Experiment 1: Grating Spectroscope

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Experiment 1: Grating Spectroscope"

Transcription

1 SPECTRA White light is a mixture of all wavelengths. When white light is sent through a prism or a diffraction grating it is broken up into a continuous distribution of colors called a spectrum. The relation between wavelength and color is given in the following table. color wavelength (nm) violet blue blue-green green yellow-green yellow orange red above 630 A rainbow is a spectrum produced when sunlight is refracted through raindrops. Any thin slice of color in a continuous spectrum is called a spectrally pure color and is characterized by its wavelength. Spectrally pure colors are rare in most of our natural environment but they are easily produced in the laboratory. When an electric current is sent through a diffuse transparent gas the gas is heated and glows. If the light from such a gas is passed through a prism or diffraction grating, a discrete set of bright colors will typically be seen. When a diffraction grating is used the colors appear to be narrow lines parallel to the slits of the grating and are called spectral lines. A collection of these lines (usually in the form of a table or graph) for a gas composed of a given chemical element is called the line spectrum of the element. A very different sort of spectrum is produced by a hot opaque object like a lightbulb filament. Instead of discrete spectral lines this incandescent light source produces a broad distribution of colors. Every color in the visible range is represented in such a spectrum and the relative intensities of various colors depends on the temperature of the hot object. 3.1

2 Experiment 1: Grating Spectroscope Apparatus: CENCO grating spectroscope, variac-controlled light bulb, sodium and mercury vapor lamps. Procedure: Hold the device so that its right angle is on your left. View through the grating fixed to the aperture at the short end. Illuminate the vertical slit on the left with the light to be studied. The nominal wavelength is read on the scale to the right of the slit. A. The spectroscope is not accurately calibrated; the nominal wavelength appearing on the scale is not the true wavelength. Use the fluorescent lights in the room to make a table of true vs. nominal wavelength The actual wavelengths, in nm, are: violet blue green orange red Compare to the observed lines. Make a table of corrections to be used for subsequent measurements. B. Use the spectroscope to find the wavelengths of light from sodium and mercury vapor lamps. C. Examine the light from the filament of an unfrosted light bulb. Begin by turning the current up to a significant value but not so high that its light is painful. Use the spectroscope to compare the intensity of the violet light to that of the red light. As the current is turned down, all intensities decrease. Can you see a relative difference in the intensity of the violet light compared to the red light? Which color s intensity decreases fastest as the current is turned down? Repeat a few times to make sure of your result. D. Take the instrument home for a day or two. Look at and report your findings for light from: a gas flame, a candle flame, automobile headlights, a room lamp, commercial neon lights and the sun at midday and at sunrise or sunset (of course you should not use light directly from the disk of the sun). 3.2

3 Experiment 2 : Prism Spectrometer Apparatus: Prism spectrometer, mercury and sodium vapor lamps, hydrogen discharge tube, helium-neon laser The prism spectrometer consists of an equilateral flint prism fixed to a stand containing an adjustable slit, an objective lens that focuses the light from the slit onto the prism, and a telescope consisting of an objective lens and an adjustable ocular with built-in cross-hair. The telescope sits on a platform that is free to rotate about a vertical axis through the prism. Gross rotation angle of the telescope is changed by moving the telescope support with the hand while fine adjustments are made with a screw on the right side of the support. Angle of the telescope is measured on a principal scale and on a vernier scale equipped with a viewing lens to read minutes of arc. Procedure: A. Calibration of Angles Light enters the device through the slit. A typical experiment consists of measuring the angular positions of spectral lines produced when light has gone through the prism. This light emerges as colored images of the slit. The slit should first be opened relatively wide and placed so as to view the light from a mercury vapor lamp. The line spectra can be located by gross rotation of the telescope housing. Then close down the slit until only narrow spectral lines remain. These will often be slightly curved, forming a bow rather than a straight line. Use the fine adjust to line up the vertical cross-hair with the center of the bow of each spectral line. There will be a dim line far in the violet (404.7nm), a bright violet line (435.8nm), green (546.1nm), and a yellow doublet (577.0nm and 579.1nm). Make a table of the angular position of the telescope for each of these lines. The yellow doublet lines are so close together that, unless you feel confident that you have resolved them into two separate lines, it is better to regard them as a single line at the average wavelength. The work should be done by at least two students and the results averaged. Then do the same with a hydrogen discharge tube, recording the position of the bright red line (656.3nm) and the blue line (486.1nm). B. Mathematical Description of the Calibation You now have six spectral lines that span most of the visible spectrum. Use the pointplot function in MAPLE to graph this data and re-measure any points that look like they do not lie on a smooth curve. To use the prism spectrometer to measure the wavelength of unknown lines it is necessary to fit the data to a formula. Use the least squares fit command in MAPLE to fit the wavelengths to a polynomial in the angles. It is first necessary to convert to decimal angles. It is suggested that instead of demanding a fit directly to the angle, which is often a large number of degrees that varies only slightly over the visible range, you first subtract from all angles the angular position of the green line. Then your angular positions will be small positive and negative numbers. The fit will benefit greatly in accuracy from this procedure. When using your formula you will have to remember to 3.3

