Plastic Injection Molding

Size: px
Start display at page:

Download "Plastic Injection Molding"

Transcription

1 An Introduction to Plastic Injection Molding A resource to help designers, engineers and purchasing professionals navigate the world of plastic injection molding A publication of

2 Table of Contents Introduction Chapter 1 Plastics and society Chapter 2 Types of plastic molding Chapter 3 Key ingredients to achieving perfect parts Chapter 4 The basics of an injection molding machine Chapter 5 Cold runners versus hot runner systems Chapter 6 Determining the cost of an injection mold Chapter 7 Common part defects Glossary of terms Learn more about us 2

3 INTRODUCTION We developed this ebook with designers, engineers and purchasing specialists in mind. It is written to provide a basic understanding of plastic injection molding presses, processes and costs. Our goal is to make our customers more knowledgeable about what goes into making a plastic part. We hope you find this ebook informative and useful. Please feel free to share it with your colleagues. 3

4 CHAPTER ONE PLASTICS AND SOCIETY 4

5 Plastics in modern society Many products that are a part of everyday life go unnoticed, either because they are components of larger items or they are so commonly used that little thought is given to their existence. Items manufactured by plastic injection molding often fall into this category. Looking around a home or business, you will find many products that exist because of the injection molding process. From toys to cars, plastics play an important role. Plastic injection molding is a process of forming this durable, resinous material into just about any form of fashion imaginable. The first injection molding machine was invented and patented by brothers John and Isaiah Hyatt in It resembled a large hypodermic needle, with a heated cylinder through which a large plunger forced the gooey mass into a mold. Today, the process is more complicated although, the basic principle of plastic being injected into a waiting mold is still the same. One of the biggest advancements has come by way of the materials used, and there are now thousands of different formulations available for making plastic. Raw materials used in the plastic injection molding process include thermoplastics, thermosets, and elastomers. Also called polymers or resins, there are more than 20,000 unique formulations that can be injected into molds to produce parts with specific properties to be utilized for specific purposes. Examples of common thermosetting plastics include polymers such as epoxy and phenolic. Common thermoplastics are nylon, polyethylene and polystyrene. 5

6 Injection molding machines are fairly simple and straightforward, consisting of a hopper where raw material is placed, a heating cylinder and an injection plunger. Molds are typically made from steel or aluminum. Major advantages to using plastic injection molding for the manufacture of parts include: Ability to complete high-production rates Repeatability of high tolerances Labor costs Minimal material loss Minimal finishing Wide range of materials available for specific applications Injection molding is the most common plastic molding process and is used to create a huge variety of complex parts of different size and shape. Whether it s a snowboard or a vinyl window part being produced, injection molding is efficient and economical, especially if large numbers of items are being made. Highly complex parts can be produced at a low cost. The only real disadvantage is the initial start-up costs. When you think about it, plastics play a very important role in our lives and the products we use every day. 6

7 CHAPTER TWO TYPES OF PLASTIC MOLDING 7

8 Types of plastic molding In today s manufacturing environment, plastics are being used to make everything from automotive body parts to human body parts. Each application requires a special manufacturing process that can mold the part based on specifications. This article provides a brief overview of the different types of molding and their advantages and applications. Blow Molding Well suited for hollow objects, like bottles The process follows the basic steps found in glass blowing. A parison (heated plastic mass, generally a tube) is inflated by air. The air pushes the plastic against the mold to form the desired shape. Once cooled, the plastic is ejected. The blow molding process is designed to manufacture high volume, one-piece hollow objects. If you need to make lots of bottles, this is the process for you. Blow molding creates very uniform, thin walled containers. And, it can do so very economically. Compression Molding Well suited for larger objects like auto parts The name of this molding method says everything. A heated plastic material is placed in a heated mold and is then compressed into shape. The plastic can be in bulk but often comes in sheets. The heating process, called curing, insures the final part will maintain its integrity. As with other molding methods, once the part has been shaped, it is then removed from the mold. If sheeting plastic material is used, the material is first trimmed in the mold before the part is removed. This method of molding is very suitable to high-strength compounds like thermosetting resins as well as fiberglass and reinforced plastics. The superior strength properties of the materials used in compression molding make it an invaluable process for the automotive industry. 8

9 Extrusion Molding Well suited for long hollow formed applications like tubing, pipes and straws While other forms of molding uses extrusion to get the plastic resins into a mold, this process extrudes the melted plastic directly into a die. The die shape, not a mold, determines the shape of the final product. The extruded tubing is cooled and can be cut or rolled for shipment. Injection molding - Well suited for high-quality, high-volume part manufacturing Injection molding is by far the most versatile of all injection molding techniques. The presses used in this process vary in size and are rated based on pressure or tonnage. Larger machines can injection mold car parts. Smaller machines can produce very precise plastic parts for surgical applications. In addition, there are many types of plastic resins and additives that can be used in the injection molding process, increasing its flexibility for designers and engineers. The process itself is fairly straightforward; however, there are many enhancements and customization techniques that can be used to produce the desired finish and structure. Injection molds, which are usually made from steel, contain cavities that will form the parts. Melted plastic is injected into the mold, filling the cavities. The mold is cooled, and the parts are ejected by pins. This process is similar to a jello mold which is filled then cooled to create the final product. The mold making costs in this method are relatively high; however, the cost per part is very economical. Low part cost along with resin and finish options have all contributed to injection molding s popularity in today s manufacturing landscape. 9

10 Rotational Molding (Rotomolding) Well suited for large, hollow, one-piece parts This process uses high temperatures and rotational movement to coat the inside of the mold and form the part. The constant rotation of the mold creates centrifugal force forming even-walled products. Because it is ideally suited to large hollow containers, such as tanks, it is not a fast moving process. However, it is a very economical process for particular applications and can be cheaper than other types of molding. Very little material is wasted using this process, and excess material can often be re-used, making it an environmentally viable manufacturing process. Conclusion Each type of molding has its strengths and weaknesses. Designers and engineers need to understand these differences and the production options available. There are always several approaches to a final manufacturing solution. The molding company who consults on a specific project should be able to provide additional insights into the applications and materials that are best suited to an individual project. There are always several approaches to a final manufacturing solution. 10

11 FIND OUT HOW THE RODON GROUP CAN HELP YOU WITH YOUR NEXT PROJECT Answer some simple questions about your project and we will call you to schedule a consultation. CONTACT US TODAY 11

12 CHAPTER THREE Key ingredients to achieving perfect plastic parts 12

13 Key Ingredients Achieving perfect plastic parts The adage If it can go wrong, it will go wrong should never be true in the world of injection molding. In fact, problems can be easily avoided from the very beginning as long you are working with a turnkey precision molding manufacturer. Some companies opt to use a separate firm to design the mold, then contract another vendor to build the mold (often these are offshore mold builders) and another to run the parts. By separating these responsibilities, they often sacrifice control, accountability and quality. Mold Design Often problems arise at the very beginning of a project. You may have drawings and even a prototype, but without the expert advice of design engineers who understand how to optimize an injection mold, you may experience costly defects and delays. Many designers begin their careers as tool makers before gaining the knowledge and experience needed in CAD/CAM systems to become engineers. This expertise helps to develop molds that will perform at the highest production levels. The design team you choose to work with should conduct a Design for Manufacturability (DFM) analysis to ensure your parts meet the highest quality standards. 13

14 Resin selection Choosing the right material for a project is one of the most important factors in creating perfect parts. The advances in polymer science have helped create a wide variety of resins to choose from based on the final application of the part. It is important to work with an injection molder that has experience with a wide range of resins and applications including resins that are compliant with FDA, RoHS, REACH and NSF. Reputable companies will have established strategic relationships with the best resin suppliers in the country. They should have a great deal of experience using certified commodity and engineering resins that adhere to stringent manufacturing standards. Mold Building and Testing Without careful attention to mold design, the end product may be nonconforming. It is important to create molds that accommodate enough draft for the selected resin and finish, for example. Plastic injection molders should create pre-production molds. These molds offer several benefits to the design and manufacture process. They are single cavity molds that are created using the same 3D software and tools as production molds; however they are made with less durable metal and steel. Pre-production molds can be modified to help determine the best production solution for the project including finishes and coloration. Various resins can also be tested in this environment. Alternatively, SLA models can be created using 3-D printers, though these parts cannot be used as pre-production samples. Once the pre-production sample parts have passed rigorous quality inspections and have satisfied the client s expectations, the manufacturer can move onto the final stage of tooling, creating the production mold. 14

