# Min-218 Fundamentals of Fluid Flow

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Excerpt from "Chap 3: Principles of Airflow," Practical Mine Ventilation Engineerg to be Pubished by Intertec Micromedia Publishing Company, Chicago, IL in March Definition of A Fluid A fluid is a substance in which molecules within are free to move relative to each other and it deforms continuously when subjected to shear stress. This fluid can be made to flow if it is acted upon by a source of energy (for example, pressure or heat) which is used by the molecules to overcome attractive forces that bind them together. This can be made clear by assug the fluid consists of layers parallel to each other and letting a force act upon one of the layers in a direction parallel to its plane (Figure 3-1). This force, divided by the area of the layer, is called shear stress. As long as this shear stress is applied, the layer will continue to move relative to its neighboring layers (Chasteau, 198). Stationary layer with zero velocity P1 P Maximum velocity Figure 3-1. Fluid flow through a pipe. Imagine a circular cross-section of pipe containing a fluid such as water. For flow to occur without slippage, the various layers must move at different velocities. The fluid layer adjacent to the pipe wall is virtually stationary, while the layers further out move at increasingly higher velocities until a maximum velocity is attained at the center (Figure 3-1). In addition, a fluid is always a continuous medium without voids. However, the properties of a fluid, e.g., density, may vary from place to place in the fluid. In the aforementioned pipe, if the neighboring layers offer no resistance to the movement of fluid, this fluid is said to be a frictionless fluid or ideal fluid, although, practically speaking, ideal fluids do not exist in nature. In many practical problems, the resistance caused by air molecule layers is either small or is not important, and therefore can be ignored. In addition to shear force, fluid also may be subjected to compressive forces. These compressive forces tend to change the volume of the fluid, and in turn its density. If the fluid yields to the effect of the compressive forces and changes its volume, it is compressible, otherwise it is incompressible. In a stationary, incompressible fluid where no shear forces are applied, pressure exerted by a column with height H (ft) with density w (lb/ft 3 ) can be calculated by, 1

2 P = wgh (3-1) where g is the local acceleration due to gravity in ft/sec. In addition to pressure, air quantity is another important measurement used to access the performance of a ventilation system. Most measurements of airflow are based on volume flow, which is the amount of air (ft 3 ) that passes through a given cross-section of an airway in a unit time (.), or cfm. This is valid as long as there is little variation in air density throughout the system, which is true in most conditions. But under certain circumstances, the composition and energy content of air do vary as it circulates through underground airways, resulting in density changes, and it is preferable to work in mass flow. Mass flow (M) is measured in the air mass (lb) passing through a specific cross-sectional area (A) in one ute, or lb/. w = mass lb volume ft 3 mass flow = volume flow = M Q lb ft3 (= M = Qw lb ) ft 3 lb lb m3 (= ) ft 3 For constant air density, Q = VA, where V is average air velocity in ft/., M = Qw = VAw lb (= ft ft3 lb ft 3 ) (3-) According to the conservation of mass, the mass flow (M) passing through all cross-sections along its length should remain constant in any continuous airway, provided there are no inflows or outflows or air or other gases, M = Q 1 w 1 = Q w = Q 3 w 3... = constant, lb (3-3) where Q 1, Q, Q 3, etc. are air volume at locations 1,, 3, etc. respectively and w 1, w, w 3, etc. are air densities at locations 1,, 3... respectively. For all practical purposes, assug air to be an incompressible flow will not cause any appreciable error, unless air velocity exceeds 19,685 ft/. at about atmospheric pressure or there is an elevation change of more than 1,400 ft (See 4.10: The Compressibility of Air).. Turbulent and Laar Flows In a flowing fluid, each particle changes its position with a certain velocity. The magnitudes and directions of the velocities of all particles may vary with position as well as with time. Streamline is used to illustrate this concept.