4 always make this change to any measured angles. Your formula should reproduce all of the wavelengths to an accuracy of 4nm or better. Modify the fitting procedure or return to the angle calibration if this has not been achieved. C. Making Measurements Now use the sodium vapor lamp and determine the wavelength of the bright yellow lines. Then prepare the red beam from helium-neon laser for viewing by sending the beam through a pair of crossed polarizers. These do not block all of the light since they are not 100% efficient but the little light that goes through them both will usually be dimmed sufficiently that it cannot cause damage to the eye. When using an especially strong laser it may be necessary to use three polarizers. The way to check that no damage can be done to the eye is to be sure that the beam emerging from the polarizers does not cast a visible spot on the hand or on a screen. If it is too dim to be seen in diffuse reflection it is too dim to damage the eye. Adjust the laser and/or spectrometer until the dim red beam falls on the slit. Compare your results with the known values: sodium 589.5nm, He-Ne laser 632.8nm. 3.4

5 Experiment 3 : PC Spectrometer This device, manufactured by Ocean Optics, sends light through a fiber optic cable to illuminate 600 lines of a diffraction grating. The resulting dispersed light passes through a semiconductor photodetector which produces an electrical signal that is, within limits, proportional to the light intensity. The grating and detector are mounted on a card connected directly to the pc bus inside the computer housing. A. The software is activated by clicking the OOI icon. The end of the fiber cable used as a light detector is kept screwed into the black end of a rigid container when not in use. A blue colored cylindrical screw driver is provided and it is a good idea to use this as a housing to protect the end of the cable in all applications. The container has a number of functions, including protecting the sensitive cable and providing a dust cover. Please remember to store the cable in this container when it is not in use. Fiber optic cables are glass structures that are easily damaged and cannot withstand much mechanical loading. Never clamp such a cable tightly. Unscrew the cable from the black end of the container and, keeping it inside the blue screwdriver, sample the light from the overhead fixtures. You may lightly clamp the screwdriver to a lab stand for support. Take some time to familiarize yourself with the features of this spectrometer. In particular, you should note the freeze-frame feature (camera icon), pixel width feature for averaging (summation icon), integration time (integral icon), graph scale adjust (icon with vertical and horizontal arrows) and peak locator (icon looks like a graph of a bellshaped curve with a colored vertical line running through the graph). The arrow icons move the peak indicator display over the spectrum. B. Take a spectrum of the mercury and sodium vapor lamps and the hydrogen discharge tube. Compare your results to the published values of these wavelengths as a check on the calibration of the instrument and note any discrepancies. C. Next find the wavelength of a He-Ne laser using a polarization-damped beam. Do not put an unfiltered laser beam directly into the cable. D. Take at least five spectra of the variac-controlled light bulb at different intensities. For each spectrum, note the variac setting and find the intensity at which the spectrum is most luminous and also the intensities at 450nm, 550nm, and 650nm. Find the ratios of blue/green, blue/red, and red/green. Plot the wavelength of maximum brightness vs variac setting (use the pointsplot feature in MAPLE) and comment on regularities. Do the same for the intensity ratios. 3.5