15 Production and Quality Once the multi-cavity production molds are completed, a full cycle of samples are produced and checked for the quality standards outlined by the client. Adjustments are made as required before full production begins. Quality checks continue throughout the part production process. Working with a Just in Time manufacturer, they can monitor and adjust quantities. At The Rodon Group, we maintain our client s inventory inhouse until they require the parts. Our production molds are built to last, and we guarantee them for as long as we manufacture the parts. Our clients return year after year because our injection molds maintain their integrity. We use 420 stainless steel on all of our molds, and our highlytrained operators insure each tool is properly maintained to maximize quality and output. The Rodon Group is ISO 9001:2008 certified and we are very proud of our 99.8% part acceptance rate. At Rodon, our production molds are built to last and we guarantee them for as long as We manufacture the parts. 15

16 CHAPTER FOUR BASICS OF A PLASTIC INJECTION MACHINE 16

17 Basics of an injection molding machine While plastic injection molders will help you determine the size of the machine needed to get the best results, a project designer or engineer can get a good estimate based on some basic information. By knowing approximately what size machine will be required, you can better source a plastic injection molder that will meet your needs. First, let s take a quick look at how plastic injection molding presses are rated or classified. Often plastic injection companies will provide a molding equipment list on their website. It may look something like this: 3-68 Ton Injection Molding Presses Ton Injection Molding Presses Ton Injection Molding Presses Ton Injection Molding Presses Ton Injection Molding Presses Ton Injection Molding Presses So, what does this mean? Plastic injection molding presses are classified or rated based on tonnage, or more specifically, the clamping pressure or force. Presses can run in size from less than 5 tons of clamping pressure to over The higher the press ton rating, the larger the machine. 17

18 A machine rated for 68 tons can deliver 68 tons of clamping pressure. This pressure keeps the mold closed during the injection process. Too much or too little pressure can cause quality issues. Too much or too little pressure can also cause flashing, where excess material appears on the part edge. Pressure also impacts the viscosity of the plastic being used in the project. Melt Flow Index or MFI is a measure of the ease of flow of the melt of a thermoplastic polymer. Plastic compounds react differently to pressure based on their MFI. The higher the MFI, the higher the pressure needed. Second, let s figure out how much clamping force or pressure is required. There are many factors that are taken into consideration when determining the size of the press. The size of the part, the polymer being used and something called the safety factor. The safety factor is an additional numerical percentage buffer that is added to the calculation to help avoid defects in the final part. Some recommend adding 10% to allow for the safety factor. As mentioned earlier, the MFI (Melt Flow Index) of the plastic compound will also impact the pressure needed to produce the part. Many calculations include the platen size as well as the mold and part size, however, to get an estimate of the press size your project will need, we have simplified it even further. Many plastic injection professionals use a general rule of thumb of 2.5 times the surface square inches of the part to be produced. So, if you have a part with 42 square inches than you would need a press size with 105 tons of pressure. If you add 10% for a safety factor, you will need to use a press with a minimum of 115 tons of clamping force. A press size of 120 tons would be able to accommodate your plastic injection molded product. 18

19 Lastly, let s look at how you can identify a plastic injection molder that is right for your project. Once you have an estimate of the press size you will need, you can identify plastic injection molding companies that will meet your requirements. In general, molders with a greater number and wider selection of press sizes will be able to accommodate the needs of your project. If you are not working with a completed mold, look for a plastic injection company who can design and build the mold. They will have a better understanding of how to maximize the manufacturing process and will often offer tooling allowances. This, in turn, will minimize the overall cost of your project. In the end, your plastic injection molder will determine which machine would be best suited for your project. Larger presses can accommodate larger molds and multi-cavity molds often reducing the cost per part. However, larger molds are more expensive. Choosing the right press size can balance the upfront tooling expenditures with long-term manufacturing costs. 19

20 CHAPTER FIVE COLD RUNNER VS. HOT RUNNER SYSTEMS 20

21 Molding systems Cold runner vs. hot runner Every plastic part starts in a mold. Molds are classified into two main types, cold runner and hot runner. Each has its advantages and disadvantages. Your plastic injection molder will be able to give you the costs and benefits of using these different systems. However, by understanding the key differences of these technologies, you can have a more educated discussion on the type of mold that would best fit your project. First, let s discuss cold runner molding systems Cold runner molds usually consist of 2 or 3 plates that are held within the mold base. The plastic is injected into the mold via the sprue and fills the runners which lead to the parts in the cavity. In 2 plate molds, the runner system and parts are attached, and an ejection system is used to separate the pair from the mold. For those of you who assembled a model car at some point in your youth, the runners and the parts were not separated. The child assembling the model was responsible for that final part of the process. In 3 plate molds, the runner is contained on a separate plate, leaving the parts to be ejected alone. In both systems, the runner is recycled and reground, reducing plastic waste. However, these processes can increase cycle time. 21

22 Hot runner molding systems Hot runner molds consist of 2 plates that are heated with a manifold system. The manifold sends the melted plastic to nozzles which fill the part cavities. There are several types of hot runner systems, however, in general, they fall into two main categories; externally heated and internally heated. The externally heated systems are well suited to polymers that are sensitive to thermal variations. Internally heated systems offer better flow control. The hot runner process eliminates runners entirely, so recycling and regrind (which can only be done with virgin plastics) do not impact cycle times. A variation of this system is called an insulated runner. The insulation, rather than heat, keeps the plastic in a molten state. This system can only accommodate a few types of plastics, specifically semi-crystalline polymers which have a low thermal conductivity. Let s look at a list of advantages and disadvantages of each type of injection molding system. Cold runner systems Advantages -Comparatively cheaper to produce and maintain -Accommodate a wide variety of polymers, both commodity and engineered -Color changes can be made quickly -Fast cycle times if the systems include robotic assist in removing runners Disadvantages -Cycle times are slower than hot runner systems -Plastic waste from runners (if they cannot be reground and recycled) 22

23 Advantages and disadvantages continued Hot runner systems Advantages -Potential faster cycle times -Eliminates runners and potential waste -No need for robotics to remove runners -Can accommodate larger parts Disadvantages -More expensive molds to produce -Color cannot be easily changed -Higher maintenance costs and potential downtime -May not be suited to certain thermally sensitive materials Professionals in the field of plastic injection molding should be your primary resource for determining the best injection molding system for your project. Look for injection molders who are familiar with all types of plastics processing. They will be able to provide you with a cost/benefit analysis of the various systems available based on the part and the material used. 23

24 Injection molding machine at work at The Rodon Group It pays to work with injection molders who are familiar with all types of plastics processing. 24

25 FIND OUT HOW THE RODON GROUP CAN HELP YOU WITH YOUR NEXT PROJECT Answer some simple questions about your project and we will call you to schedule a consultation. CONTACT US TODAY 25

26 CHAPTER SIX DETERMINING THE COST OF AN INJECTION MOLD 26

27 Cost of an injection mold Key determining factors A common question for designers and engineers is How much will a plastic injection mold cost? It makes sense. Injection molds represent the greatest expense in upfront production costs. And, there are many factors that go into determining the cost. With any custom injection molding project, your injection molder will be able to give you the final price tag. In this article, we will review the variables that can impact the cost so that you can be better informed in making a mold purchasing decision. Not all quotes are created equal Procurement and purchasing managers have the unenviable task of obtaining quotes from a few mold makers for each project. Depending on the input (in terms of drawings, prototypes or sample parts), the cost quotes can vary greatly. Designers should look at all of these inputs and determine the best molding solution. They may re-design the part to maximize manufacturing efficiency and increase the number of parts that can be made with each molding cycle. Generally, molds made with tighter tolerances, more cavities and a longer production life will take longer to build and will cost more upfront. The savings with a high-quality mold are long-term. These molds require less maintenance and last longer than lower quality molds. 27

