algorithm so that it splits the input not into two sets of almostequal sizes, but into three
More informationCS473  Algorithms I
CS473  Algorithms I Lecture 4 The DivideandConquer Design Paradigm View in slideshow mode 1 Reminder: Merge Sort Input array A sort this half sort this half Divide Conquer merge two sorted halves Combine
More informationIntro. to the DivideandConquer Strategy via Merge Sort CMPSC 465 CLRS Sections 2.3, Intro. to and various parts of Chapter 4
Intro. to the DivideandConquer Strategy via Merge Sort CMPSC 465 CLRS Sections 2.3, Intro. to and various parts of Chapter 4 I. Algorithm Design and DivideandConquer There are various strategies we
More informationToday s Outline. Exercise. Binary Search Analysis. Linear Search Analysis. Asymptotic Analysis. Analyzing Code. Announcements. Asymptotic Analysis
Today s Outline Announcements Assignment #1 due Thurs, Oct 7 at 11:45pm Asymptotic Analysis Asymptotic Analysis CSE 7 Data Structures & Algorithms Ruth Anderson Autumn 2010 Exercise Analyzing Code bool
More informationDivide And Conquer Algorithms
CSE341T/CSE549T 09/10/2014 Lecture 5 Divide And Conquer Algorithms Recall in last lecture, we looked at one way of parallelizing matrix multiplication. At the end of the lecture, we saw the reduce SUM
More informationCSC148 Lecture 8. Algorithm Analysis Binary Search Sorting
CSC148 Lecture 8 Algorithm Analysis Binary Search Sorting Algorithm Analysis Recall definition of Big Oh: We say a function f(n) is O(g(n)) if there exists positive constants c,b such that f(n)
More informationCS473  Algorithms I
CS473  Algorithms I Lecture 9 Sorting in Linear Time View in slideshow mode 1 How Fast Can We Sort? The algorithms we have seen so far: Based on comparison of elements We only care about the relative
More informationthe recursiontree method
the recursion method recurrence into a 1 recurrence into a 2 MCS 360 Lecture 39 Introduction to Data Structures Jan Verschelde, 22 November 2010 recurrence into a The for consists of two steps: 1 Guess
More informationBinary Search. Search for x in a sorted array A.
Divide and Conquer A general paradigm for algorithm design; inspired by emperors and colonizers. Threestep process: 1. Divide the problem into smaller problems. 2. Conquer by solving these problems. 3.
More information5.4 Closest Pair of Points
5.4 Closest Pair of Points Closest Pair of Points Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them. Fundamental geometric primitive. Graphics, computer
More informationFormat of DivideandConquer algorithms:
CS 360: Data Structures and Algorithms DivideandConquer (part 1) Format of DivideandConquer algorithms: Divide: Split the array or list into smaller pieces Conquer: Solve the same problem recursively
More informationAppendix: Solving Recurrences [Fa 10] Wil Wheaton: Embrace the dark side! Sheldon: That s not even from your franchise!
Change is certain. Peace is followed by disturbances; departure of evil men by their return. Such recurrences should not constitute occasions for sadness but realities for awareness, so that one may be
More informationClass Overview. CSE 326: Data Structures. Goals. Goals. Data Structures. Goals. Introduction
Class Overview CSE 326: Data Structures Introduction Introduction to many of the basic data structures used in computer software Understand the data structures Analyze the algorithms that use them Know
More informationDivide and Conquer. Textbook Reading Chapters 4, 7 & 33.4
Divide d Conquer Textook Reading Chapters 4, 7 & 33.4 Overview Design principle Divide d conquer Proof technique Induction, induction, induction Analysis technique Recurrence relations Prolems Sorting
More informationThe Running Time of Programs
CHAPTER 3 The Running Time of Programs In Chapter 2, we saw two radically different algorithms for sorting: selection sort and merge sort. There are, in fact, scores of algorithms for sorting. This situation
More informationClosest Pair Problem
Closest Pair Problem Given n points in ddimensions, find two whose mutual distance is smallest. Fundamental problem in many applications as well as a key step in many algorithms. p q A naive algorithm
More informationPolynomials and the Fast Fourier Transform (FFT) Battle Plan
Polynomials and the Fast Fourier Transform (FFT) Algorithm Design and Analysis (Wee 7) 1 Polynomials Battle Plan Algorithms to add, multiply and evaluate polynomials Coefficient and pointvalue representation
More informationQuicksort is a divideandconquer sorting algorithm in which division is dynamically carried out (as opposed to static division in Mergesort).