6 Spectral Lines Niels Bohr explained spectral lines as due to the relaxation of excited atoms. There are only a discrete number of stable orbits in which bound atomic electrons can move about the nucleus. When an atom absorbs energy from its environment the internal state of motion of the atom changes from its most relaxed state (called the ground state ) to one of its excited states. These states are different for different chemical elements but the same for every atom of a given element 1. It is common to diagram the states of an atom using a vertical energy scale with a horizontal line segment drawn for each state. The figure illustrates the energy level diagram for hydrogen, the simplest atom. An atom in an excited state will eventually relax into a state of lesser energy and release some of its excess energy, often in the form of electromagnetic radiation. The energy radiated depends on the difference between the energies of the initial and final atomic states. That is (3.1) energy radiated = energy of initial state - energy of final state E i - E f The radiated energy appears as a pulse of electromagnetic radiation called a photon. The energy of the photon is directly proportional to its frequency f (3.2) energy radiated = photon energy = h f where h is a constant of nature called Planck s constant, with the approximate value h = Js. Therefore, higher energy photons have larger frequencies (shorter wavelengths). The energies of atomic states are very well defined, usually to within a part in 10 5 or less, so that the frequencies (and therefore the wavelengths) of atomic radiations are correspondingly well defined. The resulting sharp spectral lines are as close as unaided nature comes to providing spectrally pure light. Problem: The first excited state of neutral sodium occurs at an energy of 2.10eV. When electrons in this state emit radiation and decay into the ground state, what wavelength radiation is formed? 1 Actually, there are slight differences in the spectra of atoms of the same element that have different numbers of neutrons in the nucleus, i.e. different isotopes of the same element. 3.6

7 What color is the resulting illumination? 3.7

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block. 1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

More information

Introduction to spectroscopy

Introduction to spectroscopy Introduction to spectroscopy How do we know what the stars or the Sun are made of? The light of celestial objects contains much information hidden in its detailed color structure. In this lab we will separate

More information

THE BOHR QUANTUM MODEL

THE BOHR QUANTUM MODEL THE BOHR QUANTUM MODEL INTRODUCTION When light from a low-pressure gas is subject to an electric discharge, a discrete line spectrum is emitted. When light from such a low-pressure gas is examined with

More information

Light, Light Bulbs and the Electromagnetic Spectrum

Light, Light Bulbs and the Electromagnetic Spectrum Light, Light Bulbs and the Electromagnetic Spectrum Spectrum The different wavelengths of electromagnetic waves present in visible light correspond to what we see as different colours. Electromagnetic

More information

Light and Spectra. COLOR λ, nm COLOR λ, nm violet 405 yellow 579 blue 436 orange 623 green 492 red 689

Light and Spectra. COLOR λ, nm COLOR λ, nm violet 405 yellow 579 blue 436 orange 623 green 492 red 689 Light and Spectra INTRODUCTION Light and color have intrigued humans since antiquity. In this experiment, you will consider several aspects of light including: a. The visible spectrum of colors (red to

More information

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

WAVELENGTH OF LIGHT - DIFFRACTION GRATING PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant

More information

GRID AND PRISM SPECTROMETERS

GRID AND PRISM SPECTROMETERS FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing

More information

1 Laboratory #5: Grating Spectrometer

1 Laboratory #5: Grating Spectrometer SIMG-215-20061: LABORATORY #5 1 Laboratory #5: Grating Spectrometer 1.1 Objective: To observe and measure the spectra of different light sources. 1.2 Materials: 1. OSA optics kit. 2. Nikon digital camera

More information

Bohr s Model and Emission Spectra of Hydrogen and Helium

Bohr s Model and Emission Spectra of Hydrogen and Helium PHYS-01 LAB-03 Bohr s Model and Emission Spectra of Hydrogen and Helium 1. Objective The objective of this experiment is to study the emission spectrum of hydrogen and to understand its origin in terms