28 Here are some variables that impact the cost of a plastic injection mold. The core metal. For shorter production runs, some mold makers will use molds made from aluminum. This is a perfectly reasonable choice if you will not need the mold to perform long-term. However, if a project requires that a mold lasts for several years, an aluminum mold may cost more in the longrun. The number of cavities. It is pretty intuitive when you think about it. Fewer cavities in a mold require less tooling work and time and ultimately less cost. A reputable experienced molder will be able to maximize cavitations in the mold to maintain the highest level of productivity. In general, most molders recommend creating one mold per part versus creating a family mold. Family molds are created with various cavities for assorted parts. They tend to produce inferior products and have more downtime due to maintenance issues. Mold base. Think of the mold base as a case that holds all of the mold cavities, inserts and components together. The cost of the base is estimated based on the size of the mold and the type of steel used to make the base as well as the customization required. Most mold bases come in standard sizes and are further machined to meet the requirements of a specific project. Core/Cavity machining. All molds must also be customized. Customization includes the placement of cores, cavities, ejectors, cooling lines, etc. The steel used in the tool also impacts cost. Hardened steel molds lasts the longest and are more expensive to machine. Once done, however, they have a long production life. Part complexity. Just as the number of cavities plays a role in determining the cost of the mold, so does part complexity. This includes the surface finish of the final part as well as the number of undercuts required. Parts, which demand tight tolerances, also contribute to the mold complexity. 28

29 Turnkey or vertically integrated injection molders. Some mold builders also manufacture the parts. This type of integration can help defray the mold building cost. Often full service molding manufacturers will subsidize a portion or all of the cost of the mold based on the full term and value of the manufacturing contract. They will amortize the cost of the mold so they can maintain profit margins while providing the lowest possible per piece cost to their clients. The cost of a quality injection mold is certainly a major expense. However, tighttolerance, precision molds that are made from the best steel available should last for years to come. The upfront cost must be calculated or amortized into the lifetime value of the project. Will these parts be in production for several years or several months? Does the project require a high-volume of parts? Are faster cycle times required? If you answered yes to these questions, then the initial investment in a quality mold will lower the per part cost and will end up saving money in the long-run. Injection molds represent the greatest expense in upfront production costs. 29

30 CHAPTER SEVEN COMMON PART DEFECTS 30

31 Common parts defects When purchasing injection molded parts, it is important to understand some of the common problems and defects that impact product quality. Being familiar with these imperfections and their causes can help you work with injection molders to insure the highest quality part production is achieved. Most defects in plastic parts can be traced back to three sources: 1. The material being used to make the part 2. The processing of the material in the mold 3. The mold itself We have grouped the defects together by their most common cause; however one or more factors may contribute to a defect. 31

32 Common defects linked to the plastic resins or additives being used to manufacture a part include: Color streaks Just like the name implies, color streaks are random areas of color change that are often attributed to the non-uniform mixing of resins and colorants. Delamination This defect appears as a flaky surface layer on the part and is often caused by contamination or moisture in the resin pellets. Discoloration - This can occur when the hopper and feed zone have not been flushed properly to remove any residual color. Embedded contaminates Particles or flecks of residual foreign material that can originate in the barrel of the press. Splay marks or silver streaks Circular marks appearing where the molten plastic enters the mold cavity. This is often caused by excessive moisture in the resin. Common defects linked to the processing of the plastic resin in the mold include: Blistering Raised imperfections that are generally caused improper heating and/or cooling or by gas/air bubbles. Burn marks Black or brown blemishes (which are carbon deposits) that are caused by improper ventilation or prolonged heating in the mold. Cold slugs A small non-uniform area on the part caused by an improperly heated piece of plastic becoming attached to the part. Flow marks A wavy pattern or discoloration caused by a slow injection speed which allows the material to cool too quickly. Sink marks or shrinkage voids Depressions or hollows in a part that can be attributed to excessive press pressure, non-uniform heating, inadequate cooling time or part design. Stress cracking or stress crazing This defect usually occurs as a result of over exposure to a high temperature. Stringing A thin strand of material attached to a part generally caused by a nozzle that is too hot. 32

33 Common defects linked to improper mold design and/or maintenance include: Drag marks Scratches that occur when the part is ejected from the mold. This is usually due to an improperly designed ejector system or one that is out of alignment. Flash or burrs A thin lip or protrusion beyond the body of the part that is generally caused by poor clamping force, improper mold design and/or mold damage. Jetting A snakelike line of material that cools independently of the material around it. This defect is generally due to poor tool design often relating to incorrect gate size and length or placement. Short shot An incomplete part due to lack of a filled mold. This problem is often attributed to a blockage or improper injection pressure. Warping A part with a distorted shape can be due to a poor cooling system in the mold. When the plastic material is cooled unevenly, the result is a bowing effect. Most of the defects listed here can be addressed by making changes to the processing, the material or the mold itself. The best way to avoid these part defects is to work with a plastic injection molder that has a great deal of experience with various resins and their applications. Using a turn-key manufacturer, who also builds and maintains the molds can help avoid any costly machining charges or mold replacements. When purchasing injection molded parts, it is important to understand the common problems and defects that impact product quality. 33

34 GLOSSARY OF TERMS 34

35 GLOSSARY Plastic injection molding may not be rocket science, but it comes pretty close. There are hundreds of terms used in the industry. We have chosen to highlight the most common nomenclature used when discussing mold parts, materials and problems. Additives These compounds are added to resins to improve the overall performance and appearance of finished products. Alloy A plastic alloy is a physical modification of an existing plastic to achieve higher performance and or functionality. These alloys are often used in the automobile industry and to replace metal parts. Annealing - Annealing is the heating and slow cooling of a plastic part which allows the polymer chains to recoil and relieve internal stresses. Assembly A secondary manufacturing function of joining finished parts together. Backing plate A plate, which supports the mold, pins and bushings in the injection machine. Back Pressure The resistance of a melted plastic to move forward. This impacts not only the temperature but the cycle time as well. Blister As the name says, this is a part defect which appears as a small bubble or blister on the surface of a part and it generally created by improper heating or cooling of by gas or air bubbles. Blow molding The process follows the basic steps found in glass blowing. A parison (heated plastic mass, generally a tube) is inflated by air. The air pushes the plastic against the mold cavity to form the desired shape. Once cooled, the plastic is ejected. This method is used to make plastic bottles. Bridge tool An injection mold that makes parts until the final tool is completed. These molds or tools are not meant to be production tools. Bubbles Similar to blisters, gas pockets, or voids that have formed inside the plastic. 35

36 GLOSSARY Cavity - The machined shape within a mold which creates the form of the plastic part. Check valve A device located at the end of the injection screw. The check valve makes sure that resin does not flow back into the machine after it is pumped into the mold. Clamp The mechanism that holds the mold in location during the molding process. Cold slug A defect characterized by a small non-uniform area on the part caused by an improperly heated piece of plastic becoming attached to the part. Colorant A pigment system, usually in pelletized form, powder or liquid, which is mixed with resin to produce the desired color. Compression molding - The name of this molding method says everything. A heated plastic material is placed in a heated mold and is then compressed into shape. The plastic can be in bulk but often comes in sheets. The heating process, called curing, insures the final part will maintain its integrity. This molding method is often used to make large objects such as automobile components. Copolymer - A polymer derived from more than one type of monomer. Core - A protrusion or set of matching protrusions, which form the inner surface of a plastic part. Core pull A device that retracts a core in a direction that is not parallel to the opening direction of the mold. Often referred to as a side action, this functionality assists in the manufacture of more complex parts. Crazing A defect that causes small cracks often caused by over-stressing the plastic material. Creep The set that a molded part takes under stress, and does not return to its original shape. Also known as memory. Crush Ring A contact ring on the inner surface of the sprue bushing used to eliminate nozzle leakage. Cure The process of allowing a plastic to harden or stabilize. Cushion A space between the screw and the nozzle that provides a pressure pathway to enabling packing out the part. 36

37 GLOSSARY Cycle The time it takes for the plastic injection process to complete a finished part. Degassing Opening and closing of a mold to allow gas to escape. Trapped gas and/or air can cause parts defects such as blistering. Delamination - This defect appears as a flaky surface layer on the part and is often caused by contamination or moisture in the resin pellets. Density Mass per unit volume of a substance. Dimensional stability - Ability of a plastic part to retain the precise shape in which it was molded. Draft The angle or degree of taper in a side wall to help facilitate removal of the parts from the mold. Ejection pin Metal rods in the mold which push the parts from the mold. Ejector return pins Pins that push the ejectors back into position once the parts have been released. Ejector rod A bar that engages the ejector assembly and pins when the mold opens. Elasticity The ability of a material to return to its original state when stretched. Elastomer A rubber-like material, which is highly elastic. Extrusion The process of forming tubes or continuous shapes by pushing melted material through a die aperture. Fabricating The process of manufacturing plastic products through various molding and forming methods. Family mold A mold which contains cavities for various parts. Fan gate A gate with a wider width that helps reduce warping through stress. Fill The packing of material into the mold. Fill Imbalance Generally occurs in multi-cavity molds, when the plastic material fails to fill all of the cavitations. Filler An inert additive that adds strength or hardness to a part. 37

