Benzene does not undergo electrophilic addition. It undergoes electrophilic aromatic substitution maintaining the aromatic core

Size: px
Start display at page:

Download "Benzene does not undergo electrophilic addition. It undergoes electrophilic aromatic substitution maintaining the aromatic core"

Transcription

1 Substitution Reactions of Benzene and Its Derivatives Benzene does not undergo electrophilic addition It undergoes electrophilic aromatic substitution maintaining the aromatic core Electrophilic aromatic substitution replaces a proton on benzene with another electrophile 1

2 electrophilic aromatic substitution 2

3 Electrophilic Aromatic Substitution 3

4 Halogenation of Benzene Benzene s electrons participate as a Lewis base in reactions with Lewis acids Lewis acid: electron pair acceptor Lewis base: electron pair donor The product is formed by loss of a proton, which is replaced by a halogen 4

5 Bromination of Aromatic Rings Benzene s electrons participate as a Lewis base in reactions with Lewis acids The product is formed by loss of a proton, which is replaced by bromine FeBr 3 is added as a catalyst to polarize the bromine reagent Br FeBr + Br HBr 5

6 Bromine Polarization 6

7 Mechanism 1 Diagram the mechanism for the bromination of benzene and note the formation of the carbocation: 7

8 Example 1 Draw and name the three possible products of the bromination of toluene (not including HBr). 8

9 Chlorination of Aromatic Rings Cl FeCl + Cl HCl Same mechanism as Br 2 with FeBr 3 9

10 Iodination of Aromatic Rings I 2 + I CuCl 2 HI Iodine is unreactive towards aromatic rings Oxidizing agents must be added to make reaction go (H 2 O 2 or CuCl 2 ) Oxidizing agents oxidize I 2 to a usable form (electrohphillic) that reacts as if it were I + 10

11 Mechanism 2: Iodination of Aromatic Rings I Cu 2+ 2 I Cu + + I+ I 2 + I H I CuCl 2 I + HI 11

12 Nitration of Aromatic Rings HNO 3 H 2 SO 4 NO 2 H2O Electrophile is the nitronium ion (NO 2+ ) Generated from HNO 3 by protonation and loss of water 12

13 Mechanism 3: Nitration of Aromatic Rings An electrophile must first be generated by treating concentrated nitric acid with concentrated sulfuric acid H O NO 2 + H 2 SO 4 H O H NO 2 + HSO 4 NO 2 H 2 O nitronium ion 13

14 Mechanism 3: Nitration of Aromatic Rings The nitronium electrophile is attacked by the benzene ring (nucleophile) NO2 + NO2 NO2 H2SO4 14

15 Sulfonation of Aromatic Rings SO 3 H 2 SO 4 SO 2 OH + H 2 O Fuming sulfuric acid combination of SO 3 and H 2 SO 4 Electrophile is HSO 3+ or SO 3 Reaction is reversible Favored in forward direction with strong acid Favored in reverse direction with hot dilute aqueous acid 15

16 Mechanism 4: Sulfonation of Aromatic Rings O O S + O H O O + H O S OH S + + O O O O O S O OH + O O H S + O O O S OH + H O O S OH O SO 3 H + H 2 SO 4 16

17 Conversion of sulfonic acids Heating with NaOH at 300 ºC followed by neutralization with acid replaces the SO 3 H group with an OH SO 3 H 1. NaOH, 300 o 2.H 3 O OH No mechanism 17

18 Friedel-Crafts Reaction Cl + CH3 CHCH 3 CH 3 AlCl 3 CHCH 3 + HCl benzene 2-chloropropane isopropylbenzene 18

19 Mechanism 5: Friedel-Crafts Reaction Cl AlCl 3 HCl + + Cl + AlCl Cl--AlCl H Cl--AlCl3 - + HCl + AlCl 3 19

20 Friedel-Crafts Reaction (Alkylation of Aromatic Rings) the electrophile is a carbocation, R + only alkyl halides can be used aryl halides and vinylic halides do not react. will not occur on aromatic rings substituted by electron withdrawing substituents can t eat just one! It s hard to stop after one substitution skeletal rearrangements of the alkyl group often occur when using primary alkyl halides 20

21 Non-reactive 21

22 Ring Deactivators 22

23 Example 2: Friedel-Crafts Reaction Diagram the mechanism for the electrophilic substitution of benzene by 2-chloropentane: 23

24 Friedel-Crafts Reaction Multiple substitutions: Reaction of benzene with 2-chloro- 2methylpropane. Polyalkylation Cl + CH3 CCH 3 C(CH 3 ) 3 AlCl 3 + C(CH 3 ) 3 HCl CH 3 C(CH 3 ) 3 Major product 24

25 Friedel-Crafts Reaction Skeletal rearrangements in Friedel-Crafts reactions (hydride shift): Will rearrange to form more stable carbocation intermediates CH 3 CH 2 CH 2 CH 2 Cl Major product CH 3 CHCH 2 CH 3 AlCl 3 sec-butylbenzene + CH 2 CH 2 CH 2 CH 3 HCl Butylbenzene 25

26 Friedel-Crafts Reaction Skeletal rearrangements in Friedel-Crafts reactions (alkyl shift): Will rearrange to form more stable carbocation intermediates + Cl AlCl 3 HCl 1-Chloro-2,2- dimethylpropane (1,1-Dimethylpropyl)- benzene 26

27 Example 3: Which of the following alkyl halides would you expect to undergo Friedel-Crafts reaction without rearrangement? Chloroethane 2-chlorobutane 1-chloropropane 1-chloro-2,2-dimethylpropane Chlorocyclohexane 27

28 Only alkyl halides can be used!! Friedel-Crafts Alkylation Summary Will not occur on aromatic rings substituted by electron withdrawing substituents Carbonyl and amino groups Will have polyalkylation Will have rearrangement to form more stable carbocation intermediate Hydride shift or methyl shift You need to know the mechanism!!! 28