Chapter 7: Quicksort Quicksort is a divideandconquer sorting algorithm in which division is dynamically carried out (as opposed to static division in Mergesort). The three steps of Quicksort are as follows:
More informationEfficiency of algorithms. Algorithms. Efficiency of algorithms. Binary search and linear search. Best, worst and average case.
Algorithms Efficiency of algorithms Computational resources: time and space Best, worst and average case performance How to compare algorithms: machineindependent measure of efficiency Growth rate Complexity
More informationIntroduction to Algorithms March 10, 2004 Massachusetts Institute of Technology Professors Erik Demaine and Shafi Goldwasser Quiz 1.
Introduction to Algorithms March 10, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Quiz 1 Quiz 1 Do not open this quiz booklet until you are directed
More informationCMPS 102 Solutions to Homework 1
CMPS 0 Solutions to Homework Lindsay Brown, lbrown@soe.ucsc.edu September 9, 005 Problem.. p. 3 For inputs of size n insertion sort runs in 8n steps, while merge sort runs in 64n lg n steps. For which
More informationAnalysis of Algorithms: The Nonrecursive Case
Analysis of Algorithms: The Nonrecursive Case Key topics: * Introduction * Generalizing Running Time * Doing a Timing Analysis * BigOh Notation * BigOh Operations * Analyzing Some Simple Programs 
More informationSorting revisited. Build the binary search tree: O(n^2) Traverse the binary tree: O(n) Total: O(n^2) + O(n) = O(n^2)
Sorting revisited How did we use a binary search tree to sort an array of elements? Tree Sort Algorithm Given: An array of elements to sort 1. Build a binary search tree out of the elements 2. Traverse
More informationRecurrences and the Complexity of Divide and Conquer Algorithms
2006 Antonio Crznig Recurrences nd the Complexity of Divide nd Conquer Algorithms Antonio Crznig Fculty of Informtics Università dell Svizzer itlin October 12, 2010 2006 Antonio Crznig Outline Anlysis
More informationThe UnionFind Problem Kruskal s algorithm for finding an MST presented us with a problem in datastructure design. As we looked at each edge,
The UnionFind Problem Kruskal s algorithm for finding an MST presented us with a problem in datastructure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints
More informationRandomized algorithms
Randomized algorithms March 10, 2005 1 What are randomized algorithms? Algorithms which use random numbers to make decisions during the executions of the algorithm. Why would we want to do this?? Deterministic
More informationCSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015
CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis Linda Shapiro Today Registration should be done. Homework 1 due 11:59 pm next Wednesday, January 14 Review math essential
More informationMergesort and Quicksort
Mergesort Mergesort and Quicksort Basic plan: Divide array into two halves. Recursively sort each half. Merge two halves to make sorted whole. mergesort mergesort analysis quicksort quicksort analysis
More informationMerge Sort. 2004 Goodrich, Tamassia. Merge Sort 1
Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Merge Sort 1 DivideandConquer Divideand conquer is a general algorithm design paradigm: Divide: divide the input data S in two disjoint subsets
More informationFaster deterministic integer factorisation
David Harvey (joint work with Edgar Costa, NYU) University of New South Wales 25th October 2011 The obvious mathematical breakthrough would be the development of an easy way to factor large prime numbers
More informationCSC 180 H1F Algorithm Runtime Analysis Lecture Notes Fall 2015
1 Introduction These notes introduce basic runtime analysis of algorithms. We would like to be able to tell if a given algorithm is timeefficient, and to be able to compare different algorithms. 2 Linear
More informationLecture 1: Course overview, circuits, and formulas
Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik
More informationMODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.
MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on
More information1 Review of Newton Polynomials
cs: introduction to numerical analysis 0/0/0 Lecture 8: Polynomial Interpolation: Using Newton Polynomials and Error Analysis Instructor: Professor Amos Ron Scribes: Giordano Fusco, Mark Cowlishaw, Nathanael
More informationIntroduction to Algorithms Review information for Prelim 1 CS 4820, Spring 2010 Distributed Wednesday, February 24
Introduction to Algorithms Review information for Prelim 1 CS 4820, Spring 2010 Distributed Wednesday, February 24 The final exam will cover seven topics. 1. greedy algorithms 2. divideandconquer algorithms
More informationCost Model: Work, Span and Parallelism. 1 The RAM model for sequential computation:
CSE341T 08/31/2015 Lecture 3 Cost Model: Work, Span and Parallelism In this lecture, we will look at how one analyze a parallel program written using Cilk Plus. When we analyze the cost of an algorithm
More information1/1 7/4 2/2 12/7 10/30 12/25
Binary Heaps A binary heap is dened to be a binary tree with a key in each node such that: 1. All leaves are on, at most, two adjacent levels. 2. All leaves on the lowest level occur to the left, and all
More informationCSE 548: Analysis of Algorithms. Lecture 2 ( DivideandConquer Algorithms: Integer Multiplication )
CSE 548: Analysis of Algorithms Lecture 2 ( DivideandConquer Algorithms: Integer Multiplication ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2015 A right trominois an
More informationData Structures. Algorithm Performance and Big O Analysis
Data Structures Algorithm Performance and Big O Analysis What s an Algorithm? a clearly specified set of instructions to be followed to solve a problem. In essence: A computer program. In detail: Defined
More information5.2 The Master Theorem
170 CHAPTER 5. RECURSION AND RECURRENCES 5.2 The Master Theorem Master Theorem In the last setion, we saw three different kinds of behavior for reurrenes of the form at (n/2) + n These behaviors depended
More informationElementary Number Theory We begin with a bit of elementary number theory, which is concerned
CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,
More informationIn mathematics, it is often important to get a handle on the error term of an approximation. For instance, people will write
Big O notation (with a capital letter O, not a zero), also called Landau's symbol, is a symbolism used in complexity theory, computer science, and mathematics to describe the asymptotic behavior of functions.
More informationLecture 3: Finding integer solutions to systems of linear equations
Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture
More informationApproximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NPCompleteness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
More informationPolynomials and Vieta s Formulas
Polynomials and Vieta s Formulas Misha Lavrov ARML Practice 2/9/2014 Review problems 1 If a 0 = 0 and a n = 3a n 1 + 2, find a 100. 2 If b 0 = 0 and b n = n 2 b n 1, find b 100. Review problems 1 If a
More informationThe Tower of Hanoi. Recursion Solution. Recursive Function. Time Complexity. Recursive Thinking. Why Recursion? n! = n* (n1)!
The Tower of Hanoi Recursion Solution recursion recursion recursion Recursive Thinking: ignore everything but the bottom disk. 1 2 Recursive Function Time Complexity Hanoi (n, src, dest, temp): If (n >
More informationData Structure [Question Bank]
Unit I (Analysis of Algorithms) 1. What are algorithms and how they are useful? 2. Describe the factor on best algorithms depends on? 3. Differentiate: Correct & Incorrect Algorithms? 4. Write short note:
More informationAnswer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )
1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the
More informationFrom Last Time: Remove (Delete) Operation
CSE 32 Lecture : More on Search Trees Today s Topics: Lazy Operations Run Time Analysis of Binary Search Tree Operations Balanced Search Trees AVL Trees and Rotations Covered in Chapter of the text From
More informationCatalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni versity.
7 Catalan Numbers Thomas A. Dowling, Department of Mathematics, Ohio State Uni Author: versity. Prerequisites: The prerequisites for this chapter are recursive definitions, basic counting principles,
More informationLecture 4 Online and streaming algorithms for clustering
CSE 291: Geometric algorithms Spring 2013 Lecture 4 Online and streaming algorithms for clustering 4.1 Online kclustering To the extent that clustering takes place in the brain, it happens in an online
More informationDiagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach.
