Entrance Conditions. Chapter 8. Islamic Azad University


 Osborn Wilcox
 1 years ago
 Views:
Transcription
1 Chapter 8 Convection: Internal Flow Islamic Azad University Karaj Branch Entrance Conditions Must distinguish between entrance and fully developed regions. Hydrodynamic Effects: Assume laminar flow with uniform velocity profile at inlet of a circular tube. Velocity boundary layer develops on surface of tube and thickens with increasing x. Inviscid region of uniform velocity shrinks as boundary layer grows. Does the centerline velocity change with increasing x? If so, how does it change? Subsequent to boundary layer merger at the centerline, the velocity profile becomes parabolic and invariant with x. The flow is then said to be hydrodynamically fully developed. How would the fully developed velocity profile differ for turbulent flow? 2
2 Mean Velocity Velocity inside a tube varies over the cross section. For every differential area da c : Overall rate of mass transfer through a tube with cross section A c : (8.1) (8.2) where u m is the mean (average) velocity! Can determine average velocity at any axial location (along the x direction), from knowledge of the velocity profile 3 Velocity Profile in a pipe Recall from fluid methanics that for laminar flow of an incompressible, constant property fluid in the fully developed region of a circular tube (pipe): (8.3a) (8.3b) (8.3c) 4
3 Thermal Considerations: Mean Temperature We can write Newton s law of cooling inside a tube, by considering a mean temperature, instead of T! (8.4) where T m is the mean (average) temperature For constant and c p, T m is defined: (8.5) 5 Fully Developed Conditions For internal flows, the temperature, T(r), as well as the mean temperature, T m generally vary in the xdirection, i.e. 6
4 Fully Developed Conditions Although T(r) changes with x, the relative shape of the temperature profile remains the same: Flow is thermally fully developed. A fully developed thermally region is possible, if one of two possible surface conditions exist : Uniform wall temperature (T s =constant) Uniform heat flux (q x =const) Thermal Entry Length : 7 Fully Developed Conditions It can be proven that for fully developed conditions, the local convection coefficient is a constant, independent of x: 8
5 Mean temperature variation along a tube We are still left with the problem of knowing how the mean temperature T m (x), varies as a function of distance, so that we can use it in Newton s law of cooling to estimate convection heat transfer. Recall from Chapter 1, page 10 that by simplifying the energy balance for flow inside a control volume For flow inside a pipe: (8.6) where T m,i and T m,o are the mean temperatures of the inlet and outlet respectively 9 Mean temperature variation along a tube P=surface perimeter For a differential control volume: (8.7) where P=surface perimeter = D for circular tube, =width for flat plate! Integration of this equation will result in an expression for the variation of T m as a function of x. 10
6 Case 1: Constant Heat Flux Integrating equation (8.7): (8.8) where P=surface perimeter = D for circular tube, =width for flat plate 11 Case 2: Constant Surface Temperature,T s =constant From eq.(8.7) with T s T m = T: Integrating for the entire length of the tube: (8.9) (8.10) where (8.11) A s is the tube surface area, A s =P.L= DL, T lm is the logmean temperature difference 12
7 Case 3: Uniform External Temperature " Replace T s by and by (the overall heat transfer coefficient, which includes contributions due to convection at the tube inner and outer surfaces, and due to conduction across the tube wall). Equations (8.9) and (8.10) become: (8.11) (8.12) 13 Reminder from Chapter 3, p. 19 lecture notes 14
8 Example (Problem 8.55) Water at a flow rate of kg/s is cooled from 70 C to 30 C by passing it through a thinwalled tube of diameter D=50 mm and maintaining a coolant at 15 C in cross flow over the tube. What is the required tube length if the coolant is air and its velocity is V=20 m/s? The heat transfer coefficients are h i =680 W/m 2.K for flow of water inside the tube and h o =83.5 W/m 2.K for a cylinder in air cross flow of 20 m/s 15 Summary ( ) We discussed fully developed flow conditions for cases involving internal flows, and we defined mean velocities and temperatures We wrote Newton s law of cooling using the mean temperature, instead of (8.4) Based on an overall energy balance, we obtained an alternative expression to calculate convection heat transfer as a function of mean temperatures at inlet and outlet. (8.6) We obtained relations to express the variation of T m with length, for cases involving constant heat flux and constant wall temperature (8.8) (8.9) 16