29 Friedel-Crafts Acylation Reaction of benzene with a carboxylic acid chloride, RCOCl in the presence of AlCl 3 Note: the acyl cation does not undergo rearrangement. It also is not prone to multiple substitutions. O O + AlCl 3 CH 3 CH 2 CCl C CH 2 CH 3 HCl 29

30 Friedel-Crafts Acylation After acylation we can do a hydrogenation to get desired alkylated product AlCl3 HCl H2 Pd 30

31 Mechanism 6: Friedel-Crafts Acylation Cl O + AlCl 3 Acyl cation H 3 C C + O CH O + 3 C + Cl--AlCl3 - O + H 3 C C + O + H Cl--AlCl3 - O + HCl + AlCl 3 31

32 Substituent Effects in Aromatic Rings Substituents can cause a compound to be (much) more or (much) less reactive than benzene Substituents affect the orientation of the reaction the positional relationship is controlled ortho- and para-directing activators, orthoand para-directing deactivators, and metadirecting deactivators 32

33 33

34 34

35 Origins of Substituent Effects An interplay of inductive effects and resonance effects Inductive effect - withdrawal or donation of electrons through a bond (comparative electronegativity) Resonance effect - withdrawal or donation of electrons through a bond due to the overlap of a p orbital on the substituent with a p orbital on the aromatic ring 35

36 Inductive Effects Controlled by electronegativity and the polarity of bonds in functional groups Halogens, C=O, CN, and NO 2 withdraw electrons through bond connected to ring Alkyl groups donate electrons 36

37 37

38 Resonance Effects Electron Withdrawal C=O, CN, NO 2 substituents withdraw electrons from the aromatic ring by resonance electrons flow from the rings to the substituents 38

39 Resonance Effects Electron Donation Halogen, OH, alkoxyl (OR), and amino substituents donate electrons electrons flow from the substituents to the ring Effect is greatest at ortho and para 39

40 Contrasting Effects Halogen, OH, OR, withdraw electrons inductively so that they deactivate the ring Resonance interactions are generally weaker, affecting orientation The strongest effects dominate 40

41 Activating groups donate electrons to the ring, stabilizing the Wheland intermediate (carbocation) An Explanation of Substituent Effects Deactivating groups withdraw electrons from the ring, destabilizing the Wheland intermediate 41

42 42

43 Ortho- and Para-Directing Activators: Alkyl Groups Alkyl groups activate: direct further substitution to positions ortho and para to themselves Alkyl group is most effective in the ortho and para positions 43

44 44

45 Ortho- and Para-Directing Activators: OH and NH 2 Alkoxyl, and amino groups have a strong, electron-donating resonance effect Most pronounced at the ortho and para positions 45

46 46

47 Ortho- and Para-Directing Deactivators: Halogens Electron-withdrawing inductive effect outweighs weaker electron-donating resonance effect Resonance effect is only at the ortho and para positions, stabilizing carbocation intermediate 47

48 48

49 Meta-Directing Deactivators Inductive and resonance effects reinforce each other Ortho and para intermediates destabilized by deactivation from carbocation intermediate Resonance cannot produce stabilization 49

50 50

51 Summary Table: Effect of Substituents in Aromatic Substitution 51

52 52

53 Is it ortho/para or meta directing????? All ortho- and para- directors have a lone pair of electrons on the atom directly attached to the ring (with the exception of alkyl, aryl, and CH=CHR groups). All meta- directors have a positive charge or a partial positive charge on the atom attached to the ring. 53

54 In Summary: All activating substituents are ortho/para directors The weakly deactivating halogens are ortho/para directors All other deactivating substituents are meta directors 54

55 CH 3 Example 4: + Br 2 FeCl 3 NO 2 Cl 2 toluene FeCl 3 nitrobenzene Br + Cl 2 FeCl 3 O C CH 3 HNO 3 bromobenzene H 2 SO 4 benzaldehyde 55

56 Example 5: What product(s) would result from the nitration of each of the following compounds? propylbenzene benzenesulfonic acid iodobenzene benzaldehyde cyclohexylbenzene benzonitrile 56

57 Trisubstituted Benzenes: Additivity of Effects If the directing effects of the two groups are the same, the result is additive 57

58 Substituents with Opposite Effects If the directing effects of two groups oppose each other, the more powerful activating group decides the principal outcome Usually gives mixtures of products 58

59 Meta-Disubstituted Compounds Are Unreactive The reaction site is too hindered To make aromatic rings with three adjacent substituents, it is best to start with an ortho-disubstituted compound 59

60 60

61 OCH 3 Example 6: Br 2 Br FeBr 3 NH 2 Br Br 2 FeBr 3 Cl NO 2 Br 2 FeBr 3 61

62 Nucleophilic Aromatic Substitution Aryl halides with electron-withdrawing substituents ortho and para react with nucleophiles Form addition intermediate (Meisenheimer complex) that is stabilized by electron-withdrawal Halide ion is lost O 2 N Cl NO OH O 2 N OH NO 2 2. H 3 O + NO 2 2,4,6-trinitrochlorobenzene NO 2 2,4,6-trinitrophenol 62

63 Mechanism 7: Nucleophilic Aromatic Substitution Cl NO C OH + - OH + NO 2 Cl Cl Cl - OH OH +.. C NO 2 NO 2 OH NO 2 + Cl 63

64 Cl + - OH 130 C OH + Cl NO 2 NO 2 o-chloronitrobenzene Cl NO OH 130 C HO NO 2 + Cl p-chloronitrobenzene Cl NO OH 130 C NR m-chloronitrobenzene 64