3 A streamline is an imaginary line in a fluid, the tangent to which gives the direction of the flow velocity at that position, as shown in Figure 3-, and the distance between two streamlines is an inverse measure of the magnitude of the velocity. If the streamlines are smoothly curved and almost parallel to each other, as illustrated in Figure 3-3, the flow is known as streamlined flow, or laar flow. On the other hand, if the streamlines are arranged haphazardly, the flow is known as turbulent flow, as illustrated in Figure 3-4. Velocity V A at Point A A B VB C D VC V D E V E Figure 3-. Streamlines showing velocity of flow at several points. Airway Wall Figure 3-3. Streamlines in a laar flow. Airway Wall Enlarged View Figure 3-4. Instantaneous picture of streamlines in turbulent flow. 3

4 If the streamline pattern of a flow remains constant with time, the flow is steady. If it does not, the flow is unsteady. In this case, a streamline picture is an instantaneous one, valid only for a particular instant of time. A greatly enlarged view of any small region of a turbulent flow shows that the flow is a randomly unsteady laar flow. If the mean flow values are unchanged over a period of time, it is called a steady turbulent flow. It was recognized earlier that the type of flow depended upon the velocity and viscosity of the fluid. It was not until the 1880s that this relationship was mathematically expressed in terms of the ratio of inertial and viscous forces by Professor Osborne Reynolds, who performed many experiments and dimension analyses, N Re = ρdv µ = DV ν (3 4) ρ is the fluid mass density (=w/g), in lb.sec/ft 4, γ =ρ/µ is kinematic viscosity, in ft /sec; µ is absolute viscosity (= ρν), in lb.sec/ft ; D is diameter of conduit, in ft; and V is velocity, in ft/sec. The Reynolds number (N Re ) is a dimensionless number in either British or SI units. If this number is less than 000, viscous forces prevail and the flow will be laar. The condition of the flow is less well defined for this number beyond 000, at which value turbulence starts to occur. It has been common practice to regard the flow as turbulent when Reynolds number is larger than 4000, Laar flow N Re <,000 Turbulent flow N Re > 4,000 Example 3-1: A ventilation shaft of diameter 5 m passes an airflow of 00 m 3 /sec at a mean density of 1. kg/m 3 and a mean temperature of 18 C (64.4 F). Detere the Reynolds number for the shaft. Solution : For air at 18 C, µ air = ( x t ) x 10 6 where t is temperature in C µ air = ( x 18) x 10 6 = x 10 6 N.sec/m Air velocity = V = Q A = 00 π (.5) ρdv N Re = = µ = m/sec 1. x 5 x x 10 6 = 3.43 x 10 6 (dimensionness) The Reynolds number indicates that the flow will be turbulent in the shaft. The same result can be obtained using British units. 3. Fluid Pressures Pressure in a fluid (gas or liquid) is developed when fluid molecules bounce around the container. Because of the vast number of molecules in a unit volume, pressure developed is always considered to be uniformly distributed over the entire volume. Such a pressure is called a static pressure, 4

5 usually expressed in force in a unit area, or lb/in (psi.). In the SI system, the unit of measure is Newton per square meter (N/m ), or Pascal (Pa). If a vertical container, with height h, contains liquid with density w (Figure 3-5), volume of the liquid is ha (ft 3 ). Since mass = volume x density, then Fluid mass = (ha)w lb A w h p = h w g Figure 3-5. Fluid pressure at the bottom of a container. The weight of the liquid will exert a force F on the base of the tube equal to mass x gravitational acceleration (g), F = hawg Re-arranging the equation, Pressure = F A = hwg psi (3 5) If the density of the fluid is given, then pressure at a point can be expressed as a column height h. 4. Bernoulli's Equation Mine ventilation normally is an example of a steady flow process in which none of the variables of flow changes with time. Transitions and losses in energy are involved in such a process. Energy changes and their mathematical expressions are basic to the calculation of e air quantity and pressure. According to Newton's Second Law, the force F used to accelerate a body must be equal to the product of the mass m of the body and its acceleration a. If this law is applied to an ideal (frictionless), incompressible (constant density) fluid Euler's Law of conservation of momentum is obtained. 5

6 Picture a fluid moving steadily through an imaginary fixed volume element xyz, in the x direction (across the yz plane), as shown in Figure 3-6. If pressure p 1 and p act upon the two opposite faces, the resultant force on the fluid in the volume element considered is: x B P y V z V1 P 1 Figure 3-6. Illustrations of Euler's Law. F = P 1 yz - P yz + Bω xyz where: B = body or mass forces per unit mass w = constant fluid density if x is very small distance, the acceleration along it is constant, a = (V - V 1 )/t where t is the time for the fluid through distance x. Since the mass of the fluid element is M = w xyz, with Newton's Law F = m a : P 1 yz P yz + Bwxyz = wxyz (V V 1 ) t or, P 1 P + Bwx = wx (V V 1 ) t (3-6) The mean velocity over the distance x is (V + V 1 )/ = x/t Substituting: P 1 P + Bw = w V V 1 This is Euler's Equation for the x-direction, also known as the momentum equation. 6