Diagonalization Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas Ahto.Buldas@ut.ee Background One basic goal in complexity theory is to separate interesting complexity
More informationRecursive Algorithms. Recursion. Motivating Example Factorial Recall the factorial function. { 1 if n = 1 n! = n (n 1)! if n > 1
Recursion Slides by Christopher M Bourke Instructor: Berthe Y Choueiry Fall 007 Computer Science & Engineering 35 Introduction to Discrete Mathematics Sections 717 of Rosen cse35@cseunledu Recursive Algorithms
More informationFull and Complete Binary Trees
Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full
More informationLarge induced subgraphs with all degrees odd
Large induced subgraphs with all degrees odd A.D. Scott Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England Abstract: We prove that every connected graph of order
More informationAlgorithms. Margaret M. Fleck. 18 October 2010
Algorithms Margaret M. Fleck 18 October 2010 These notes cover how to analyze the running time of algorithms (sections 3.1, 3.3, 4.4, and 7.1 of Rosen). 1 Introduction The main reason for studying bigo
More informationA simple and fast algorithm for computing exponentials of power series
A simple and fast algorithm for computing exponentials of power series Alin Bostan Algorithms Project, INRIA ParisRocquencourt 7815 Le Chesnay Cedex France and Éric Schost ORCCA and Computer Science Department,
More informationPUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
More informationPage 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. P, NP, and NPComplete. PolynomialTime Algorithms
CSCE 310J Data Structures & Algorithms P, NP, and NPComplete Dr. Steve Goddard goddard@cse.unl.edu CSCE 310J Data Structures & Algorithms Giving credit where credit is due:» Most of the lecture notes
More informationNear Optimal Solutions
Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NPComplete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.
More informationrecursion, O(n), linked lists 6/14
recursion, O(n), linked lists 6/14 recursion reducing the amount of data to process and processing a smaller amount of data example: process one item in a list, recursively process the rest of the list
More information2.1 Complexity Classes
15859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Complexity classes, Identity checking Date: September 15, 2004 Scribe: Andrew Gilpin 2.1 Complexity Classes In this lecture we will look
More informationSome Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.
Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,
More informationIntroduction to Diophantine Equations
Introduction to Diophantine Equations Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles September, 2006 Abstract In this article we will only touch on a few tiny parts of the field
More informationInduction. Margaret M. Fleck. 10 October These notes cover mathematical induction and recursive definition
Induction Margaret M. Fleck 10 October 011 These notes cover mathematical induction and recursive definition 1 Introduction to induction At the start of the term, we saw the following formula for computing
More informationHOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
More informationWe can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b
In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should
More informationCS/COE 1501 http://cs.pitt.edu/~bill/1501/
CS/COE 1501 http://cs.pitt.edu/~bill/1501/ Lecture 01 Course Introduction Metanotes These notes are intended for use by students in CS1501 at the University of Pittsburgh. They are provided free of charge
More informationLecture 4: Properties of and Rules for
Lecture 4: Properties of and Rules for Asymptotic BigOh, BigOmega, and BigTheta Notation Georgy Gimel farb COMPSCI 220 Algorithms and Data Structures 1 / 13 1 Time complexity 2 BigOh rules Scaling
More informationArithmetic Operations. The real numbers have the following properties: In particular, putting a 1 in the Distributive Law, we get
Review of Algebra REVIEW OF ALGEBRA Review of Algebra Here we review the basic rules and procedures of algebra that you need to know in order to be successful in calculus. Arithmetic Operations The real
More informationSolutions of Equations in One Variable. FixedPoint Iteration II
Solutions of Equations in One Variable FixedPoint Iteration II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011
More informationSome facts about polynomials modulo m (Full proof of the Fingerprinting Theorem)
Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem) In order to understand the details of the Fingerprinting Theorem on fingerprints of different texts from Chapter 19 of the
More informationData Structures and Algorithms Written Examination
Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where
More informationDivide and Conquer: Counting Inversions