65 Nucleophilic Aromatic Substitution Br Na + - NH2 NH 2 NaBr NH 3 + No Mechanism 65

66 Electrophilic and Nucleophilic Substitution Electrophilic Sub Favored by electron donating substituents Stabilize carbocation intermediate Nucleophilic Sub Favored by electron withdrawing substituents Stabilize carbanion intermediate 66

67 Bromination of Alkylbenzene Side Chains Reaction of an alkylbenzene with N-bromosuccinimide (NBS) and benzoyl peroxide (radical initiator) introduces Br into the side chain 67

68 Bromination of Alkylbenzene Side Chains Abstraction of a benzylic hydrogen atom generates an intermediate benzylic radical Reacts with Br 2 to yield product Br radical cycles back into reaction to carry chain No Mechanism 68

69 Oxidation of Aromatic Compounds Alkyl side chains can be oxidized to CO 2 H by strong reagents such as KMnO 4 and Na 2 Cr 2 O 7 if they have a C-H next to the ring Converts an alkylbenzene into a benzoic acid, Ar R Ar CO 2 H 69

70 Example 7: KMnO 4 H 2 O O 2 N KMnO 4 H 2 O KMnO 4 H 2 O 70

71 Reduction of Aromatic Compounds Aromatic rings are inert to catalytic hydrogenation under conditions that reduce alkene double bonds Can selectively reduce an alkene double bond in the presence of an aromatic ring Reduction of an aromatic ring requires more powerful reducing conditions (high pressure or rhodium catalysts) 71

72 Reduction of Aryl Alkyl Ketones Aromatic ring activates neighboring carbonyl group toward reduction Ketone is converted into an alkylbenzene by catalytic hydrogenation over Pd catalyst 72

73 Reduction of Aryl Nitro Compounds NO 2 Fe, H3O + - OH NH 2 NO 2 SnCl2, H3O + - OH NH 2 NO 2 H2, Pd/C EtOH NH 2 73

74 Reduction of Aromatic Ring or H 2 /Pt in ethanol 2000 psi, 25 o C H 2 /(Rh/C) in ethanol 1 atm, 25 o C 74

75 Synthesis Strategies These syntheses require planning and consideration of alternative routes It s important to pay attention to the order in which substituents are placed on the ring meta or or ortho/para directing When should an added substituent be modified? 75

76 Example 8: Synthesize the following 1. m-bromobenzenesulfonic acid from benzene 2. p-bromobenzenesulfonic acid from benzene 3. p-propylbenzenesulfonic acid from benzene 4. 2-bromo-4-ethylphenol from benzene 76

4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions 9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic ring Some substituents activate the ring, making it more reactive than benzene

More information

Chapter 16: Chemistry of Benzene: Electrophilic Aromatic Substitution. Let us look at bromination: δ+ δ Br Br FeBr 3 Br Br FeBr 3

Chapter 16: Chemistry of Benzene: Electrophilic Aromatic Substitution. Let us look at bromination: δ+ δ Br Br FeBr 3 Br Br FeBr 3 Chapter 16: Chemistry of Benzene: lectrophilic Aromatic Substitution lectrophilic positively charged species searching for electron density Aromatic benzene ring with a high electron density Substitution

More information

Electrophilic Aromatic Substitution Reactions

Electrophilic Aromatic Substitution Reactions Electrophilic Aromatic Substitution Reactions, Course Notes Archive, 1 Electrophilic Aromatic Substitution Reactions An organic reaction in which an electrophile substitutes a hydrogen atom in an aromatic

More information

Benzene and aromatic compounds (McMurry Ch. 15 & 16) The resonance hybrid model explains these properties of benzene:

Benzene and aromatic compounds (McMurry Ch. 15 & 16) The resonance hybrid model explains these properties of benzene: Benzene and aromatic compounds (McMurry Ch. 15 & 16) C 6 H 6 is an unusually stable molecule that does NOT react like alkenes do A model was proposed by Kekule in 1865: The resonance hybrid model explains

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution Electrophilic substitution is the typical reaction type for aromatic rings. Generalized electrophilic aromatic substitution: E E Electrophile Lewis acid: may be or neutral.

More information

CHEM 211 CHAPTER 16 - Homework

CHEM 211 CHAPTER 16 - Homework CHEM 211 CHAPTER 16 - Homework SHORT ANSWER Consider the Friedel-Crafts alkylation reaction below to answer the following question(s): 1. Refer to the reaction above. Draw the structure of the electrophilic

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution: a reaction in which the hydrogen atom of an aromatic ring is replaced as a result of an electrophilic attack on the aromatic ring

More information

Benzene Benzene is best represented as a resonance hybrid:

Benzene Benzene is best represented as a resonance hybrid: Electrophilic Aromatic Substitution (EAS) is a substitution reaction usually involving the benzene ring; more specifically it is a reaction in which the hydrogen atom of an aromatic ring is replaced as

More information

CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway. CHAPTER 14 Substitution Reactions of Aromatic Compounds

CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway. CHAPTER 14 Substitution Reactions of Aromatic Compounds CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway "Organic Chemistry" by Maitland Jones, 4 th edition Chapter 14 Homework: 1, 2, 5, 7, 13, 19, 20, 23, 26, 27, 28, 30, 31, 34, 35, 36, 41, 46,

More information

REACTIONS OF AROMATIC COMPOUNDS

REACTIONS OF AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: REACTIONS OF AROMATIC COMPOUNDS 1. Predict the product(s) of Electrophilic Aromatic Substitution (EAS), Nucleophilic Aromatic Substitution (S N Ar) and Elimination-Addition

More information

Reaction Coordinate Diagrams for the Two Benzene Reactions

Reaction Coordinate Diagrams for the Two Benzene Reactions Electrophilic Addition vs. Substitution ( LEAVES!) Electrophilic Aromatic Substitution δ δ E E Y Y Reaction Coordinate Diagrams for the Two Benzene Reactions δ δ E E Y Y Electrophilic aromatic substitutions

More information

Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6

Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6 Aromatic compounds GE 1 BENZENE Structure Primary analysis revealed benzene had an... empirical formula of and a molecular formula of 6 6 Q.1 Draw out some suitable structures which fit the molecular formula

More information

Carboxylic Acids When a carbonyl carbon also bears a hydroxyl group, then these compounds are appreciably acidic, and are called carboxylic acids.