9 Summary ( ) We used these definitions, to obtain appropriate versions of Newton s law of cooling, for internal flows, for cases involving constant wall temperature and constant surrounding fluid temperature ( ) " In the rest of the chapter we will focus on obtaining values of the heat transfer coefficient h, needed to solve the above equations 17 Heat Transfer Correlations for Internal Flow Knowledge of heat transfer coefficient is needed for calculations shown in previous slides. " Correlations exist for various problems involving internal flow, including laminar and turbulent flow in circular and noncircular tubes and in annular flow. " For laminar flow we can derive h dependence theoretically " For turbulent flow we use empirical correlations " Recall from Chapters 6 and 7 general functional dependence 18
10 Laminar Flow in Circular Tubes 1. Fully Developed Region For cases involving uniform heat flux: (8.13) For cases involving constant surface temperature: (8.14) 19 Laminar Flow in Circular Tubes 2. Entry Region: Velocity and Temperature are functions of x Thermal entry length problem: Assumes the presence of fully developed velocity profile Combined (thermal and velocity) entry length problem: Temperature and velocity profiles develop simultaneously 20
11 Laminar Flow in Circular Tubes For constant surface temperature condition: Thermal Entry Length case or combined entry with Pr"5 (8.15) Combined Entry Length case (8.16) All properties, except s evaluated at average value of mean temperature 21 Turbulent Flow in Circular Tubes For a smooth surface and fully turbulent conditions the Dittus Boelter equation may be used for small to moderate temperature differences T s T m : (8.17) n=0.4 for heating (T s >T m ) and 0.3 for cooling (T s <T m ) For large property variations, Sieder and Tate equation: (8.18) All properties, except s evaluated at average value of mean temperature 22
12 Turbulent Flow in Circular Tubes The Gnielinski correlation takes into account the friction factor: (8.19) Friction factors may be obtained from the Moody diagram. For small Pr numbers 3x103 # Pr #5x102 (i.e. liquid metals) (8.20) (8.21) 23 Example (Problem 8.55) Repeat Problem This time the values of the heat transfer coefficients are not provided, therefore we need to estimate them. Water at a flow rate of kg/s is cooled from 70 C to 30 C by passing it through a thinwalled tube of diameter D=50 mm and maintaining a coolant at 15 C in cross flow over the tube. (a) What is the required tube length if the coolant is air and its velocity is V=20 m/s? (b) What is the required tube length if the coolant is water is V=2 m/s? 24
13 NonCircular tubes Use the concept of the hydraulic diameter: where A c is the flow crosssectional area and P the wetted perimeter! See Table 8.1 textbook for typical values of Nusselt numbers for various cross sections 25 Example (Problem 8.80) You have been asked to perform a feasibility study on the design of a blood warmer to be used during the transfusion of blood to a patient. It is desirable to heat blood taken from the bank at 15 C to a physiological temperature of 37 C, at a flow rate of 200 ml/min. The blood passes through a rectangular crosssection tube, 6.4 mm by 1.6 mm, which is sandwiched between two plates held at a constant temperature of 40 C. Compute the length of the tubing required to achieve the desired outlet conditions at the specified flow rate. Assume the flow is fully developed and the blood has the same properties as water. 26
14 27 Summary Numerous correlations exist for the estimation of the heat transfer coefficient, for various flow situations involving laminar and turbulent flow. Always make sure that conditions for which correlations are valid are applicable to your problem.! Summary of correlations in Table 8.4 of textbook 28
Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati
Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation
More informationChapter 11. Objectives
Chapter 11 Heat Exchangers Islamic Azad University Karaj Branch Objectives When you finish studying this chapter, you should be able to: Recognize numerous types of heat exchangers, and classify them,
More informationHeat transfer in Flow Through Conduits
Heat transfer in Flow Through Conduits R. Shankar Suramanian Department of Chemical and Biomolecular Engineering Clarkson University A common situation encountered y the chemical engineer is heat transfer
More informationCorrelations for Convective Heat Transfer
In many cases it's convenient to have simple equations for estimation of heat transfer coefficients. Below is a collection of recommended correlations for singlephase convective flow in different geometries