38 Finish The surface texture to a part. GLOSSARY Flash gate An alternative to a fan gate, which conveys the melted resins into a thinner gate section creating a linear melt flow into the cavity. Flash or burrs A thin lip or protrusion beyond the body of the part that is generally caused by poor clamping force, improper mold design and/or mold damage. Flow marks - A wavy pattern or discoloration caused by a slow injection speed which allows the material to cool too quickly. Flow rate The volume of material passing a fixed point per unit time. Gate The channel into which melted plastic flows into a mold. Gate seal or freeze The holding time and pressure needed to insure the plastic material in the mold is set. Hardness The resistance of a material to compression, indentation and scratching. Hot-runner mold Hot runner molds consist of 2 plates that are heated with a manifold system. The manifold sends the melted plastic to nozzles which fill the part cavities. Hot to cold mold - Using a hot runner system to gate into a cold runner which in turn feeds each cavity. This configuration can be used when full cold runner molds aren't viable and full hot runner molds are cost prohibitive. Injection blow molding - A blow molding process in which the parison to be blown is formed by injection molding. Injection molding A manufacturing process in which melted plastic is injected into a mold to form a part. Insert An object, such as a magnet or screw, which is inserted into the molded part. Intensification ratio A calculation used to convert hydraulic pressure to plastics pressure Line of draw - The parallel direction of the moving platen. 38

39 GLOSSARY Machine shot capacity The maximum volume of resin which can be injected in a single stroke. Masterbatch A solid or liquid additive for plastic used for coloring plastics or imparting other properties to plastics. Melt temperature Melt temperature is the actual temperature of the polymer as it exits the nozzle and enters the mold Memory The action of plastic returning to its previous size and form. Mold A hollow form that plastic is injected or inserted into to manufacture a plastic part. Mold release A surface preparation used to aid in the ejection of the part from the mold. Molecular orientation - The manner in which polymer chains position themselves in the mold cavity. Polymers near the wall of the mold orient themselves by straightening out, while polymers near the center tend to stay coiled. Multi-shot molding A process where two or more plastic substances are injected into the mold to form a part. Toothbrushes are often manufactured using this technique. Non-return valve Also called a check ring, a valve that allows rapid material shut off for part weight consistency; and a smooth, high-flow profile to prevent material degradation. Nozzle - The hollow-cored metal nose screwed into the injection end of the barrel which forms a seal under pressure. Orange peel A patchy rough surface defect caused by moisture in the mold cavity, or by incomplete pack-out. Over molding A two-shot process, in which two plastic substances, are injected into a mold sequentially, usually a harder base material with a coating of softer material. Parting line A line on a part formed when the two sides of the mold come together. Pinpoint gate A very small gate, used in hot runner molds, to control the flow of material. Plastic A polymeric substance of large molecular weight. Plasticity - The quality of being easily shaped or molded. 39

40 Platens Steel plates in the molding machine onto which the mold is fastened. Polymer - A substance that has a molecular structure consisting chiefly or entirely of a large number of similar units bonded together, e.g., many synthetic organic materials used as plastics and resins. Projected area The area of the mold that will be filled with plastic at the mold s parting line. Prototype tool Also called a soft tool, a preliminary mold built to produce prototype parts and used to make adjustments to the final production tool. Purging The process of cleaning the injection machine of remnant color or materials prior to running a new part. Ram A plunger-like part which pushes the melted material into the mold. Reciprocating screw An injection molding machine mechanism which compresses melts, and conveys the material to the sprue and mold. Regrind In thermoplastic resins, scrap material that is ground and recycled back into finished parts. Relative viscosity - Peak hydraulic pressure fill time Release agent A compound, which is sprayed on the mold, or as an additive, molded into the part to help facilitate the release of the part. Retainer plate A plate onto which the removable parts of the mold are mounted. Runner system The channel system that allows the flow of the melted material to fill the part cavities. Screw decompression Also called Suck Back the action of the screw return toward the hopper to eliminate drooling of the melted plastic from the nozzle. Short shot A defect where the material does not fully fill the part cavity. Shot A complete cycle of the injection machine. GLOSSARY Shrinkage The amount of volume reduction that takes place when a plastic material cools. Side-action, slide or cam - a mechanical, pneumatic or hydraulic action within the mold that forms a plastic part detail that is not in the line of draw of the mold. 40

41 GLOSSARY Sprue The opening feed that conveys material from the nozzle to runner system in the mold. Thermoplastic - A material that can be heated and cooled repeatedly without changing the material structure. Highly recyclable. Sprue bushing This part seals tightly against the nozzle of the injection barrel of the molding machine to allow molten plastic to flow from the barrel into the mold. Thermoset A material, which when heated, is pressed or molded into a shape. The heating process changes the structure of these materials, and for this reason they cannot by re-heated. Tie bars - Bars which provide structural support to the mold in the press. The spacing between the tie bars dictates the size of the mold that can be placed into the injection machine. The mold opens and closes riding on the tie bars. Toggle A mechanism that is used to mechanically close the mold, as opposed to hydraulic clamping. Tool The mold used to form plastic parts in an injection machine. Undercut Can be a design flaw that results in an indentation or protrusion that inhibits the ejection of the part from the mold. Other times undercuts are designed into a mold to ensure a part holds onto the correct side of the mold. Velocity The speed at which the plastic enters the cavity of the mold. Vent A channel from the mold cavity that allows gas and air to escape as resin is being injected into the cavity to prevent many types of defects from occurring. Viscosity The resistance to liquid flow. Weld line - Also called a knit line, the juncture where two flow fronts meet and are unable to join together during the molding process. These lines usually occur around holes or obstructions and cause localized weak areas in the molded part. 41

42 Thanks for reading! See how The Rodon Group can help you with your next plastic injection molding project. CONTACT US TODAY Subscribe to our blog and get the inside scoop on injection molding 42

43 About Us The Rodon Group is an ISO 9001:2008 certified, high volume (we're talking millions!) plastic injection molder. In business since 1956, we make billions of parts each year in our 125,000 square foot facility. We offer a turnkey manufacturing solution including mold design, mold building and high volume parts manufacturing. Our globally competitive prices eliminate the risks of sourcing offshore. At K NEX and Rodon, we ve learned that manufacturing in America can actually be more cost effective than manufacturing overseas - Michael Araten, President and CEO of K NEX LP and The Rodon Group 43

Plastic Injection Molding

Plastic Injection Molding Training Objective After watching this video and reviewing the printed material, the student/trainee will understand the principles and physical operations of the plastic injection molding process. An

More information

Glossary of Terms Used in Plastic Injection Mold Manufacturing

Glossary of Terms Used in Plastic Injection Mold Manufacturing Acceptable Runner/Cavity Ratio: Runner systems designed for high pressure drops to minimize material usage and increase frictional heating in the runner. Annealing: The process of relieving internal stresses

More information

What is a mold? Casting. Die casting. Injection Molding Machine. Injection Molding. 2.008 Design & Manufacturing II. Spring 2004

What is a mold? Casting. Die casting. Injection Molding Machine. Injection Molding. 2.008 Design & Manufacturing II. Spring 2004 2.008 Design & Manufacturing II What is a mold? From Webster: a cavity in which a substance is shaped: as (1) : a matrix for casting metal (2) : a form in which food is given a decorative shape Spring

More information

CHAPTER 2 INJECTION MOULDING PROCESS

CHAPTER 2 INJECTION MOULDING PROCESS CHAPTER 2 INJECTION MOULDING PROCESS Injection moulding is the most widely used polymeric fabrication process. It evolved from metal die casting, however, unlike molten metals, polymer melts have a high

More information

Plastic Injection Molds

Plastic Injection Molds Training Objective After watching the program and reviewing this printed material, the viewer will become familiar with the variety, design, and productive use of plastic injection molds. Mold components

More information

A Guide to Thermoform Processing of Polypropylene. Introduction

A Guide to Thermoform Processing of Polypropylene. Introduction A Guide to Thermoform Processing of Polypropylene Introduction Thermoforming is the process of heating plastic sheet to a pliable state and forming it into shape. Thermoforming offers processing advantages