Carboxylic Acids When a carbonyl carbon also bears a hydroxyl group, then these compounds are appreciably acidic, and are called carboxylic acids. Carboxylic Acids When a carbonyl carbon also bears a hydroxyl group, then these compounds are appreciably acidic, and are called carboxylic acids. R Carboxylic acids are classified according to the substituent

More information

An alkyne is a hydrocarbon that contain a Carbon carbon triple bond. Acetylene, the simplest alkyne, widely used in industry for the synthesis of

An alkyne is a hydrocarbon that contain a Carbon carbon triple bond. Acetylene, the simplest alkyne, widely used in industry for the synthesis of Alkynes An alkyne is a hydrocarbon that contain a Carbon carbon triple bond. Acetylene, the simplest alkyne, widely used in industry for the synthesis of acetaldehyde, acetic acid, vinyl chloride O O H

More information

Protonation. favored H 3 O + R O O H

Protonation. favored H 3 O + R O O H arboxylic Acids arboxylic acids have one property that distinguishes them from most other organic compounds they re acidic. Now not as acidic as fuming sulfuric acid, but still pretty darned acidic. The

More information

Aromaticity and Reactions of Benzene

Aromaticity and Reactions of Benzene Aromaticity and eactions of Benzene ark College Benzene is a unique molecule it is highly unsaturated with 6 carbons and 6 hydrogens, it is planar, and has a high degree of symmetry. These features explain

More information

Reaction 2. Radical addition of hydrogen bromide (HBr) to alkenes. (NOT COVERED THIS TIME)

Reaction 2. Radical addition of hydrogen bromide (HBr) to alkenes. (NOT COVERED THIS TIME) http://courses.chem.psu.edu/chem38/reactions/reactions.html Reaction 1. Electrophilic addition of hydrogen halides (HX) to alkenes. HCl, HBr in ether KI + H 3 PO 4 room temperature electrophilic addition

More information

Electrophilic Addition Reactions

Electrophilic Addition Reactions Electrophilic Addition Reactions Electrophilic addition reactions are an important class of reactions that allow the interconversion of C=C and C C into a range of important functional groups. Conceptually,

More information

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate Pahlavan/Cherif Purpose a) Study electrophilic aromatic substitution reaction (EAS) b) Study regioselectivity

More information

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens). Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation

More information

Chemistry Notes for class 12 Chapter 13 Amines

Chemistry Notes for class 12 Chapter 13 Amines 1 P a g e Chemistry Notes for class 12 Chapter 13 Amines Amines constitute an important class of organic compounds derived by replacing one or more hydrogen atoms ofnh 3 molecule by alkyl/aryl group(s).

More information

C 2 H 5 L L LC 2 H 5 l max = 256 nm (e = 20,000) 283 nm (e = 5,100) CH 3 H 3 C. CH 3 i. B bimesityl l max = 266 nm (e = 700)

C 2 H 5 L L LC 2 H 5 l max = 256 nm (e = 20,000) 283 nm (e = 5,100) CH 3 H 3 C. CH 3 i. B bimesityl l max = 266 nm (e = 700) 750 CAPTER 6 TE CEITRY F BENZENE AND IT DERIVATIVE This hybridization allows one of its electron pairs to occupy a 2p orbital, which has the same size, shape, and orientation as the carbon 2p orbitals

More information

Acids and Bases: Molecular Structure and Acidity

Acids and Bases: Molecular Structure and Acidity Acids and Bases: Molecular Structure and Acidity Review the Acids and Bases Vocabulary List as needed. Tutorial Contents A. Introduction B. Resonance C. Atomic Radius D. Electronegativity E. Inductive

More information

Alkynes: An Introduction to Organic Synthesis. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 8

Alkynes: An Introduction to Organic Synthesis. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 8 Alkynes: An Introduction to Organic Synthesis Based on McMurry s Organic Chemistry, 6 th edition, Chapter 8 Alkynes! Hydrocarbons that contain carbon-carbon triple bonds! Acetylene, the simplest alkyne

More information

Alkynes: An Introduction to Organic Synthesis

Alkynes: An Introduction to Organic Synthesis Alkynes: An Introduction to Organic Synthesis Alkynes Hydrocarbons that contain carbon-carbon triple bonds Acetylene, the simplest alkyne is produced industrially from methane and steam at high temperature

More information

ammonium salt (acidic)

ammonium salt (acidic) Chem 360 Jasperse Ch. 19 otes. Amines 1 eactions of Amines 1. eaction as a proton base (Section 19-5 and 19-6) amine base -X (proton acid) a X ammonium salt (acidic) Mechanism: equired (protonation) everse

More information

Study Guide Chapters 19-20 Alkanes, Alkenes and Alkynes

Study Guide Chapters 19-20 Alkanes, Alkenes and Alkynes Study Guide Chapters 19-20 Alkanes, Alkenes and Alkynes 1) Carbon-Carbon Bonding in Alkanes (C-C), Alkenes (C=C) and Alkynes (C C). Understand the hybridization of atomic orbitals (ground state promotion

More information

AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO:

AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: A STUDENT SHULD BE ABLE T: ARMATIC CMPUNDS 1. Name benzene derivatives given the structures, and draw the structures given the names. This includes: Monosubstituted benzenes named as derivatives of benzene:

More information

Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes

Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes History and Application: The rate of a reaction directly impacts the commercial

More information

CHEM 341: Organic Chemistry I

CHEM 341: Organic Chemistry I EM 341: rganic hemistry I at North Dakota tate University Final Exam - tudy Guide Reactions to know ubstitution of Alcohols R X R X N 1 ubstitution - N 2 ubstitution 3 carbocation best 2 carbocation ok

More information

Chapter 7 - Alkenes and Alkynes I

Chapter 7 - Alkenes and Alkynes I Andrew Rosen Chapter 7 - Alkenes and Alkynes I 7.1 - Introduction - The simplest member of the alkenes has the common name of ethylene while the simplest member of the alkyne family has the common name

More information

Chapter 22 Carbonyl Alpha-Substitution Reactions

Chapter 22 Carbonyl Alpha-Substitution Reactions John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 22 Carbonyl Alpha-Substitution Reactions The α Position The carbon next to the carbonyl group is designated as being in the α position Electrophilic

More information

2.7 Acids and Bases: The Brønsted-Lowry Definition. Acids and Bases: The Brønsted-Lowry Definition. Acids and Bases: The Brønsted-Lowry Definition

2.7 Acids and Bases: The Brønsted-Lowry Definition. Acids and Bases: The Brønsted-Lowry Definition. Acids and Bases: The Brønsted-Lowry Definition 2.7 Acids and Bases: The Brønsted-Lowry Definition Two frequently used definitions of acidity The Brønsted-Lowry definition Lewis definition Brønsted-Lowry acid A substance that donates a hydrogen ion

More information

Chapter 2 Polar Covalent Bonds: Acids and Bases

Chapter 2 Polar Covalent Bonds: Acids and Bases John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical

More information

13.1 Alcohols and Phenols. Nomenclature. Nomenclature. Nomenclature. Alcohols possess a hydroxyl group ( OH). Hydroxyl groups in natural compounds.

13.1 Alcohols and Phenols. Nomenclature. Nomenclature. Nomenclature. Alcohols possess a hydroxyl group ( OH). Hydroxyl groups in natural compounds. 13.1 Alcohols and Phenols Alcohols possess a hydroxyl group ( OH). 13.1 Alcohols and Phenols Hydroxyl groups in natural compounds. Hydroxyl groups are extremely common in natural compounds. 13-1 13-2 13.1

More information

Chemical Tests for Alkanes, Alkenes, and Aromatic Compounds

Chemical Tests for Alkanes, Alkenes, and Aromatic Compounds Chemical Tests for Alkanes, Alkenes, and Aromatic Compounds Introduction There are four types of hydrocarbons: alkanes, alkenes, alkynes, and aromatic compounds, each type with different chemical properties.

More information

Conjugation is broken completely by the introduction of saturated (sp3) carbon:

Conjugation is broken completely by the introduction of saturated (sp3) carbon: Chapter 16 Conjugation, resonance, and dienes Conjugation relies on the partial overlap of p-orbitals on adjacent double or triple bonds. A common conjugated system involves 1,3-dienes, such as 1,3-butadiene.

More information

Writing a Correct Mechanism

Writing a Correct Mechanism Chapter 2 1) Balancing Equations Writing a Correct Mechanism 2) Using Arrows to show Electron Movement 3) Mechanisms in Acidic and Basic Media 4) Electron rich Species: Nucleophile or Base? 5) Trimolecular

More information

Acid-Base Chemistry of Sugars

Acid-Base Chemistry of Sugars Acid-Base Chemistry of Sugars Lewis acids are electron pair acceptors while Lewis bases are electron pair donors. Last time we saw that sugar molecules have a carbonyl carbon that acts as a Lewis acid

More information

Chapter 10. Conjugation in Alkadienes and Allylic Systems. Class Notes. B. The allyl group is both a common name and an accepted IUPAC name

Chapter 10. Conjugation in Alkadienes and Allylic Systems. Class Notes. B. The allyl group is both a common name and an accepted IUPAC name Chapter 10 Conjugation in Alkadienes and Allylic Systems Chapter 10 suggested problems: I. The allyl group Class Notes A. B. The allyl group is both a common name and an accepted IUPAC name 1. Allyl alcohol

More information

1 Lecture 5 Resonance 1. Lone pair next to empty 2p orbital

1 Lecture 5 Resonance 1. Lone pair next to empty 2p orbital 1 Lecture 5 esonance 1. Lone pair next to empty 2p orbital sp 2 + is more common sp + is less common + needs electrons, has to overlap with a. an adjacent 2p lone pair with electrons b. an adjacent pi

More information

Test 8: Review Questions

Test 8: Review Questions Name: Thursday, February 14, 2008 Test 8: Review Questions 1. Based on bond type, which compound has the highest melting point? 1. CH OH 3. CaCl 3 2 2. C H 4. CCl 6 14 4 2. Which compound contains ionic

More information

Ozonolysis of Alkenes

Ozonolysis of Alkenes zonolysis of Alkenes 1 When 2-methyl-2-pentene reacts with ozone, the initial 1,2,3-trioxolane product is 144, but this rearranges to ozonide 145. If 145 is treated with hydrogen peroxide as above, one

More information

Chapter 13 Alkenes and Alkynes

Chapter 13 Alkenes and Alkynes hapter 13 Alkenes and Alkynes Types of Bonds Alkanes and haloalkanes consist of atoms held together by bonds. These can also be called sigma bonds (σ bonds) which means that the orbitals of each atom overlap

More information

Alkynes contain a C C triple bond

Alkynes contain a C C triple bond Chapter 8: Alkynes: an introduction to organic synthesis Alkynes contain a C C triple bond Acetylene: H-C C-H is the common name for ethyne, used as a torch fuel Alkyne nomenclature follows normal hydrocarbon