More information

Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight

Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight Experiment #12: The Bohr Atom Purpose: To observe the visible spectrum of hydrogen and helium and verify the Bohr model of the hydrogen atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes,

More information

Emission Spectra of Elements

Emission Spectra of Elements Fall 2003 Emission Spectra of Elements Purpose: To compare and contrast the emission spectra of various gases. Investigate quantitatively the emission spectrum of hydrogen and relate it to Bohr's theory

More information

Electron Energy and Light

Electron Energy and Light Why? Electron Energy and Light How does light reveal the behavior of electrons in an atom? From fireworks to stars, the color of light is useful in finding out what s in matter. The emission of light by

More information

PRACTICE EXAM IV P202 SPRING 2004

PRACTICE EXAM IV P202 SPRING 2004 PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

Spectra of Lights: An Interactive Demonstration with Diffraction Gratings

Spectra of Lights: An Interactive Demonstration with Diffraction Gratings Grades: 4 th 12 th grade Purpose: Students will explore the properties of different types of light bulbs using diffraction grating glasses to reveal the light s unique spectra or fingerprint. The goal

More information

O6: The Diffraction Grating Spectrometer

O6: The Diffraction Grating Spectrometer 2B30: PRACTICAL ASTROPHYSICS FORMAL REPORT: O6: The Diffraction Grating Spectrometer Adam Hill Lab partner: G. Evans Tutor: Dr. Peter Storey 1 Abstract The calibration of a diffraction grating spectrometer

More information

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2 Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right

More information

Atoms Absorb & Emit Light

Atoms Absorb & Emit Light Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

Assembly & Use Instructions -- Stanford Spectrographs

Assembly & Use Instructions -- Stanford Spectrographs Assembly & Use Instructions -- Stanford Spectrographs Instructions You ll need: Spectrograph poster, diffraction grating, adhesive tape NOTE: Try not to touch the grating material, since the oils on your

More information

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

More information

Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts?

Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts? Light PSC 203 Overview In this section: What is light? What is the EM Spectrum? How is light created? What can we learn from light? In-class activity Discuss your answers in groups of 2 Think of as many

More information

BUILDING A SPECTROSCOPE

BUILDING A SPECTROSCOPE grades 6 1 2 Objective Build a simple, pocket-sized spectroscope from readily available materials and use it to examine different kinds of light sources in school, at home, and around the city. Introduction

More information

Building your own Spectroscope

Building your own Spectroscope Building your own Spectroscope 0-0.341-0.445-0.606-0.872-1.36 Lyman Balmer Paschen n=4 n=8 n=7 n=6 n=5 n=4 ENERGY/10-19 J -2.42-5.45 E 5 2 E 4 2 E 3 2 E E 5 3 4 3 n=3 n=2 (Many other transitions beyond

More information

Emission of Light & Atomic Models 1

Emission of Light & Atomic Models 1 Emission of Light & Atomic Models 1 Objective At the end of this activity you should be able to: o Explain what photons are, and be able to calculate their energies given either their frequency or wavelength.

More information

THE NATURE OF LIGHT AND COLOR

THE NATURE OF LIGHT AND COLOR THE NATURE OF LIGHT AND COLOR THE PHYSICS OF LIGHT Electromagnetic radiation travels through space as electric energy and magnetic energy. At times the energy acts like a wave and at other times it acts

More information

STUDENT SPECTROMETER. Instruction Manual and Experiment Guide for the PASCO scientific Model SP-9268A. Copyright January 1991 $7.50 012-02135F 10/03

STUDENT SPECTROMETER. Instruction Manual and Experiment Guide for the PASCO scientific Model SP-9268A. Copyright January 1991 $7.50 012-02135F 10/03 Instruction Manual and Experiment Guide for the PASCO scientific Model SP-9268A 012-02135F 10/03 STUDENT SPECTROMETER Copyright January 1991 $7.50 10101 Foothills Blvd. P.O. Box 619011 Roseville, CA 95678-9011