More information

INJECTION MOULD DESIGN: MARPLEX PVC RESINS

INJECTION MOULD DESIGN: MARPLEX PVC RESINS MACHINE RECCOMENDATIONS PVC requires reciprocating screw injection moulding machine with a plasticising screw to produce homogeneous melt. It is recommended that a shot weight of the part should take two

More information

Section 16 - Troubleshooting

Section 16 - Troubleshooting Troubleshooting Section 16 - Troubleshooting Introduction This troubleshooting information assumes that the hot runner has been operational. Basic rules for troubleshooting are: Define the problem; what

More information

NYLON 6 RESINS CORRECTING MOLDING PROBLEMS A TROUBLE SHOOTING GUIDE

NYLON 6 RESINS CORRECTING MOLDING PROBLEMS A TROUBLE SHOOTING GUIDE NYLON 6 RESINS CORRECTING MOLDING PROBLEMS A TROUBLE SHOOTING GUIDE A. TROUBLESHOOTING GUIDE FOR INJECTION MOLDERS. I. INTRODUCTION The source of problems in injection molding of nylon resins can depend

More information

Effects of the MuCell Molding Process

Effects of the MuCell Molding Process Effects of the MuCell Molding Process Molding MuCell versus Solid Shot size is reduced Final mold fill is completed with cell growth Little or no Hold Time or Pressure Reduced molded-in stress Less warp

More information

3D Printed Injection Molding Tool ("PIMT") Guide. Objet Ltd.

3D Printed Injection Molding Tool (PIMT) Guide. Objet Ltd. 3D Printed Injection Molding Tool ("PIMT") Guide Objet Ltd. 2 Injection molding is a high speed, automated and versatile process that can produce high precision complex three dimensional parts from a fraction

More information

Solid shape molding is not desired in injection molding due to following reasons.

Solid shape molding is not desired in injection molding due to following reasons. PLASTICS PART DESIGN and MOULDABILITY Injection molding is popular manufacturing method because of its high-speed production capability. Performance of plastics part is limited by its properties which

More information

Injection molding equipment

Injection molding equipment Injection Molding Process Injection molding equipment Classification of injection molding machines 1. The injection molding machine processing ability style clamping force(kn) theoretical injection volume(cm3)

More information

Part and tooling design. Eastman Tritan copolyester

Part and tooling design. Eastman Tritan copolyester Part and tooling design Eastman Tritan copolyester Part and tooling design Process Part design Tooling design High cavitation considerations Process Process Project development flow chart Concept OEM generates

More information

Copyright 1998 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES PLASTIC BLOW MOLDING NARRATION (VO): NARRATION (VO):

Copyright 1998 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES PLASTIC BLOW MOLDING NARRATION (VO): NARRATION (VO): FUNDAMENTAL MANUFACTURING PROCESSES PLASTIC BLOW MOLDING SCENE 1. CG: EXTRUSION BLOW MOLDING white text centered on black SCENE 2. tape 401, 07:25:29-07:25:41 zoom in, extrusion process tape 401, 07:08:50-07:09:06

More information

1. Injection Molding (Thermoplastics)

1. Injection Molding (Thermoplastics) 1. Injection Molding (Thermoplastics) l Molding: Injection (thermoplastics) INJECTION MOLDING of thermoplastics is the equivalent of pressure die casting of metals. Molten polymer is injected under high

More information

AN OVERVIEW OF GAS ASSIST

AN OVERVIEW OF GAS ASSIST GAS ASSIST INJECTION MOLDING AN OVERVIEW OF GAS ASSIST April 2010 www.bauerptg.com GAS ASSIST INJECTION MOLDING TECHNOLOGY It is a fact that packing force must be applied and maintained to an injection

More information

Troubleshooting Guide. PS Injection moulding. Splay marks. Burning (Black streaks) Cool feed zone. Dry material, check source of moisture.

Troubleshooting Guide. PS Injection moulding. Splay marks. Burning (Black streaks) Cool feed zone. Dry material, check source of moisture. Troubleshooting Guide PS Injection moulding Splay marks Trapped air that contains moisture Raise nozzle and front zone temperature. Cool feed zone. Wet feed Dry material, check source of moisture. Irregular

More information

How t o to do do E ffective Effective Color Changes Changes

How t o to do do E ffective Effective Color Changes Changes How to do Effective Color Changes Presented by Know Your Process Understanding colorants & pigments Polymer flow & color type Equipment design Melt viscosity Planning for effective color change Process

More information

TECHNICAL DATA SHEET GRILON BG-15 S

TECHNICAL DATA SHEET GRILON BG-15 S TECHNICAL DATA SHEET GRILON BG-1 S Grilon BG-1 S is a heat stabilised PA6 injection moulding grade with 1% glass fibres. Grilon BG-1 S has the following important properties: Excellent surface finish Easy

More information

1) Cut-in Place Thermoforming Process

1) Cut-in Place Thermoforming Process Standard Thermoforming Equipment Overview There are three standard configurations for thermoforming equipment: 1. Heat and Cut-in-Place Forming 2. In-Line Forming with Steel Rule or Forged Steel Trim wand

More information

PROCESSING OF VARIOUS MATERIALS

PROCESSING OF VARIOUS MATERIALS 4 PROCESSING OF VARIOUS MATERIALS CHAPTER CONTENTS 4.1 Shaping Processes for Polymers Polymers Manufacturing Processes for Polymers 4.2 Rubber Processing Technology Processing of rubber into finished good

More information

6 Design of Gates. 6.1 The Sprue Gate

6 Design of Gates. 6.1 The Sprue Gate 6 Design of Gates 6.1 The Sprue Gate The sprue gate is the simplest and oldest kind of gate. It has a circular cross-section, is slightly tapered, and merges with its largest cross-section into the part.

More information

Quick Guide to Injection Molding

Quick Guide to Injection Molding Quick Guide to Injection Molding Amodel polyphthalamide (PPA) Equipment Amodel PPA resins can be processed on conventional injection molding equipment. Estimated clamp tonnage of 5.5 kn/cm 2 (4 T/in 2

More information

INJECTION MOLDING PROCESSING GUIDE Polymer

INJECTION MOLDING PROCESSING GUIDE Polymer FOAMAZOL Chemical Foaming Agents INJECTION MOLDING PROCESSING GUIDE Polymer Foaming Agent INJECTION MOLDING WITH CHEMICAL FOAMING AGENTS Introduction The injection molding of structural foam molded parts

More information

Philosophy of Troubleshooting Injection Molding Problems

Philosophy of Troubleshooting Injection Molding Problems PLASTICS ENGINEERING COMPANY SHEBOYGAN, WISCONSIN 53082-0758 U.S.A 3518 LAKESHORE ROAD POST OFFICE BOX 758 PHONE 920-458 - 2121 F A X 920-458 - 1923 Philosophy of Troubleshooting Injection Molding Problems

More information

Determining the Right Molding Process for Part Design

Determining the Right Molding Process for Part Design Determining the Right Molding Process for Part Design How RIM Molding Advantages Compare with Traditional Production Technologies Page 2 Introduction This White Paper details the part production processes

More information

Casting. Training Objective

Casting. Training Objective Training Objective After watching the program and reviewing this printed material, the viewer will learn the essentials of the various metal casting processes used in industry today. The basic principles

More information

Injection Molding. Materials. Plastics 2.008. Outline. Polymer. Equipment and process steps. Considerations for process parameters

Injection Molding. Materials. Plastics 2.008. Outline. Polymer. Equipment and process steps. Considerations for process parameters Outline 2.008 Polymer Equipment and process steps Injection Molding Considerations for process parameters Design for manufacturing, tooling and defects 1 2.008 spring 2004 S. Kim 2 Materials Solid materials

More information

Welding of Plastics. Amit Mukund Joshi. (B.E Mechanical, A.M.I.Prod.E)

Welding of Plastics. Amit Mukund Joshi. (B.E Mechanical, A.M.I.Prod.E) Welding of Plastics Amit Mukund Joshi (B.E Mechanical, A.M.I.Prod.E) Introduction Mechanical fasteners, adhesives, and welding processes can all be employed to form joints between engineering plastics.

More information

Single Cavity Mould. Basic Mould Construction. Ejection System. Multi Cavity Mould

Single Cavity Mould. Basic Mould Construction. Ejection System. Multi Cavity Mould Basic Mould Construction Basic mould construction: Core plate and Core (moving) Cavity plate and cavity (fixed) Other features include Guide pillars / guide bush Sprue bush Locating ring Single Cavity

More information

How to reduce the cure time without damaging the rubber compound during injection molding?