More information

Worksheet Addition reactions

Worksheet Addition reactions Worksheet Addition reactions The presence of electrons in alkenes allows addition reactions to take place. In general: In each case, the bond is broken and the e - are used to form a new bond in the product

More information

Nucleophilic Substitution and Elimination

Nucleophilic Substitution and Elimination Nucleophilic Substitution and Elimination What does the term "nucleophilic substitution" imply? A nucleophile is an the electron rich species that will react with an electron poor species A substitution

More information

Acids and Bases. but we will use the term Lewis acid to denote only those acids to which a bond can be made without breaking another bond

Acids and Bases. but we will use the term Lewis acid to denote only those acids to which a bond can be made without breaking another bond Acids and Bases. Brønsted acids are proton donors, and Brønsted bases are proton acceptors. Examples of Brønsted acids: HCl, HBr, H 2 SO 4, HOH, H 3 O +, + NH 4, NH 3, CH 3 CO 2 H, H CH 2 COCH 3, H C CH,

More information

Organic Chemistry II / CHEM 252 Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Organic Chemistry II / CHEM 252 Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Organic Chemistry II / CHEM 252 Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA 1 Nomenclature

More information

Chapter 14 - Acids and Bases

Chapter 14 - Acids and Bases Chapter 14 - Acids and Bases 14.1 The Nature of Acids and Bases A. Arrhenius Model 1. Acids produce hydrogen ions in aqueous solutions 2. Bases produce hydroxide ions in aqueous solutions B. Bronsted-Lowry

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *0123456789* CHEMISTRY 9701/02 Paper 2 AS Level Structured Questions For Examination from 2016 SPECIMEN

More information

Acids and Bases. Ch a pt e r Aqueous Equilibria: Chemistry 4th Edition McMurry/Fay. MOH(aq) M + (aq) + OH (aq)

Acids and Bases. Ch a pt e r Aqueous Equilibria: Chemistry 4th Edition McMurry/Fay. MOH(aq) M + (aq) + OH (aq) 15 Ch a pt e r Aqueous Equilibria: Acids and Bases Chemistry th Edition McMurry/Fay Dr. Paul Charlesworth Michigan Technological University AcidBase Concepts 01 Arrhenius Acid: A substance which dissociates

More information

Alkynes and Their Reactions

Alkynes and Their Reactions Alkynes and Their Reactions Naming Alkynes Alkynes are named in the same general way that alkenes are named. In the IUPAC system, change the ane ending of the parent alkane name to the suffix yne. Choose

More information

Identification of Unknown Organic Compounds

Identification of Unknown Organic Compounds Identification of Unknown Organic Compounds Introduction The identification and characterization of the structures of unknown substances are an important part of organic chemistry. Although it is often

More information

Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th

More information

Unit 2 Review: Answers: Review for Organic Chemistry Unit Test

Unit 2 Review: Answers: Review for Organic Chemistry Unit Test Unit 2 Review: Answers: Review for Organic Chemistry Unit Test 2. Write the IUPAC names for the following organic molecules: a) acetone: propanone d) acetylene: ethyne b) acetic acid: ethanoic acid e)

More information

Organic Chemistry Specific Name Reactions

Organic Chemistry Specific Name Reactions Organic Chemistry Specific Name Reactions Sandmeyer Reaction Class XII The Cl, Br and CN nucleophiles can easily be introduced in the benzene ring of benzene diazonium salt in the presence of Cu(I) ion.

More information

Chapter 18. Reactions of Aldehydes and Ketones

Chapter 18. Reactions of Aldehydes and Ketones hapter 18. Reactions of 1 Aldehydes and Ketones Reaction of a nucleophile with an aldehyde or ketone gives an alkoxide, and subsequent hydrolysis leads to an alcohol. This chapter will define differences

More information

ORGANIC CHEMISTRY I PRACTICE EXERCISE Sn1 and Sn2 Reactions

ORGANIC CHEMISTRY I PRACTICE EXERCISE Sn1 and Sn2 Reactions ORGANIC CEMISTRY I PRACTICE EXERCISE Sn1 and Sn2 Reactions 1) Which of the following best represents the carbon-chlorine bond of methyl chloride? d d - d - d d d d - d - I II III IV V 2) Provide a detailed,

More information

AP Chemistry Chapter 22 - Organic and Biological Molecules

AP Chemistry Chapter 22 - Organic and Biological Molecules AP Chemistry Chapter - Organic and Biological Molecules.1 Alkanes: Saturated Hydrocarbons A. Straight-chain Hydrocarbons 1. Straight-chain alkanes have the formula C n H n+. Carbons are sp hybridized The

More information

Chapter 6 An Overview of Organic Reactions

Chapter 6 An Overview of Organic Reactions John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 6 An Overview of Organic Reactions Why this chapter? To understand organic and/or biochemistry, it is necessary to know: -What occurs -Why and

More information

Organic I (Reactions)

Organic I (Reactions) Alkanes Free-radical substitution Halogenation of alkanes is a free radical reaction. It results in H bonds being replaced for Hal bonds. The reagents and conditions are to mix the alkane with bromine

More information

CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH

CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH 1. Is H 3 O + polar or non-polar? (1 point) a) Polar b) Non-polar CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH 2. The bond strength is considerably greater in HF than in the other three hydrogen halides

More information

Homework Chapter 21 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions mandatory problems are highlighted (up to page 16)

Homework Chapter 21 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions mandatory problems are highlighted (up to page 16) Homework Chapter 21 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions mandatory problems are highlighted (up to page 16) SHORT ANSWER IUPAC Naming Instructions: Provide proper IUPAC

More information

Chapter 11. Free Radical Reactions

Chapter 11. Free Radical Reactions hapter 11 Free Radical Reactions A free radical is a species containing one or more unpaired electrons Free radicals are electron-deficient species, but they are usually uncharged, so their chemistry is

More information

CHEMICAL REACTIVITY AND MECHANISMS, AND SUBSTITUTION REACTIONS

CHEMICAL REACTIVITY AND MECHANISMS, AND SUBSTITUTION REACTIONS EMIAL REATIVITY AND MEANISMS, AND SUBSTITUTION REATIONS A STUDENT SOULD BE ABLE TO: 1. Understand the concepts of: enthalpy, entropy, free energy, equilibrium and kinetics. Given a reaction coordinate

More information

Under acidic conditions, carbonyl compounds are protonated on O first, then weak base deprotonates at the α-c to give enol.