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

UC Irvine FOCUS! 5 E Lesson Plan

UC Irvine FOCUS! 5 E Lesson Plan UC Irvine FOCUS! 5 E Lesson Plan Title: Flame Tests Grade Level and Course: 7 th Grade Life Science, 8 th Grade Physical Science, 9-12 th Grade Chemistry Materials: Spatulas (straws cut at an angle) Sterno

More information

WHITE LIGHT AND COLORED LIGHT

WHITE LIGHT AND COLORED LIGHT grades K 5 Objective This activity offers two simple ways to demonstrate that white light is made of different colors of light mixed together. The first uses special glasses to reveal the colors that make

More information

Name Class Date. spectrum. White is not a color, but is a combination of all colors. Black is not a color; it is the absence of all light.

Name Class Date. spectrum. White is not a color, but is a combination of all colors. Black is not a color; it is the absence of all light. Exercises 28.1 The Spectrum (pages 555 556) 1. Isaac Newton was the first person to do a systematic study of color. 2. Circle the letter of each statement that is true about Newton s study of color. a.

More information

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

More information

The Shoebox spectrograph construction and lab investigations. By Timothy Grove

The Shoebox spectrograph construction and lab investigations. By Timothy Grove The Shoebox spectrograph construction and lab investigations By Timothy Grove 1 Part 1. Build your own spectrograph from flat cardboard Tools and materials: Necessary items Scrap cardboard (You will need

More information

Photosynthesis - Exercise 6 Objectives

Photosynthesis - Exercise 6 Objectives The purpose of this lab exercise will be to examine several factors involved in photosynthesis. -The effect of the intensity of light (# of photons per time) on the rate of photosynthesis and know how

More information

Experiment IV: Atomic Spectra and the Bohr model

Experiment IV: Atomic Spectra and the Bohr model P19: INTRODUCTORY PHYSICS III Experiment IV: Atomic Spectra and the Bohr model Department of Physics and Astronomy Dartmouth College 6127 Wilder Laboratory Hanover, NH 03755 USA Overview In this lab, we

More information

Flame Tests & Electron Configuration

Flame Tests & Electron Configuration Flame Tests & Electron Configuration INTRODUCTION Many elements produce colors in the flame when heated. The origin of this phenomenon lies in the arrangement, or configuration of the electrons in the

More information

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

VISIBLE SPECTROSCOPY

VISIBLE SPECTROSCOPY VISIBLE SPECTROSCOPY Visible spectroscopy is the study of the interaction of radiation from the visible part (λ = 380-720 nm) of the electromagnetic spectrum with a chemical species. Quantifying the interaction

More information

Theremino System Theremino Spectrometer Technology

Theremino System Theremino Spectrometer Technology Theremino System Theremino Spectrometer Technology theremino System - Theremino Spectrometer Technology - August 15, 2014 - Page 1 Operation principles By placing a digital camera with a diffraction grating

More information

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours) INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Practice Quiz 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is the wavelength of the longest wavelength light that can

More information

WAVES AND ELECTROMAGNETIC RADIATION

WAVES AND ELECTROMAGNETIC RADIATION WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

More information

Answer: b. Answer: a. Answer: d

Answer: b. Answer: a. Answer: d Practice Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes

More information

What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher)

What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher) What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher) Introduction: There is more to a color than a name. Color can tell us lots of information. In this lab you will use a spectrophotometer

More information

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare

More information

Preview of Period 3: Electromagnetic Waves Radiant Energy II

Preview of Period 3: Electromagnetic Waves Radiant Energy II Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How

More information

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW OVERVIEW More than ever before, Physics in the Twenty First Century has become an example of international cooperation, particularly in the areas of astronomy and cosmology. Astronomers work in a number

More information

The Nature of Electromagnetic Radiation

The Nature of Electromagnetic Radiation II The Nature of Electromagnetic Radiation The Sun s energy has traveled across space as electromagnetic radiation, and that is the form in which it arrives on Earth. It is this radiation that determines

More information

Blackbody Radiation References INTRODUCTION

Blackbody Radiation References INTRODUCTION Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt

More information

The Cosmic Perspective Seventh Edition. Light and Matter: Reading Messages from the Cosmos. Chapter 5 Reading Quiz Clickers

The Cosmic Perspective Seventh Edition. Light and Matter: Reading Messages from the Cosmos. Chapter 5 Reading Quiz Clickers Reading Quiz Clickers The Cosmic Perspective Seventh Edition Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life How do we experience light? How do light and matter interact?