7 If the x direction is taken as vertically upwards as shown in Figure 3-7, such that P 1 & V 1 are at height Z 1 and P & V at height Z 1, the distance is x = Z Z 1. V P Z x Z 1 V P 1 1 Figure 3-7. Illustrations of Euler's Law for vertical control body. The force B per unit mass would now be due to gravitation, and B = g p 1 p gw(z 1 Z ) = w V 1 V or p 1 + w V 1 + gwz 1 = p + w V + gwz (3 7) This is Bernoulli's Equation for the ideal incompressible fluid in terms of pressure (Conservation of Momentum). The Second Law of Thermodynamics limits the directions in which energy can be transformed or transferred. It is well known that friction causes a degradation of useful "pressure" energy. So the heat will flow from a hot body to a cold body. In terms of the Second Law it is impossible for the reverse to occur, or p 1 wg + V 1 g + Z 1 = p wg + V g + Z (3 8) This is Bernoulli's Equation (in SI unit) for the ideal incompressible fluid in terms of pressure head (m). The pressures P 1 and P are referred to as static pressures (H s ), in N/m (Pa) which act in all directions regardless of the direction of the flow. The terms V 1 /g and V /g are referred to as velocity or dynamic pressures (H v ), in m/sec; Z 1 and Z are referred to as potential pressures (H z ), in m; w is density in kg/m 3 ; and g is gravitational force, 9.8 m/sec. The same equation can also be expressed in British units, 7

8 p 1 w + V 1 g + Z 1 = p w + V g + Z (3 8a) where the pressures P 1 and P are in lb/ft ; V 1 and V are in ft/.; Z 1 and Z are in ft; w is in lb/ft 3 ; and g is 3. ft/. Each term in the equation is actually specific energy, in units of ft.lb/lb, or ft. (Hartman, et al., 1997). The summation of these three pressures is referred to as the total pressure of the oncog fluid stream, also called the facing pressure, H T1 = H T H s1 + H v1 + H z1 = H s + H v + H z (3 9) Each term in the equation is a specific energy, in units of ft-lb/lb, or ft. Since ft is a measure of fluid head, these terms also can be called pressure heads, or head. 8

### Module 2: Review of Fluid Mechanics Basic Principles for Water Resources Engineering. Basic Definitions. Basic Definitions.

Module : Review of Fluid Mechanics Basic Principles for Water Resources Engineering Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Mass quantity of matter that a substance

### CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

### du u U 0 U dy y b 0 b

BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### For Water to Move a driving force is needed

RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

### Chapter 8 Fluid Flow

Chapter 8 Fluid Flow GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and use it in an operational

### 1.4 Review. 1.5 Thermodynamic Properties. CEE 3310 Thermodynamic Properties, Aug. 26,

CEE 3310 Thermodynamic Properties, Aug. 26, 2011 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### XI / PHYSICS FLUIDS IN MOTION 11/PA

Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

### When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

### Civil Engineering Hydraulics Mechanics of Fluids. Flow in Pipes

Civil Engineering Hydraulics Mechanics of Fluids Flow in Pipes 2 Now we will move from the purely theoretical discussion of nondimensional parameters to a topic with a bit more that you can see and feel

### These slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide.

Fluid Mechanics FE Review Carrie (CJ) McClelland, P.E. cmcclell@mines.edu Fluid Mechanics FE Review These slides contain some notes, thoughts about what to study, and some practice problems. The answers

### Fundamentals of Fluid Mechanics

Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

### Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

### Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

### 1. Introduction, fluid properties (1.1, and handouts)

1. Introduction, fluid properties (1.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Applications of fluid mechanics

### = 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C

Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.

### Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

### Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright

### NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

### Pipe Flow-Friction Factor Calculations with Excel

Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980

### CH-205: Fluid Dynamics

CH-05: Fluid Dynamics nd Year, B.Tech. & Integrated Dual Degree (Chemical Engineering) Solutions of Mid Semester Examination Data Given: Density of water, ρ = 1000 kg/m 3, gravitational acceleration, g

### Urban Hydraulics. 2.1 Basic Fluid Mechanics

Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able

### CE 204 FLUID MECHANICS

CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:

### Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

### Macroscopic Balances for Nonisothermal Systems

Transport Phenomena Macroscopic Balances for Nonisothermal Systems 1 Macroscopic Balances for Nonisothermal Systems 1. The macroscopic energy balance 2. The macroscopic mechanical energy balance 3. Use

### Applied Fluid Mechanics

Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture

### Distinguished Professor George Washington University. Graw Hill

Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

### Chapter 3 Process Variables. Mass and Volume

Chapter 3 Process Variables Process: to a chemical engineer, the set of tasks or operations that accomplish a chemical or material transformation to produce a product Feed or inputs: raw materials and

### Natural Convection. Buoyancy force

Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient

### Chapter 13 - Solutions

= Chapter 13 - Solutions Description: Find the weight of a cylindrical iron rod given its area and length and the density of iron. Part A On a part-time job you are asked to bring a cylindrical iron rod

### Mathematical Modeling and Engineering Problem Solving

Mathematical Modeling and Engineering Problem Solving Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with

### Introduction to basic principles of fluid mechanics

2.016 Hydrodynamics Prof. A.H. Techet Introduction to basic principles of fluid mechanics I. Flow Descriptions 1. Lagrangian (following the particle): In rigid body mechanics the motion of a body is described

### Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

### Open channel flow Basic principle

Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

### Appendix 4-C. Open Channel Theory

4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient

### Notes on Polymer Rheology Outline

1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity

### p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh

IVE1400: n Introduction to Fluid Mechanics Statics : Pressure : Statics r P Sleigh: P..Sleigh@leeds.ac.uk r J Noakes:.J.Noakes@leeds.ac.uk January 008 Module web site: www.efm.leeds.ac.uk/ive/fluidslevel1

### CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

### Kinetic Theory. Bellringer. Kinetic Theory, continued. Visual Concept: Kinetic Molecular Theory. States of Matter, continued.

Bellringer You are already familiar with the most common states of matter: solid, liquid, and gas. For example you can see solid ice and liquid water. You cannot see water vapor, but you can feel it in

### A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic

### Higher Technological Institute Civil Engineering Department. Lectures of. Fluid Mechanics. Dr. Amir M. Mobasher

Higher Technological Institute Civil Engineering Department Lectures of Fluid Mechanics Dr. Amir M. Mobasher 1/14/2013 Fluid Mechanics Dr. Amir Mobasher Department of Civil Engineering Faculty of Engineering

### Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

### 15. The Kinetic Theory of Gases

5. The Kinetic Theory of Gases Introduction and Summary Previously the ideal gas law was discussed from an experimental point of view. The relationship between pressure, density, and temperature was later

### FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

### Chapter 8: Flow in Pipes

Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

### Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

### AOE 3104 Aircraft Performance Problem Sheet 2 (ans) Find the Pressure ratio in a constant temperature atmosphere:

AOE 3104 Aircraft Performance Problem Sheet 2 (ans) 6. The atmosphere of Jupiter is essentially made up of hydrogen, H 2. For Hydrogen, the specific gas constant is 4157 Joules/(kg)(K). The acceleration

### Basic Concepts of Thermodynamics

Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and prevents possible

### 2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the

### HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

### DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 3 of 3

DOE-HDBK-1012/3-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 3 of 3 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved

### Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems

### OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid

### Basic Equations, Boundary Conditions and Dimensionless Parameters

Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

### Question 1. Problem statement. Problem solution

TP III Fluid Mechanics Problem Sheet 5: Two-phase Flows in Pipes 1 Prof. Omar K. Matar, Department of Chemical Engineering, Imperial College London, ACEX 517, o.matar@imperial.ac.uk. Question 1 Problem

### Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

### Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

### Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS

1 P a g e Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS The comparison of any physical quantity with its standard unit is called measurement. Physical Quantities All the quantities in terms of

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 7. General Energy Equation

### Fundamental Concepts in Fluid Mechanics

A significant portion of these notes summarizes various sections of Massey, but additional material from other sources is also included. Note that the notes are incomplete; they will be completed during

### is the stagnation (or total) pressure, constant along a streamline.

70 Incompressible flow (page 60): Bernoulli s equation (steady, inviscid, incompressible): p 0 is the stagnation (or total) pressure, constant along a streamline. Pressure tapping in a wall parallel to

### A Guide to Calculate Convection Coefficients for Thermal Problems Application Note

A Guide to Calculate Convection Coefficients for Thermal Problems Application Note Keywords: Thermal analysis, convection coefficients, computational fluid dynamics, free convection, forced convection.