Under acidic conditions, carbonyl compounds are protonated on O first, then weak base deprotonates at the α-c to give enol. Substitution reactions of carbonyl compounds at the α-position Carbonyl compounds are acidic at α-c (e.g. C 2 C ); this is because of the electrophilic nature of carbonyl C= bond. The pka values of simple

More information

Acids and Bases: A Brief Review

Acids and Bases: A Brief Review Acids and : A Brief Review Acids: taste sour and cause dyes to change color. : taste bitter and feel soapy. Arrhenius: acids increase [H ] bases increase [OH ] in solution. Arrhenius: acid base salt water.

More information

CHEMISTRY 101 EXAM 3 (FORM A) DR. SIMON NORTH

CHEMISTRY 101 EXAM 3 (FORM A) DR. SIMON NORTH CHEMISTRY 101 EXAM 3 (FORM A) DR. SIMON NORTH 1. When considering conjugate acids and bases, (2 points) a) Strong acids have strong conjugate bases. b) Strong bases have strong conjugate acids. c) Weak

More information

Chemistry of the Functional Group

Chemistry of the Functional Group Name Lab Day Chemistry of the Functional Group Introduction: rganic molecules comprised only of carbon and hydrogen would be relatively unreactive and biologically unimportant. Inclusion of atoms of other

More information

Benzene benzene aromatic hydrocarbons aromatic not not

Benzene benzene aromatic hydrocarbons aromatic not not Benzene 1 NT 87 90 ompound 87 has the formula 6 6, is known as benzene, and it is a hydrocarbon derived from petroleum distillates. Benzene is the parent compound for a class of compounds known as aromatic

More information

17.2 REACTIONS INVOLVING ALLYLIC AND BENZYLIC RADICALS

17.2 REACTIONS INVOLVING ALLYLIC AND BENZYLIC RADICALS 17. REACTINS INVLVING ALLYLIC AND BENZYLIC RADICALS 793 As Eq. 17. shows, the products derived from the reaction of water at the ring carbons are not formed. The reason is that these products are not aromatic

More information

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges. Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.

More information

Chemistry B11 Chapters Alkanes, Alkenes, Alkynes and Benzene

Chemistry B11 Chapters Alkanes, Alkenes, Alkynes and Benzene Chemistry B11 Chapters 10-13 Alkanes, Alkenes, Alkynes and Benzene Organic compounds: organic chemistry is the chemistry of carbon and only a few other elements-chiefly, hydrogen, oxygen, nitrogen, sulfur,

More information

MULTIPLE CHOICE QUESTIONS Part 3: Syror och baser (Answers on page 18)

MULTIPLE CHOICE QUESTIONS Part 3: Syror och baser (Answers on page 18) MULTIPLE CHICE QUESTINS Part 3: Syror och baser (Answers on page 18) Topic: Acid-Base Definitions 1. According to the Lewis definition, a base is a(n): A) Proton donor. B) Electron pair donor. C) Hydroxide

More information

21.9 REDUCTION OF CARBOXYLIC ACID DERIVATIVES

21.9 REDUCTION OF CARBOXYLIC ACID DERIVATIVES 10 APTER 1 TE EMITRY F ARBXYLI AID DERIVATIVE TUDY GUIDE LIK 1.5 Esters and ucleophiles 1.17 Give the structure of the product in the reaction of each of the following esters with isotopically labeled

More information

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle EXPERIMENT 5 (Organic Chemistry II) Pahlavan/Cherif Dehydration of Alcohols - Dehydration of Cyclohexanol Purpose - The purpose of this lab is to produce cyclohexene through the acid catalyzed elimination

More information

Substituted Alkanes. Alcohol Amine Ether Thiol

Substituted Alkanes. Alcohol Amine Ether Thiol Substituted Alkanes While alkanes have very few reactions that occur, combustion and some radical reactions, substituted alkanes display a variety of reactions and properties X ften the amount of information

More information

It does not react N.R.

It does not react N.R. Benzene versus yclohexene versus yclohexadiene 1 l l cyclohexene l l cyclohexadiene l Expect this to react similarly "cyclohexatriene" It does not react l N.R. benzene Benzene is resonance stabilized,

More information

Studying an Organic Reaction. How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction?

Studying an Organic Reaction. How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction? Studying an Organic Reaction How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction? Information we want to know: How much heat is generated? How fast is

More information

Oxidation-Reduction Reactions

Oxidation-Reduction Reactions CHAPTER 19 REVIEW Oxidation-Reduction Reactions SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. All the following equations involve redox reactions except (a) CaO H 2 O

More information

Organometallics Study Seminar Chapter 13: Metal-Ligand Multiple Bonds

Organometallics Study Seminar Chapter 13: Metal-Ligand Multiple Bonds Organometallics Study Seminar Chapter 13: Metal-Ligand Multiple Bonds Contents 1. Carbene Complexes 2. Silylene Complexes 3. Metal-Heteroatom Multiple Bonds 1. Carbene Complexes 1.1 Classes of Carbene