More information

Teaching Time: Two 50-minute periods

Teaching Time: Two 50-minute periods Lesson Summary In this lesson, students will build an open spectrograph to calculate the angle the light is transmitted through a holographic diffraction grating. After finding the desired angles, the

More information

Full window version (looks a little nicer). Click <Back> button to get back to small framed version with content indexes.

Full window version (looks a little nicer). Click <Back> button to get back to small framed version with content indexes. Production of Light Full window version (looks a little nicer). Click button to get back to small framed version with content indexes. This material (and images) is copyrighted!. See my copyright

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

Chapter 6 Electromagnetic Radiation and the Electronic Structure of the Atom

Chapter 6 Electromagnetic Radiation and the Electronic Structure of the Atom Chapter 6 In This Chapter Physical and chemical properties of compounds are influenced by the structure of the molecules that they consist of. Chemical structure depends, in turn, on how electrons are

More information

Spectroscopy Using the Tracker Video Analysis Program

Spectroscopy Using the Tracker Video Analysis Program Spectroscopy Using the Tracker Video Analysis Program Douglas Brown Cabrillo College Aptos CA 95003 dobrown@cabrillo.edu Spectroscopy has important applications in many fields and deserves more attention

More information

1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002

1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum 1 Look around you. What do you see? You might say "people, desks, and papers." What you really see is light bouncing off people, desks, and papers. You can only see objects

More information

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 SPECTROPHOTOMETRY Absorption Measurements & their Application to Quantitative Analysis study of the interaction of light (or other electromagnetic

More information

How is LASER light different from white light? Teacher Notes

How is LASER light different from white light? Teacher Notes How is LASER light different from white light? Teacher Notes Concepts: (1) Light is a type of energy that travels as waves. [6.2.3.1.1] (2) Laser light is different from traditional light sources and must

More information

Cosmic Journey: Teacher Packet

Cosmic Journey: Teacher Packet Cosmic Journey: Teacher Packet Compiled by: Morehead State University Star Theatre with help from Bethany DeMoss Table of Contents Table of Contents 1 Corresponding Standards 2 Vocabulary 4 Sizing up the

More information

Why Use Fiber Optics For Lighting?

Why Use Fiber Optics For Lighting? Why Use Fiber Optics For Lighting? Using fiber for remote lighting has many advantages, some of which are more important for special types of applications than others. Heat Free Lighting: Since the light

More information

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves 5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

More information

Colorado State Standards Mathematics Standards 3.4 Science Standard 1, 2. Teaching Time: One 40-minute period

Colorado State Standards Mathematics Standards 3.4 Science Standard 1, 2. Teaching Time: One 40-minute period Lesson Summary Students use the spectrograph from the Building a Fancy Spectrograph lesson to gather data about light sources. Using the data they ve collected, students are able to make comparisons between

More information

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

More information

STOP for science. Light is a wave. Like waves in water, it can be characterized by a wavelength.

STOP for science. Light is a wave. Like waves in water, it can be characterized by a wavelength. INTRODUCTION Most students have encountered rainbows, either spotting them directly on those special days when the raindrops fall while the Sun still finds cloudless regions to peek through, or at least

More information

Characteristic curves of a solar cell

Characteristic curves of a solar cell Related Topics Semi-conductor, p-n junction, energy-band diagram, Fermi characteristic energy level, diffusion potential, internal resistance, efficiency, photo-conductive effect, acceptors, donors, valence

More information

Introduction to Geiger Counters

Introduction to Geiger Counters Introduction to Geiger Counters A Geiger counter (Geiger-Muller tube) is a device used for the detection and measurement of all types of radiation: alpha, beta and gamma radiation. Basically it consists

More information

After a wave passes through a medium, how does the position of that medium compare to its original position?