### 01 The Nature of Fluids

01 The Nature of Fluids WRI 1/17 01 The Nature of Fluids (Water Resources I) Dave Morgan Prepared using Lyx, and the Beamer class in L A TEX 2ε, on September 12, 2007 Recommended Text 01 The Nature of

### Viscosity: The Fluids Lab Teacher Version

Viscosity: The Fluids Lab Teacher Version California Science Content Standards: 1. Motion and Forces: Newton's laws predict the motion of most objects. 1b. Students know that when forces are balanced,

### 1 The basic equations of fluid dynamics

1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which

### Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79

Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life? - car brakes - driving around a turn - walking - rubbing your hands together

### Newton s Laws of Motion

Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first

### Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

### Stress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t

Stress and Deformation Analysis Material in this lecture was taken from chapter 3 of Representing Stresses on a Stress Element One main goals of stress analysis is to determine the point within a load-carrying

### Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43

Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state

### Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:

I. OBJECTIVE OF THE EXPERIMENT. Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: 1) Viscosity of gas (cf. "Viscosity of gas" experiment)

### Compressible Fluids. Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004

94 c 2004 Faith A. Morrison, all rights reserved. Compressible Fluids Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004 Chemical engineering

### CO 2 41.2 MPa (abs) 20 C

comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

### oil liquid water water liquid Answer, Key Homework 2 David McIntyre 1

Answer, Key Homework 2 David McIntyre 1 This print-out should have 14 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

### Experiment 3 Pipe Friction

EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

### Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

### Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

### 1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.

Base your answers to questions 1 through 5 on the diagram below which represents a 3.0-kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the

I. A mechanical device shakes a ball-spring system vertically at its natural frequency. The ball is attached to a string, sending a harmonic wave in the positive x-direction. +x a) The ball, of mass M,

### A=b h= 83 in. 45ft. ft. = ft.2

The Easiest Way to Convert Units in an Algebraic Equation Physics professors teach you to convert everything into standard SI units, solve the problem, and hope the units come out right. In Chemistry and

### Physics 1114: Unit 6 Homework: Answers

Physics 1114: Unit 6 Homework: Answers Problem set 1 1. A rod 4.2 m long and 0.50 cm 2 in cross-sectional area is stretched 0.20 cm under a tension of 12,000 N. a) The stress is the Force (1.2 10 4 N)

### High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 One-dimensional Gas Dynamics (Contd.) We

### ME19b. SOLUTIONS. Feb. 11, 2010. Due Feb. 18

ME19b. SOLTIONS. Feb. 11, 21. Due Feb. 18 PROBLEM B14 Consider the long thin racing boats used in competitive rowing events. Assume that the major component of resistance to motion is the skin friction

### HEAVY OIL FLOW MEASUREMENT CHALLENGES

HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional

### Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:

Pressure Pressure is force per unit area: F P = A Pressure Te direction of te force exerted on an object by a fluid is toward te object and perpendicular to its surface. At a microscopic level, te force

### Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1

Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

### What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)

OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure

### (a) Calculate the voidage (volume fraction occupied by voids) of the bed.

SOLUTIONS TO CAPTER 6: FLOW TROUG A PACKED BED OF PARTICLES EXERCISE 6.1: A packed bed of solid particles of density 500 kg/m 3, occupies a depth of 1 m in a vessel of cross-sectional area 0.04 m. The

### Chapter 27 Static Fluids

Chapter 27 Static Fluids 27.1 Introduction... 1 27.2 Density... 1 27.3 Pressure in a Fluid... 2 27.4 Pascal s Law: Pressure as a Function of Depth in a Fluid of Uniform Density in a Uniform Gravitational

### Announcements. Dry Friction

Announcements Dry Friction Today s Objectives Understand the characteristics of dry friction Draw a FBD including friction Solve problems involving friction Class Activities Applications Characteristics

### Modeling Fluid Systems

Modeling Fluid Systems The prevalent use of fluid (hydraulic) circuitry in machines tool applications, aircraft control systems, and similar operations occurs because of such factors such as accuracy,