More information

CHAPTER 11 Alcohol Reactivity

CHAPTER 11 Alcohol Reactivity CHAPTER 11 Alcohol Reactivity 1 Summary Table Oxidation: Adding O, Losing H Chromic Acid (Cr(VI)) is a powerful oxidizing agent 4 Oxidation Mechanism When Aldehydes are formed by Cr(VI) in water, they

More information

methyl RX example primary RX example secondary RX example secondary RX example tertiary RX example

methyl RX example primary RX example secondary RX example secondary RX example tertiary RX example ucleophilic Substitution & Elimination hemistry 1 eginning patterns to knowfor S and E eactions - horizontal and vertical templates for practice Example 1 - two possible perspectives (deuterium and tritium

More information

Chapter 2 The Chemical Context of Life

Chapter 2 The Chemical Context of Life Chapter 2 The Chemical Context of Life Multiple-Choice Questions 1) About 25 of the 92 natural elements are known to be essential to life. Which four of these 25 elements make up approximately 96% of living

More information

Where R = alkyl group, Nu = nucleophile and L = leaving group.

Where R = alkyl group, Nu = nucleophile and L = leaving group. Organic Chemistry (CEM311) Fall 2005 Dr. Robert F. Dias 9. SUBSTITUTIONS: S N 1, S N 2 2 basic kinds of substitution reactions: S N 2 = Substitution Nucleophillic Bimolecular S N 1 = Substitution Nuclophillic

More information

NMR Spectroscopy of Aromatic Compounds (#1e)

NMR Spectroscopy of Aromatic Compounds (#1e) NMR Spectroscopy of Aromatic Compounds (#1e) 1 H NMR Spectroscopy of Aromatic Compounds Erich Hückel s study of aromaticity in the 1930s produced a set of rules for determining whether a compound is aromatic.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch 13_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In organic chemistry, the term unsaturated means a molecule A) which contains one or more

More information

Mass Spec - Fragmentation

Mass Spec - Fragmentation Mass Spec - Fragmentation An extremely useful result of EI ionization in particular is a phenomenon known as fragmentation. The radical cation that is produced when an electron is knocked out of a neutral

More information

Chapter 12: Oxidation and Reduction.

Chapter 12: Oxidation and Reduction. 207 Oxidation- reduction (redox) reactions Chapter 12: Oxidation and Reduction. At different times, oxidation and reduction (redox) have had different, but complimentary, definitions. Compare the following

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases

Chapter 2 Polar Covalent Bonds; Acids and Bases John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds; Acids and Bases Javier E. Horta, M.D., Ph.D. University of Massachusetts Lowell Polar Covalent Bonds: Electronegativity

More information

CHM220 Addition lab. Experiment: Reactions of alkanes, alkenes, and cycloalkenes*

CHM220 Addition lab. Experiment: Reactions of alkanes, alkenes, and cycloalkenes* CM220 Addition lab Experiment: Reactions of alkanes, alkenes, and cycloalkenes* Purpose: To investigate the physical properties, solubility, and density of some hydrocarbon. To compare the chemical reactivity

More information

Acids and Bases: A Brief Review, see also pp and pp Brønsted-Lowry Acids and Bases 143. The H + Ion in Water

Acids and Bases: A Brief Review, see also pp and pp Brønsted-Lowry Acids and Bases 143. The H + Ion in Water Quiz number 5 will be given in recitation next week, Feb 26Mar 2 on the first part of Chapter 16, to be covered in lectures this week. 16.1 Acids and Bases: A Brief Review 16.2 BronstedLowry Acids and

More information

ORGANIC CHEMISTRY I PRACTICE PROBLEMS FOR BRONSTED-LOWRY ACID-BASE CHEMISTRY

ORGANIC CHEMISTRY I PRACTICE PROBLEMS FOR BRONSTED-LOWRY ACID-BASE CHEMISTRY RGANIC CHEMISTRY I PRACTICE PRBLEMS FR BRNSTED-LWRY ACID-BASE CHEMISTRY 1. For each of the species below, identify the most acidic proton and provide the structure of the corresponding conjugate base.

More information

neutrons are present?

neutrons are present? AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest

More information

California State Polytechnic University, Pomona. Exam Points 1. Nomenclature (1) 30

California State Polytechnic University, Pomona. Exam Points 1. Nomenclature (1) 30 Chem 316 Final Exam Winter, 2008 Beauchamp ame: Topic Total Points Exam Points 1. omenclature (1) 30 Credit 2. Explanation of elative eactivities of Aromatic 20 Compounds or Carbonyl Compounds 3. eactions

More information

IDENTIFYING STUDENTS MISCONCEPTIONS IN A-LEVEL ORGANIC CHEMISTRY

IDENTIFYING STUDENTS MISCONCEPTIONS IN A-LEVEL ORGANIC CHEMISTRY IDENTIFYING STUDENTS MISCONCEPTIONS IN A-LEVEL ORGANIC CHEMISTRY Lim Choon Huat Bryan Innova Junior College Abstract In recent years, research in science education has been focused on identifying and addressing

More information

TRENDS IN ATOMIC PROPERTIES: THE PERIODIC TABLE

TRENDS IN ATOMIC PROPERTIES: THE PERIODIC TABLE TRENDS IN ATOMIC PROPERTIES: THE PERIODIC TABLE Electron configurations determine organization of the periodic table Next properties of elements and their periodic behavior Elemental properties determined

More information

INTERMOLECULAR FORCES

INTERMOLECULAR FORCES INTERMOLECULAR FORCES Intermolecular forces- forces of attraction and repulsion between molecules that hold molecules, ions, and atoms together. Intramolecular - forces of chemical bonds within a molecule

More information

Chapter 15 Acids and Bases reading guide.

Chapter 15 Acids and Bases reading guide. Chapter 15 Acids and Bases reading guide. Be active while reading the text. Take notes, think about what you ve read, and ask yourself questions while reading. Use this document as a guide for making your

More information