More informationTheoretical and Experimental Investigation of Heat Transfer Characteristics through a Rectangular Microchannel Heat Sink
Theoretical and Experimental Investigation of Heat Transfer Characteristics through a Rectangular Microchannel Heat Sink Dr. B. S. Gawali 1, V. B. Swami 2, S. D. Thakre 3 Professor Dr., Department of Mechanical
More informationDifferential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
More informationComparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger
International Journal of Engineering Research and Technology. ISSN 09743154 Volume 6, Number 1 (2013), pp. 3340 International Research Publication House http://www.irphouse.com Comparison of Heat Transfer
More informationCivil Engineering Hydraulics Mechanics of Fluids. Flow in Pipes
Civil Engineering Hydraulics Mechanics of Fluids Flow in Pipes 2 Now we will move from the purely theoretical discussion of nondimensional parameters to a topic with a bit more that you can see and feel
More informationFluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems
Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today
More informationA Guide to Calculate Convection Coefficients for Thermal Problems Application Note
A Guide to Calculate Convection Coefficients for Thermal Problems Application Note Keywords: Thermal analysis, convection coefficients, computational fluid dynamics, free convection, forced convection.
More informationFREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES
FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the
More informationDepartment of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
Experimental Thermal and Fluid Science 32 (2007) 92 97 www.elsevier.com/locate/etfs Studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with right
More informationHEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)
More informationFLUID FLOW Introduction General Description
FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you
More informationA LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting
TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June 5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure
More informationAN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER
International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 11, Nov 2015, pp. 1622, Article ID: IJMET_06_11_002 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=11
More informationModule 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction
Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered
More informationEXPERIMENTAL AND CFD ANALYSIS OF A SOLAR BASED COOKING UNIT
EXPERIMENTAL AND CFD ANALYSIS OF A SOLAR BASED COOKING UNIT I N T R O D U C T I O N Among the different energy end uses, energy for cooking is one of the basic and dominant end uses in developing countries.
More informationANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2
ANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2 1 M. Tech Scholar, 2 Associate Professor Department of Mechanical Engineering, Bipin
More informationChapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
More informationHEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT
HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT Rahul M. Gupta 1, Bhushan C. Bissa 2 1 Research Scholar, Department of Mechanical Engineering, Shri Ramdeobaba
More informationEXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT TWIST RATIO OF TWISTED TAPE INSERTS
INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY Vol.33 (2015), No.3, pp.158162 http://dx.doi.org/10.18280/ijht.330324 EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT
More informationDependency of heat transfer rate on the Brinkman number in microchannels
Dependency of heat transfer rate on the Brinkman number in microchannels Hee Sung Park Stokes Institute, University of Limerick, Limerick, Ireland Abstract Heat generation from electronics increases with
More informationMacroscopic Balances for Nonisothermal Systems
Transport Phenomena Macroscopic Balances for Nonisothermal Systems 1 Macroscopic Balances for Nonisothermal Systems 1. The macroscopic energy balance 2. The macroscopic mechanical energy balance 3. Use
More informationEXAMPLE: Water Flow in a Pipe
EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along
More informationHEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS
HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS P.R.Hatwar 1, Bhojraj N. Kale 2 1, 2 Department of Mechanical Engineering Dr. Babasaheb Ambedkar College of Engineering & Research,
More informationLearning Module 4  Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials.