Divide and Conquer: Counting Inversions Rank Analysis Collaborative filtering matches your preference (books, music, movies, restaurants) with that of others finds people with similar tastes recommends
More informationDivideandconquer algorithms
Chapter 2 Divideandconquer algorithms The divideandconquer strategy solves a problem by: 1 Breaking it into subproblems that are themselves smaller instances of the same type of problem 2 Recursively
More informationAlgorithms Chapter 12 Binary Search Trees
Algorithms Chapter 1 Binary Search Trees Outline Assistant Professor: Ching Chi Lin 林 清 池 助 理 教 授 chingchi.lin@gmail.com Department of Computer Science and Engineering National Taiwan Ocean University
More informationCAD Algorithms. P and NP
CAD Algorithms The Classes P and NP Mohammad Tehranipoor ECE Department 6 September 2010 1 P and NP P and NP are two families of problems. P is a class which contains all of the problems we solve using
More informationML for the Working Programmer
ML for the Working Programmer 2nd edition Lawrence C. Paulson University of Cambridge CAMBRIDGE UNIVERSITY PRESS CONTENTS Preface to the Second Edition Preface xiii xv 1 Standard ML 1 Functional Programming
More informationLectures 56: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5: Taylor Series Weeks 5 Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
More informationWeek 7: Divide and Conquer
Agenda: Divide and Conquer technique Multiplication of large integers Exponentiation Matrix multiplication 1 2 Divide and Conquer : To solve a problem we can break it into smaller subproblems, solve each
More informationLecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
More informationMathematical induction. Niloufar Shafiei
Mathematical induction Niloufar Shafiei Mathematical induction Mathematical induction is an extremely important proof technique. Mathematical induction can be used to prove results about complexity of
More informationAlgorithm Design and Analysis Homework #1 Due: 5pm, Friday, October 4, 2013 TA email: ada@csie.ntu.edu.tw. === Homework submission instructions ===
Algorithm Design and Analysis Homework #1 Due: 5pm, Friday, October 4, 2013 TA email: ada@csie.ntu.edu.tw === Homework submission instructions === For Problem 1, commit your source code and a brief documentation
More informationFunctions and Equations
Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c
More informationMBA Jump Start Program
MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right
More informationCS335 Program2: ConvexHulls A DivideandConquer Algorithm 15 points Due: Tues, October 6
CS335 Program2: ConvexHulls A DivideandConquer Algorithm 15 points Due: Tues, October 6 Convex Hulls There is a complex mathematical definition of a convex hull, but the informal definition is sufficient
More informationCSE 421 Algorithms: Divide and Conquer
CSE 421 Algorithms: Divide and Conquer Summer 2011 Larry Ruzzo Thanks to Paul Beame, James Lee, Kevin Wayne for some slides hw2 empirical run times e n Plot Time vs n Fit curve to it (e.g., with Excel)
More informationMathematics 31 Precalculus and Limits
Mathematics 31 Precalculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals
More informationCritical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.
Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =
More informationDantzigWolfe bound and DantzigWolfe cookbook
DantzigWolfe bound and DantzigWolfe cookbook thst@man.dtu.dk DTUManagement Technical University of Denmark 1 Outline LP strength of the DantzigWolfe The exercise from last week... The DantzigWolfe
More informationComputer Algorithms. NPComplete Problems. CISC 4080 Yanjun Li
Computer Algorithms NPComplete Problems NPcompleteness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order
More informationQuiz 1 Solutions. (a) T F The height of any binary search tree with n nodes is O(log n). Explain:
Introduction to Algorithms March 9, 2011 Massachusetts Institute of Technology 6.006 Spring 2011 Professors Erik Demaine, Piotr Indyk, and Manolis Kellis Quiz 1 Solutions Problem 1. Quiz 1 Solutions True
More information8 Divisibility and prime numbers
8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express
More informationLecture 6 Online and streaming algorithms for clustering
CSE 291: Unsupervised learning Spring 2008 Lecture 6 Online and streaming algorithms for clustering 6.1 Online kclustering To the extent that clustering takes place in the brain, it happens in an online
More informationA Note on Maximum Independent Sets in Rectangle Intersection Graphs
A Note on Maximum Independent Sets in Rectangle Intersection Graphs Timothy M. Chan School of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1, Canada tmchan@uwaterloo.ca September 12,
More informationMath 115 Spring 2011 Written Homework 5 Solutions
. Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence
More informationArkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers
More informationMATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
More information