After a wave passes through a medium, how does the position of that medium compare to its original position? Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

More information

UNIT: Electromagnetic Radiation and Photometric Equipment

UNIT: Electromagnetic Radiation and Photometric Equipment UNIT: Electromagnetic Radiation and Photometric Equipment 3photo.wpd Task Instrumentation I To review the theory of electromagnetic radiation and the principle and use of common laboratory instruments

More information

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light 1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton

More information

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the

More information

UV/Vis Spectroscopy. Varka Evi-Maria Ph.D. Chemist AUTH Thessaloniki 2012

UV/Vis Spectroscopy. Varka Evi-Maria Ph.D. Chemist AUTH Thessaloniki 2012 UV/Vis Spectroscopy Varka Evi-Maria Ph.D. Chemist AUTH Thessaloniki 2012 Introduction of Spectroscopy The structure of new synthesised molecules or isolated compounds from natural sources in the lab must

More information

Study Guide for Exam on Light

Study Guide for Exam on Light Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used

More information

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Background theory. 1. Movement of nuclei in a diatomic molecule - oscillations and rotations. 2. Internal

More information

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics 13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Using the Spectrophotometer

Using the Spectrophotometer Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

Melting Point, Boiling Point, and Index of Refraction

Melting Point, Boiling Point, and Index of Refraction Melting Point, Boiling Point, and Index of Refraction Melting points, boiling points, and index of refractions are easily measured physical properties of organic compounds useful in product characterization

More information

Today: Chapter 27 (Color) (Maybe begin Review if time)

Today: Chapter 27 (Color) (Maybe begin Review if time) Tue Dec 22nd: Final Exam, 11.30am 1.30pm, 70 multiple-choice questions Final Exam is cumulative i.e. Chs. 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 19, 20, 22, 23, 24, 25, 26, 27 ~ 2 or 3 per chapter for

More information

Energy (J) -8E-19 -1.2E-18 -1.6E-18 -2E-18

Energy (J) -8E-19 -1.2E-18 -1.6E-18 -2E-18 Spectrophotometry Reading assignment:. http://en.wikipedia.org/wiki/beer-lambert_law Goals We will study the spectral properties of a transition metal-containing compound. We will also study the relationship

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

More information

Light and Other Radiations

Light and Other Radiations Light and Other Radiations Visible light is a form of electromagnetic radiation. X-rays, infrared, microwaves and gamma rays are other forms of this type of radiation which make up the electromagnetic

More information

Getting to Know LEDs, Applications and Solutions

Getting to Know LEDs, Applications and Solutions Getting to Know LEDs, Applications and Solutions Light-Emitting Diodes (LEDs) are a reliable means of indication compared to light sources such as incandescent and neon lamps. LEDs are solid-state devices

More information

nm cm meters VISIBLE UVB UVA Near IR 200 300 400 500 600 700 800 900 nm

nm cm meters VISIBLE UVB UVA Near IR 200 300 400 500 600 700 800 900 nm Unit 5 Chapter 13 Electrons in the Atom Electrons in the Atom (Chapter 13) & The Periodic Table/Trends (Chapter 14) Niels Bohr s Model Recall the Evolution of the Atom He had a question: Why don t the

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A single slit forms a diffraction pattern, with the first minimum at an angle of 40 from

More information

Laser Viewing Tank P2-7690

Laser Viewing Tank P2-7690 WWW.ARBORSCI.COM Laser Viewing Tank P2-7690 BACKGROUND: Exploring basic optical phenomena with s is highly engaging and more cost-effective than ever before. But beams, themselves, are invisible. Classroom

More information

Helium-Neon Laser. Figure 1: Diagram of optical and electrical components used in the HeNe laser experiment.