Learning Module 4  Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials. Attachment C1. SolidWorksSpecific FEM Tutorial 1... 2 Attachment C2. SolidWorksSpecific
More informationBattery Thermal Management System Design Modeling
Battery Thermal Management System Design Modeling GiHeon Kim, Ph.D Ahmad Pesaran, Ph.D (ahmad_pesaran@nrel.gov) National Renewable Energy Laboratory, Golden, Colorado, U.S.A. EVS October 8, 8, 006 Yokohama,
More informationHead Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids
Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness
More informationHEAT TRANSFER IM0245 3 LECTURE HOURS PER WEEK THERMODYNAMICS  IM0237 2014_1
COURSE CODE INTENSITY PREREQUISITE COREQUISITE CREDITS ACTUALIZATION DATE HEAT TRANSFER IM05 LECTURE HOURS PER WEEK 8 HOURS CLASSROOM ON 6 WEEKS, HOURS LABORATORY, HOURS OF INDEPENDENT WORK THERMODYNAMICS
More informationNatural Convection. Buoyancy force
Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient
More informationDesign of a Parallel Tube Heat Exchanger
Design of a Parallel Tube Heat Exchanger The Exchanger Benzene 180 F 7500 lb/h 100 F Water: 70 F 5 ft/s The Design Equation for a Heat Exchanger Q H = UA T 2 T 1 ln T 2 T 1 = UA T lm Problem Find the Required
More informationHEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS
HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS J.Kalil basha 1,G.Karthikeyan 2, S.Karuppusamy 3 1,2 Assistant Professor, Dhanalakshmi Srinivasan
More informationInternational Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161166, MarchApril 2015
International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161166, MarchApril 2015 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):22785299 EXPERIMENTAL STUDY
More informationHeat Transfer Enhancement in a Heat Exchanger using Punched and Vcut Twisted Tape Inserts
Heat Transfer Enhancement in a Heat Exchanger using Punched and Vcut Twisted Tape Inserts Imran Quazi#1, Prof. V.R.Mohite#2 #1DPCOEMechanical Department, SPP University Pune, India imranqu azi198 7@gmail.com
More informationInternational Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 09744290 Vol.7, No.6, pp 25802587, 20142015
International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 09744290 Vol.7, No.6, pp 25802587, 20142015 Performance Analysis of Heat Transfer and Effectiveness on Laminar Flow with Effect of
More informationTWODIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW
TWODIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha
More informationExperimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations
Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations A.Satyanarayana.Reddy 1, Suresh Akella 2, AMK. Prasad 3 1 Associate professor, Mechanical Engineering
More informationThreedimensional analysis of heat transfer in a microheat sink with single phase flow
International Journal of Heat and Mass Transfer 47 (2004) 4215 4231 www.elsevier.com/locate/ijhmt Threedimensional analysis of heat transfer in a microheat sink with single phase flow J. Li a, G.P. Peterson
More informationFundamentals of Heat and Mass Transfer
2008 AGIInformation Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. SIXTH EDITION Fundamentals of Heat and Mass Transfer FRANK P. INCROPERA
More informationExperiment 3 Pipe Friction
EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A crosssectional
More informationCASLU20130193000
L3:THM.CFD.P7.06 Implementation and validation of the new RPI boiling models using STARCCM+ as CFD Platform Victor Petrov, Annalisa Manera UMICH September 30, 2013 EXECUTIVE SUMMARY This milestone is
More informationNumerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS
merical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS Abhilash Kumar 1, R. SaravanaSathiyaPrabhahar 2 Mepco Schlenk Engineering College, Sivakasi, Tamilnadu India 1,
More informationAdaptation of General Purpose CFD Code for Fusion MHD Applications*
Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA akhodak@pppl.gov Abstract Analysis of many fusion
More informationLecture 5 Hemodynamics. Description of fluid flow. The equation of continuity
1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood
More informationNumerical study of heat transfer in a finned double pipe heat exchanger
ISSN 1 7467233, England, UK World Journal of Modelling and Simulation Vol. 11 (2015) No. 1, pp. 4354 Numerical study of heat transfer in a finned double pipe heat exchanger Shiva Kumar, K. Vasudev Karanth,
More informationInvestigation of heat transfer in rectangular microchannels
International Journal of Heat and Mass Transfer 48 (2005) 1688 1704 www.elsevier.com/locate/ijhmt Investigation of heat transfer in rectangular microchannels PohSeng Lee, Suresh V. Garimella *, Dong Liu
More informationChapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any
Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass
More informationSteady Heat Conduction
Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long
More informationInternational Journal of Heat and Mass Transfer
International Journal of Heat and Mass Transfer 57 (2013) 190 201 Contents lists available at SciVerse ScienceDirect International Journal of Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ijhmt
More informationHeat Exchangers  Introduction
Heat Exchangers  Introduction Concentric Pipe Heat Exchange T h1 T c1 T c2 T h1 Energy Balance on Cold Stream (differential) dq C = wc p C dt C = C C dt C Energy Balance on Hot Stream (differential) dq
More informationLaminar Flow and Heat Transfer of HerschelBulkley Fluids in a Rectangular Duct; FiniteElement Analysis
Tamkang Journal of Science and Engineering, Vol. 12, No. 1, pp. 99 107 (2009) 99 Laminar Flow and Heat Transfer of HerschelBulkley Fluids in a Rectangular Duct; FiniteElement Analysis M. E. SayedAhmed
More informationEnhancement of heat transfer of solar air heater roughened with circular transverse RIB
Enhancement of heat transfer of solar air heater roughened with circular transverse RIB Gurpreet Singh 1, Dr. G. S. Sidhu 2 Lala Lajpat Rai Institute of Engineering and Technology, Moga Punjab, India 1,2
More informationME19b. SOLUTIONS. Feb. 11, 2010. Due Feb. 18
ME19b. SOLTIONS. Feb. 11, 21. Due Feb. 18 PROBLEM B14 Consider the long thin racing boats used in competitive rowing events. Assume that the major component of resistance to motion is the skin friction
More informationExperimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U Cut And V Cut Twisted Tape Insert
Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U Cut And V Cut Twisted Tape Insert Premkumar M Abstract Experimental investigation of heat transfer and Reynolds number
More informationSizing of triple concentric pipe heat exchanger
Sizing of triple concentric pipe heat exchanger 1 Tejas M. Ghiwala, 2 Dr. V.K. Matawala 1 Post Graduate Student, 2 Head of Department 1 Thermal Engineering, SVMIT, Bharuch392001, Gujarat, INDIA, 2 Department
More informationFlow Loss in Screens: A Fresh Look at Old Correlation. Ramakumar Venkata Naga Bommisetty, Dhanvantri Shankarananda Joshi and Vighneswara Rao Kollati
Journal of Mechanics Engineering and Automation 3 (013) 934 D DAVID PUBLISHING Ramakumar Venkata Naga Bommisetty, Dhanvantri Shankarananda Joshi and Vighneswara Rao Kollati Engineering Aerospace, MCOE,
More informationDesign of heat exchangers
Design of heat exchangers Exchanger Design Methodology The problem of heat exchanger design is complex and multidisciplinary. The major design considerations for a new heat exchanger include: process/design
More informationOpen channel flow Basic principle
Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure
More informationHeat transfer to or from a fluid flowing through a tube
Heat tranfer to or from a fluid flowing through a tube R. Shankar Subramanian A common ituation encountered by the chemical engineer i heat tranfer to fluid flowing through a tube. Thi can occur in heat
More informationcmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS
cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS A double pipe heat exchanger, in essence, consists of two concentric pipes, one fluid flowing through the inner pipe and the outer fluid flowing countercurrently
More informationCh 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79
Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life?  car brakes  driving around a turn  walking  rubbing your hands together
More informationINTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING
ISSN (ONLINE): 23213051 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING Study of forced convection heat transfer With DAQ & ANSYS First Authors Moopanar karthikeyan 1, Raote
More informationAbaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
More informationHeat and Mass Correlations
Heat and Mass Correlations Alexander Rattner, Jonathan Bohren November 13, 008 Contents 1 Dimensionless Parameters Boundary ayer Analogies  Require Geometric Similarity 3 External Flow 3 3.1 External
More informationIntegration of a fin experiment into the undergraduate heat transfer laboratory
Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. AbuMulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA Email: mulaweh@engr.ipfw.edu
More informationME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts
ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr
More informationHeat transfer in microchannels: Comparison of experiments with theory and numerical results
International Journal of Heat and Mass Transfer 48 (5) 558 56 www.elsevier.com/locate/ijhmt Heat transfer in microchannels: Comparison of experiments with theory and numerical results G. Hetsroni *, A.
More informationPractice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22
BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =
More informationAn experimental investigation of heat transfer of free convection on triangular fins in order to optimize the arrangement of fins
International Journal of Science, Technology and Society 2014; 2(5: 152160 Published online September 30, 2014 (http://www.sciencepublishinggroup.com/j/ijsts doi: 10.11648/j.ijsts.20140205.18 ISSN: 23307412
More informationThe examination rubric is: Answer THREE questions, from FIVE offered. All questions carry equal weight.
MODULE DESCRIPTOR MECHGM06 Heat Transfer and Heat Systems Code: MECHGM06 Alt. Codes(s) MECHGR06, MECHM007 Title: Heat Transfer and Heat Systems Level: M UCL Credits/ECTS: 15/6 Start: September End: March
More informationCommercial CFD Software Modelling
Commercial CFD Software Modelling Dr. Nor Azwadi bin Che Sidik Faculty of Mechanical Engineering Universiti Teknologi Malaysia INSPIRING CREATIVE AND INNOVATIVE MINDS 1 CFD Modeling CFD modeling can be
More informationDEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING
DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING Toshiharu Kagawa 1, Yukako Saisu 2, Riki Nishimura 3 and Chongho Youn 4 ABSTRACT In this paper, we developed a new laminar flow
More informationENHANCEMENT OF HEAT TRANSFER USING WIRE COIL INSERTS WITH CHORD RIBS
ENHANCEMENT OF HEAT TRANSFER USING WIRE COIL INSERTS WITH CHORD RIBS 1 P.S.Desale, 2 N.C.Ghuge 1 PG Student, Heat Power, MCERC, Nasik (India) 2 Asst. Prof., Mech. Dept., MCERC,Nasik(India) ABSTRACT From
More informationBasic Equations, Boundary Conditions and Dimensionless Parameters
Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were
More informationTHE EFFECTS OF DUCT SHAPE ON THE NUSSELT NUMBER
Mathematical and Computational pplications, Vol, No, pp 7988, 5 ssociation for Scientific Research THE EFFECTS OF DUCT SHPE ON THE NUSSELT NUMBER M Emin Erdoğan and C Erdem Imrak Faculty of Mechanical
More information4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.
CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large
More informationA MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS
A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS W. M. Torres, P. E. Umbehaun, D. A. Andrade and J. A. B. Souza Centro de Engenharia Nuclear Instituto de Pesquisas Energéticas e Nucleares
More informationDynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
More informationExperiment (13): Flow channel
Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More information2. CHRONOLOGICAL REVIEW ABOUT THE CONVECTIVE HEAT TRANSFER COEFFICIENT
ANALYSIS OF PCM SLURRIES AND PCM EMULSIONS AS HEAT TRANSFER FLUIDS M. Delgado, J. Mazo, C. Peñalosa, J.M. Marín, B. Zalba Thermal Engineering Division. Department of Mechanical Engineering University of
More informationEFFECT ON HEAT TRANSFER AND THERMAL DEVELOPMENT OF A RADIATIVELY PARTICIPATING FLUID IN A CHANNEL FLOW
INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359
More informationExergy Analysis of a Water Heat Storage Tank
Exergy Analysis of a Water Heat Storage Tank F. Dammel *1, J. Winterling 1, K.J. Langeheinecke 3, and P. Stephan 1,2 1 Institute of Technical Thermodynamics, Technische Universität Darmstadt, 2 Center
More informationChapter 13 OPENCHANNEL FLOW
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGrawHill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGrawHill Companies, Inc. Permission required
More informationNUMERICAL ANALYSIS FOR TWO PHASE FLOW DISTRIBUTION HEADERS IN HEAT EXCHANGERS
NUMERICAL ANALYSIS FOR TWO PHASE FLOW DISTRIBUTION HEADERS IN HEAT EXCHANGERS B.Babu 1, Florence.T 2, M.Punithavalli 3, B.R.Rohit 4 1 Assistant professor, Department of mechanical engineering, Rathinam
More informationEffect of design parameters on temperature rise of windings of dry type electrical transformer
Effect of design parameters on temperature rise of windings of dry type electrical transformer Vikas Kumar a, *, T. Vijay Kumar b, K.B. Dora c a Centre for Development of Advanced Computing, Pune University
More informationFluid flow in circular and noncircular pipes is commonly encountered in
cen72367_ch08.qxd 11/4/04 7:13 PM Page 321 FLOW IN PIPES CHAPTER 8 Fluid flow in circular and noncircular pipes is commonly encountered in practice. The hot and cold water that we use in our homes is pumped
More informationViscous flow in pipe
Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum  NavierStokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................
More informationMercury Flow through a Long Curved Pipe
Mercury Flow through a Long Curved Pipe Wenhai Li & Foluso Ladeinde Department of Mechanical Engineering Stony Brook University Summary The flow of mercury in a long, curved pipe is simulated in this task,
More informationINTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)
INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume
More informationFundamentals of Fluid Mechanics
Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department
More informationNUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics
More informationKeywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction
Heat transfer augmentation in rectangular channel using four triangular prisms arrange in staggered manner Manoj Kumar 1, Sunil Dhingra 2, Gurjeet Singh 3 1 Student, 2,3 Assistant Professor 1.2 Department
More informationCFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER
International Journal of Advancements in Research & Technology, Volume 1, Issue2, July2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)
More informationCorrugated Tubular Heat Exchangers
Corrugated Tubular Heat Exchangers HEAT EXCHANGERS for the 21st CENTURY Corrugated Tubular Heat Exchangers (CTHE) Corrugated Tube Heat Exchangers are shell and tube heat exchangers which use corrugated
More informationHEAVY OIL FLOW MEASUREMENT CHALLENGES
HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional
More informationAirways Resistance and Airflow through the Tracheobronchial Tree
Airways Resistance and Airflow through the Tracheobronchial Tree Lecturer: Sally Osborne, Ph.D. Department of Cellular & Physiological Sciences Email: sosborne@interchange.ubc.ca Useful links: www.sallyosborne.com
More informationEffect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure
Universal Journal of Mechanical Engineering (1): 833, 014 DOI: 10.13189/ujme.014.00104 http://www.hrpub.org Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure Alireza Falahat
More informationHeattransferina tankintank combi store
Søren Knudsen Heattransferina tankintank combi store DANMARKS TEKNISKE UNIVERSITET Rapport BYG DTU R025 2002 ISSN 16012917 ISBN 8778770831 1 Contents Contents...1 Preface...2 Summary...3 1. Introduction...4
More information