How to reduce the cure time without damaging the rubber compound during injection molding? How to reduce the cure time without damaging the rubber compound during injection molding? 0Introduction This article aims at analyzing the rubber injection process and highlighting the limits that prevent

More information

DIESEL EFFECT PROBLEM SOLVING DURING INJECTION MOULDING

DIESEL EFFECT PROBLEM SOLVING DURING INJECTION MOULDING RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA 2014 Volume 22, Special Number DIESEL EFFECT PROBLEM SOLVING DURING INJECTION MOULDING

More information

Injection molding Troubleshooting guide. Eastman copolyesters

Injection molding Troubleshooting guide. Eastman copolyesters Injection molding Troubleshooting guide Eastman copolyesters Contents Black specks.......................... 3 Brittleness........................... 3 Discoloration......................... 4 Flashing............................

More information

Kursus i Produktions- og materialeteknologi

Kursus i Produktions- og materialeteknologi Kursus i Produktions- og materialeteknologi Plastsprøjtestøbning / Injection Molding Basics Short history of plastics 1862 first synthetic plastic 1866 Celluloid 1891 Rayon 1907 Bakelite 1913 Cellophane

More information

Copyright 1999 Society of Manufacturing Engineers. FUNDAMENTAL MANUFACTURING PROCESSES Die Casting NARRATION (VO): UTILIZED. NARRATION (VO): THE DIE.

Copyright 1999 Society of Manufacturing Engineers. FUNDAMENTAL MANUFACTURING PROCESSES Die Casting NARRATION (VO): UTILIZED. NARRATION (VO): THE DIE. FUNDAMENTAL MANUFACTURING PROCESSES Die Casting SCENE 1. CG: Die Casting Machines white text centered on black SCENE 2. tape 445, 12:06:10-12:06:19 zoom out, horizontal die casting machines tape 443, 09:11:47-09:11:55

More information

DIE CASTING. This process if for high volume, high detail, and value added economically priced cast parts. HOW IT WORKS

DIE CASTING. This process if for high volume, high detail, and value added economically priced cast parts. HOW IT WORKS DIE CASTING PROCESS This process if for high volume, high detail, and value added economically priced cast parts. HOW IT WORKS A metal tool is built and attached to a furnace of molten metal Then molten

More information

p l a s t i c i n j e c t i o n m o l d i n g p a r t 1 p r o c e s s, m o l d a n d m a c h i n e e r i k d e l a n g e

p l a s t i c i n j e c t i o n m o l d i n g p a r t 1 p r o c e s s, m o l d a n d m a c h i n e e r i k d e l a n g e p l a s t i c i n j e c t i o n m o l d i n g p a r t 1 p r o c e s s, m o l d a n d m a c h i n e e r i k d e l a n g e H R O R o t t e r d a m B r n o U T j o i n t p r o j e c t 1 plastic injection

More information

Mould and Die Standard Parts

Mould and Die Standard Parts Mould and Die Standard Parts Tampere University of technology - Tuula Höök Mould standard parts can be divided into the following groups: Standard mould set with guide bars, guide sleeves and other guiding

More information

Why Plastic Flows Better in Aluminum Injection Molds

Why Plastic Flows Better in Aluminum Injection Molds Why Plastic Flows Better in Aluminum Injection Molds An investigative study directly comparing melt flow characteristics of general purpose resins in QC-10 aluminum molds and P20 steel molds. By: David

More information

General Guidelines for Building Aluminum Production Injection Molds

General Guidelines for Building Aluminum Production Injection Molds General Guidelines for Building Aluminum Production Injection Molds Using 7000 series Aluminum Mold Plate By David Bank Aluminum Injection Mold Company Rochester, New York 1 Introduction This high strength

More information

Technical Brief. Thermoforming Processes. Vacuum Forming and Methods

Technical Brief. Thermoforming Processes. Vacuum Forming and Methods Processes The process of forming a thermoplastic sheet into a three dimensional shape by clamping the sheet in a frame, heating it to render it soft, then applying differential pressure to make the sheet

More information

Injection molding overview

Injection molding overview Injection molding overview This injection molding overview is designed to help our customers understand the process of injection molding and mold-making. Please read it fully as it helps to define what

More information

SOLUTIONS FOR MOLD DESIGNERS

SOLUTIONS FOR MOLD DESIGNERS SOLUTIONS FOR MOLD DESIGNERS White Paper Abstract For CAE analysis tools to be truly useful, they must provide practical information that drives design decisions. Moldflow Plastics Advisers (MPA ) solutions

More information

Gas-Assist Injection Molding: An Innovative Medical Technology

Gas-Assist Injection Molding: An Innovative Medical Technology COVER STORY >> MOLDING Gas-Assist Injection Molding: An Innovative Medical Technology In certain medical device applications, gas-assist molding can provide solutions that conventional injection molding

More information

the premium valve gate hot runner solution

the premium valve gate hot runner solution the premium valve gate hot runner solution proven performance in a variety of markets The Accu-Valve CX and EX designs bring industry-proven solutions for valve gating of commodity and engineering resins

More information

INJECTION BLOW MOLDING WITH FDM

INJECTION BLOW MOLDING WITH FDM INJECTION BLOW MOLDING WITH FDM 3D PRODUCTION SYSTEMS Time Required Cost Skill Level By Susan Sciortino, Stratasys Inc. OVERVIEW Blow molding is a manufacturing process in which air pressure inflates heated

More information

Tool Design and Concurrent Engineering using Rapid Tooling Construction Methods

Tool Design and Concurrent Engineering using Rapid Tooling Construction Methods Section Number 3563 Tool Design and Concurrent Engineering using Rapid Tooling Construction Methods Nicole Hoekstra Engineering Technology Department Western Washington University Abstract Prior to rapid

More information

Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth

Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth Bulk deformation forming (rolling) Rolling is the process of reducing

More information

Design and manufacturing of plastic injection mould

Design and manufacturing of plastic injection mould Design and manufacturing of plastic injection mould Content Design and manufacturing of plastic injection mould... 1 1 Injection molding... 3 1.1 History... 3 1.2 Equipment... 3 1.3 Injection molding cycle...

More information

Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded.

Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded. 1 Unit 6: EXTRUSION Introduction: Extrusion is a metal working process in which cross section of metal is reduced by forcing the metal through a die orifice under high pressure. It is used to produce cylindrical

More information

2. The mold is closed up and held under hydraulic pressure while the rubber material or compound cures.

2. The mold is closed up and held under hydraulic pressure while the rubber material or compound cures. Designing with Rubber Molding Processes Compression Molding Compression molding is the process of placing a pre-load of a rubber material or compound directly in the mold cavity and compressed to the shape

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 2 HYDRAULIC AND PNEUMATIC CYLINDERS The material needed for outcome 2 is very extensive

More information

APPLYING RAPID TOOLING FOR INJECTION MOLDING & DIE CASTING From a RT users perspective

APPLYING RAPID TOOLING FOR INJECTION MOLDING & DIE CASTING From a RT users perspective APPLYING RAPID TOOLING FOR INJECTION MOLDING & DIE CASTING From a RT users perspective Glenn Anderson Senior Engineer, Research and Development Southco, Inc. RPA/SME Technical Forum on Rapid Tooling 20

More information

Two-Shot Silico e Thermoplastic Medical Molding

Two-Shot Silico e Thermoplastic Medical Molding Two-Shot Silico e Thermoplastic Medical Molding Author: Sarah J. Voss, Product Specialist, Medical Co-Authors: Mark Simon, Ph. D. Research & Development Manager Danny Ou, Ph D. Research & Development,

More information

NetShape - MIM. Metal Injection Molding Design Guide. NetShape Technologies - MIM Phone: 440-248-5456 31005 Solon Road FAX: 440-248-5807

NetShape - MIM. Metal Injection Molding Design Guide. NetShape Technologies - MIM Phone: 440-248-5456 31005 Solon Road FAX: 440-248-5807 Metal Injection Molding Design Guide NetShape Technologies - MIM Phone: 440-248-5456 31005 Solon Road FAX: 440-248-5807 Solon, OH 44139 solutions@netshapetech.com 1 Frequently Asked Questions Page What

More information

Die casting Figure M2.3.1

Die casting Figure M2.3.1 Die casting Die casting is a moulding process in which the molten metal is injected under high pressure and velocity into a split mould die. It is also called pressure die casting. The split mould used

More information

Glossary. 3D Animation Using computer software to create and animate a three-dimensional representation of image data.