Helium-Neon Laser. Figure 1: Diagram of optical and electrical components used in the HeNe laser experiment. Helium-Neon Laser Experiment objectives: assemble and align a 3-mW HeNe laser from readily available optical components, record photographically the transverse mode structure of the laser output beam,

More information

Lightbulbs. How does a lightbulb work? Lightbulbs. Electromagnetic radiation. End of semester grade policy. Electric Current

Lightbulbs. How does a lightbulb work? Lightbulbs. Electromagnetic radiation. End of semester grade policy. Electric Current Pressure Lecture 17 : Incandescent lightbulbs How they work Why they are inefficient Lightbulbs How many scientists does it take to change a lightbulb? Undergraduates: None Bright light - hurts... must

More information

White paper. Lighting for Network Video Lighting Design Guide

White paper. Lighting for Network Video Lighting Design Guide White paper Lighting for Network Video Lighting Design Guide Table of contents 1. Introduction 3 2. What is light? 3 3. What is color? 3 4. What is infrared light? 4 5. Color or monochrome images? 4 6.

More information

Chapter 17: Light and Image Formation

Chapter 17: Light and Image Formation Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the

More information

SPECTROPHOTOMETRY. Blue. Orange

SPECTROPHOTOMETRY. Blue. Orange Appendix I FV /26/5 SPECTROPHOTOMETRY Spectrophotometry is an analytical technique used to measure the amount of light of a particular wavelength absorbed by a sample in solution. This measurement is then

More information

Measuring the Doppler Shift of a Kepler Star with a Planet

Measuring the Doppler Shift of a Kepler Star with a Planet Measuring the Doppler Shift of a Kepler Star with a Planet 1 Introduction The Doppler shift of a spectrum reveals the line of sight component of the velocity vector ( radial velocity ) of the object. Doppler

More information

Introduction to Fourier Transform Infrared Spectrometry

Introduction to Fourier Transform Infrared Spectrometry Introduction to Fourier Transform Infrared Spectrometry What is FT-IR? I N T R O D U C T I O N FT-IR stands for Fourier Transform InfraRed, the preferred method of infrared spectroscopy. In infrared spectroscopy,

More information

Homework #10 (749508)

Homework #10 (749508) Homework #10 (749508) Current Score: 0 out of 100 Description Homework on quantum physics and radioactivity Instructions Answer all the questions as best you can. 1. Hewitt10 32.E.001. [481697] 0/5 points

More information

LIGHT AND ELECTROMAGNETIC RADIATION

LIGHT AND ELECTROMAGNETIC RADIATION LIGHT AND ELECTROMAGNETIC RADIATION Light is a Wave Light is a wave motion of radiation energy in space. We can characterize a wave by three numbers: - wavelength - frequency - speed Shown here is precisely

More information

Energy Pathways in Earth s Atmosphere

Energy Pathways in Earth s Atmosphere BRSP - 10 Page 1 Solar radiation reaching Earth s atmosphere includes a wide spectrum of wavelengths. In addition to visible light there is radiation of higher energy and shorter wavelength called ultraviolet

More information

Estimated Answer Answer Displayed on Calculator 46.13 Final (Rounded) Answer

Estimated Answer Answer Displayed on Calculator 46.13 Final (Rounded) Answer Some Using a TI Graphing Calculator (Adapted from Principles of Chemistry Lab Manual Edwards/McKay/Sink) These instructions provide a review of basic operations on a TI Graphing Calculator. You must be

More information

Physics Open House. Faraday's Law and EM Waves Change in the magnetic field strength in coils generates a current. Electromagnetic Radiation

Physics Open House. Faraday's Law and EM Waves Change in the magnetic field strength in coils generates a current. Electromagnetic Radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic radiation: Light Infrared Ultraviolet Microwaves AM radio FM radio TV signals Cell phone signals

More information

Chapter 2: Electromagnetic Radiation Radiant Energy I

Chapter 2: Electromagnetic Radiation Radiant Energy I Chapter 2: Electromagnetic Radiation Radiant Energy I Goals of Period 2 Section 2.1: To introduce electromagnetic radiation Section 2.2: To discuss the wave model of radiant energy Section 2.3: To describe

More information