Glossary. 3D Animation Using computer software to create and animate a three-dimensional representation of image data. Glossary # 2D Control Drawing A line drawing showing various views of a product with details such as material, surface finish, volume, tolerances and critical dimensions. 3D Animation Using computer software

More information

CLASSIFICATIONS OF INJECTION MOLDS

CLASSIFICATIONS OF INJECTION MOLDS CLASSIFICATIONS OF INJECTION MOLDS General Notes The following classifications are guidelines to be used in obtaining quotations and placing orders for uniform types of molds. It is our desire, through

More information

Leading Today s Technology in Injection Molding

Leading Today s Technology in Injection Molding 2050 Sunnydale Boulevard Clearwater, Florida USA 33765 Tel 727-446-8593 Fax 727-446-8595 Leading Today s Technology in Injection Molding Your Partner in: Product Development Material Selection Product

More information

Fundamentals of Design for Plastic Injection Molding. Kelly Bramble

Fundamentals of Design for Plastic Injection Molding. Kelly Bramble Fundamentals of Design for Plastic Injection Molding Kelly Bramble 1 Fundamentals of Design for Plastic Injection Molding Copyright, Engineers Edge, LLC www.engineersedge.com All rights reserved. No part

More information

Voids throughout the jacket or insulation sometimes giving a rough or grainy surface.

Voids throughout the jacket or insulation sometimes giving a rough or grainy surface. Troubleshooting Guide PVC Extrusion of flexible wire & cable Low variable insulation resistance Cold conductor Preheat conductor to 280-300 F with electric preheater. Incorrect formulation Check the clay

More information

Craft and Design Application of Injection Moulding (Mobile Phone)

Craft and Design Application of Injection Moulding (Mobile Phone) Craft and Design Application of Injection Moulding (Mobile Phone) 5700 Summer 1999 HIGHER STILL Craft and Design Application of Injection Moulding (Mobile Phone) Support Materials This Support Material

More information

How to Effectively Move from 3D Printing to Injection Molding. Tony Holtz Technical Specialist, Proto Labs

How to Effectively Move from 3D Printing to Injection Molding. Tony Holtz Technical Specialist, Proto Labs How to Effectively Move from 3D Printing to Injection Molding Tony Holtz Technical Specialist, Proto Labs Overview 3D Printing CNC Machining Injection Molding Design Considerations for Injection Molding

More information

DUPONT PERFORMANCE POLYMERS Joint Design: A Critical Factor in Strong Bonds GENERAL GUIDELINES FOR ULTRASONIC, VIBRATION AND SPIN WELDING

DUPONT PERFORMANCE POLYMERS Joint Design: A Critical Factor in Strong Bonds GENERAL GUIDELINES FOR ULTRASONIC, VIBRATION AND SPIN WELDING DUPONT PERFORMANCE POLYMERS Joint Design: A Critical Factor in Strong Bonds GENERAL GUIDELINES FOR ULTRASONIC, VIBRATION AND SPIN WELDING Introduction Welding techniques for assembling parts molded with

More information

Gas Assist and Microcellular (MuCell ) ) Molding Process. Vishu Shah Consultek

Gas Assist and Microcellular (MuCell ) ) Molding Process. Vishu Shah Consultek Gas Assist and Microcellular (MuCell ) ) Molding Process Vishu Shah Consultek What is Gas Assist Injection Molding? Gas Assist injection molding is a process enhancement to conventional injection molding,

More information

Fundamentals of Extrusion

Fundamentals of Extrusion CHAPTER1 Fundamentals of Extrusion The first chapter of this book discusses the fundamentals of extrusion technology, including extrusion principles, processes, mechanics, and variables and their effects

More information

the runnerless types of molds are explained post molding operations are described the basic methods of applied decoration methods are examined

the runnerless types of molds are explained post molding operations are described the basic methods of applied decoration methods are examined Training Objectives After watching the video and reviewing this printed material, the viewer will gain knowledge and understanding of the various plastic finishing processes used in industry and their

More information

Technical Services & Capabilities

Technical Services & Capabilities Technical Services & Capabilities Machining Welding MIG TIG Robotic TIG Friction Stir Welding Solution Heat Treat & Artificial Aging Assemblies & Fabrication Bike Frame Specialists Technical Services Product

More information

FLEXIBLE CIRCUITS MANUFACTURING

FLEXIBLE CIRCUITS MANUFACTURING IPC-DVD-37 FLEXIBLE CIRCUITS MANUFACTURING Below is a copy of the narration for DVD-37. The contents of this script were developed by a review group of industry experts and were based on the best available

More information

MSci PolySci-Lab Modul P104 P & Injection molding. Injection molding machine Arburg 320 S (Neue Materialien Bayreuth GmbH)

MSci PolySci-Lab Modul P104 P & Injection molding. Injection molding machine Arburg 320 S (Neue Materialien Bayreuth GmbH) MSci PolySci-Lab Modul P104 P Poollyym meerrm maatteerriiaalliieenn & & P Poollyym meerrtteecchhnnoollooggiiee Injection molding 1 Introduction Figure 1: Injection molding machine Arburg 320 S (Neue Materialien

More information

APPLIED PNEUMATICS AND HYDRAULICS H TUTORIAL HYDRAULIC AND PNEUMATIC CYLINDERS. This work covers part of outcome 2 of the standard Edexcel module.

APPLIED PNEUMATICS AND HYDRAULICS H TUTORIAL HYDRAULIC AND PNEUMATIC CYLINDERS. This work covers part of outcome 2 of the standard Edexcel module. APPLIED PNEUMATICS AND HYDRAULICS H TUTORIAL HYDRAULIC AND PNEUMATIC CYLINDERS This work covers part of outcome 2 of the standard Edexcel module. The material needed for outcome 2 is very extensive so

More information

The Fallacies of Injection Molding as compared to MicroMolding. by Scott Herbert Rapidwerks Inc.

The Fallacies of Injection Molding as compared to MicroMolding. by Scott Herbert Rapidwerks Inc. The Fallacies of Injection Molding as compared to MicroMolding. by Scott Herbert Rapidwerks Inc. Over the years MicroMolding has become a hot bed for solutions to problems that have been plaguing companies

More information

SECTION G2: CABLE PROCESSOR MODULE MAINTENANCE

SECTION G2: CABLE PROCESSOR MODULE MAINTENANCE SECTION G2: CABLE PROCESSOR MODULE MAINTENANCE Cable Processor Module overview WARNING! When tipping the Cable Processor Module back, (after removing the toggle arm pin), use extreme caution not to drop

More information

Lead & Magnet Wire Connection Methods Using the Tin Fusing Method Joyal A Division of AWE, Inc.

Lead & Magnet Wire Connection Methods Using the Tin Fusing Method Joyal A Division of AWE, Inc. Lead & Magnet Wire Connection Methods Using the Tin Fusing Method Joyal A Division of AWE, Inc. Abstract The technology for connecting lead and magnet wires for electric motors and electro mechanical devices

More information

Polyolefin Heat Shrink Tubing for Tight-Tolerance Medical Applications

Polyolefin Heat Shrink Tubing for Tight-Tolerance Medical Applications Polyolefin Heat Shrink Tubing for Tight-Tolerance Medical Applications Understanding the Advantages and Development Process By Apur Lathiya Vice President and General Manager, Vesta Thermoplastics Division

More information

Machine nozzle with needle shut-off type HP pneumatically or hydraulically controlled

Machine nozzle with needle shut-off type HP pneumatically or hydraulically controlled Machine nozzle with needle shut-off type HP pneumatically or hydraulically controlled Applications: Thermoplastics (not applicable for PVC) Shut-off mechanism: Needle shut-off with integrated 2-way actuator

More information

RRIM DESIGN MANUAL ADDENDUM FOR EXTERIOR BODY PANELS

RRIM DESIGN MANUAL ADDENDUM FOR EXTERIOR BODY PANELS RRIM DESIGN MANUAL ADDENDUM FOR EXTERIOR BODY PANELS Published by the Automotive Composites Alliance (ACA), formerly the SMC Automotive Alliance. 2004 by Automotive Composites Alliance Published: June,

More information

CARL HANSER VERLAG. Herbert Rees. Mold Engineering 2nd edition 3-446-21659-6. www.hanser.de

CARL HANSER VERLAG. Herbert Rees. Mold Engineering 2nd edition 3-446-21659-6. www.hanser.de CARL HANSER VERLAG Herbert Rees Mold Engineering 2nd edition 3-446-21659-6 www.hanser.de 45 4 General Mold Design Guidelines 4.1 Before Starting to Design a Mold he mold designer starts with the design

More information

CHEMICAL FOAM EXTRUSION PROCESSING GUIDE

CHEMICAL FOAM EXTRUSION PROCESSING GUIDE FOAMAZOL Chemical Foaming Agents CHEMICAL FOAM EXTRUSION PROCESSING GUIDE Polymer Foaming Agent foam FOAM EXTRUSION USING CHEMICAL FOAMING AGENTS Introduction The basics of foam extrusion consist of mixing

More information

DESIGN OF PLASTIC INJECTION MOLD FOR AN AIR VENT BEZEL THROUGH FLOW ANALYSIS (CAE) FOR DESIGN ENHANCEMENT

DESIGN OF PLASTIC INJECTION MOLD FOR AN AIR VENT BEZEL THROUGH FLOW ANALYSIS (CAE) FOR DESIGN ENHANCEMENT DESIGN OF PLASTIC INJECTION MOLD FOR AN AIR VENT BEZEL THROUGH FLOW ANALYSIS (CAE) FOR DESIGN ENHANCEMENT Jitendra Dilip Ganeshkar 1, R.B.Patil 2 1 ME CAD CAM Pursuing, Department of mechanical engineering,

More information

Good Boards = Results

Good Boards = Results Section 2: Printed Circuit Board Fabrication & Solderability Good Boards = Results Board fabrication is one aspect of the electronics production industry that SMT assembly engineers often know little about.

More information

INFUSE Olefin Block Copolymers Injection Molding Processing Guide

INFUSE Olefin Block Copolymers Injection Molding Processing Guide Dow Elastomers INFUSE Olefin Block Copolymers Injection Molding Processing Guide Introduction INFUSE Olefin Block Copolymers (OBCs) are a groundbreaking family of resins that offer performance previously

More information

NEW SIX-SEALS CUTTING RING. INTERNATIONAL INDUSTRIAL PATENT Nr. 864061 of the 10/03/99 FLANKS AND DOES NOT REPLACE THE STANDARD RING CURRENTLY IN USE

NEW SIX-SEALS CUTTING RING. INTERNATIONAL INDUSTRIAL PATENT Nr. 864061 of the 10/03/99 FLANKS AND DOES NOT REPLACE THE STANDARD RING CURRENTLY IN USE B4 NEW SIX-SEALS CUTTING RING. INTERNATIONAL INDUSTRIAL PATENT Nr. 864061 of the 10/03/99 FLANKS AND DOES NOT REPLACE THE STANDARD RING CURRENTLY IN USE AVAILABLE IN CARBON AND STAINLESS STEEL 23 THEORY

More information

Machine bolt shut-off nozzle type BHP pneumatically or hydraulically controlled

Machine bolt shut-off nozzle type BHP pneumatically or hydraulically controlled Machine bolt shut-off nozzle type BHP pneumatically or hydraulically controlled Applications: Thermoplastics (not applicable for PVC) Shut-off mechanism: Bolt shut-off with integrated 2-way actuator pneumatically

More information

A Systematic Approach to Diagnosing Mold Filling and Part Quality Variations

A Systematic Approach to Diagnosing Mold Filling and Part Quality Variations VOL. 3 NO. 2 A Systematic Approach to Diagnosing Mold Filling and Part Quality Variations www.beaumontinc.com A Systematic Approach to Diagnosing Mold Filling and Part Quality Variations Applying Fundamental

More information

8. Annealing Treatment of Iupilon / NOVAREX 8.1 Annealing Treatment 8.2 Annealing Effect of using both hot air / far infrared radiation heating system

8. Annealing Treatment of Iupilon / NOVAREX 8.1 Annealing Treatment 8.2 Annealing Effect of using both hot air / far infrared radiation heating system CONTENTS 1. Injection Molding Machine 1.1 Injection Unit 1.2 Clamping Unit 1.3 Multi-program Control 1.4 Defective Molding, Causes and Remedies 2. Molding Operation 2.1 Preliminary drying of materials

More information

FOREWORD. The Plastics Pipe Institute. This Technical Note, TN-30, was first issued in January 2006 and was revised and republished in September 2013.

FOREWORD. The Plastics Pipe Institute. This Technical Note, TN-30, was first issued in January 2006 and was revised and republished in September 2013. Requirements for the Use of Rework Materials in Manufacturing of Polyethylene Gas Pipe TN-30/2013 105 Decker Court, Suite 825, Irving, TX 75062 P: 469-499-1044 F: 469-499-1063 www.plasticpipe.org FOREWORD

More information

WATERPROOFING OF REINFORCED CONCRETE FLAT ROOF 12

WATERPROOFING OF REINFORCED CONCRETE FLAT ROOF 12 WATERPROOFING OF REINFORCED CONCRETE FLAT ROOF 12 87 88 GOOD INDUSTRY PRACTICES 12 WATERPROOFING OF REINFORCED CONCRETE FLAT ROOF 12.1 BACKGROUND Most roofs in Singapore are constructed using reinforced

More information

PRECISION PROTOTYPING THE ROLE OF 3D PRINTED MOLDS IN THE INJECTION MOLDING INDUSTRY

PRECISION PROTOTYPING THE ROLE OF 3D PRINTED MOLDS IN THE INJECTION MOLDING INDUSTRY By Lior Zonder, Applications Team Leader Nadav Sella, Solutions Sales Manager, Global Field Operations Injection molding (IM) the process of injecting plastic material into a mold cavity where it cools

More information

DNA Separation Methods. Chapter 12

DNA Separation Methods. Chapter 12 DNA Separation Methods Chapter 12 DNA molecules After PCR reaction produces many copies of DNA molecules Need a way to separate the DNA molecules from similar sized molecules Only way to genotype samples

More information

Cutting and Shearing die design Cutting die design

Cutting and Shearing die design Cutting die design Manufacturing Processes 2 Dr. Alaa Hasan Ali Cutting and Shearing die design Cutting die design A stamping die is a special, one-of-a-kind precision tool that cuts and forms sheet metal into a desired

More information

Machine Nozzles Injection Nozzle

Machine Nozzles Injection Nozzle Machine Nozzles Injection Nozzle Improve Melt Quality... Reduce Downtime! Heat pipe technology is your assurance that every Synventive Nozzle will automatically operate at the optimum processing temperature;

More information

Foam Injection Molding:

Foam Injection Molding: Foam Injection Molding: Unique Process Solutions for Light Weighting Automotive Plastic Parts Steve Braig President & CEO Trexel, Inc. AGENDA Technology Overview > Chemical Foaming > Physical Foaming Foamed

More information

GLOBAL MANUFACTURING. ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ

GLOBAL MANUFACTURING. ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ GLOBAL MANUFACTURING ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ Workpiece Presentation Powder Metallurgy and Additive Manufacturing [#7] Powder Metallurgy PM parts can

More information

Characterization of Polymers Using TGA

Characterization of Polymers Using TGA application note Characterization of Polymers Using TGA W.J. Sichina, Marketing Manager Introduction Thermogravimetric analysis (TGA) is one of the members of the family of thermal analysis techniques

More information

Copper Alloys for Injection, Thermoform and Blow Molds

Copper Alloys for Injection, Thermoform and Blow Molds Copper Alloys for Injection, Thermoform and Blow Molds by Robert Kusner Manager of Technical Services June 2015 Today s Agenda History of copper mold alloys Why use copper? Which copper alloy should I

More information

MOLD STANDARDS. Auburn Hills, Michigan, USA. 421 Page 1 6/28/11 Rev: 11/20/02

MOLD STANDARDS. Auburn Hills, Michigan, USA. 421 Page 1 6/28/11 Rev: 11/20/02 MOLD STANDARDS Auburn Hills, Michigan, USA 421 Page 1 6/28/11 Rev: 11/20/02 REVISION RECORD Original Release Date 10/17/99 Revised Release Date 08/19/02 Revised Release Date 11/20/02 Revised Release Date

More information

CHARACTERIZATION OF POLYMERS BY TMA. W.J. Sichina, National Marketing Manager

CHARACTERIZATION OF POLYMERS BY TMA. W.J. Sichina, National Marketing Manager PERKIN ELMER Polymers technical note CHARACTERIZATION OF POLYMERS BY W.J. Sichina, National Marketing Manager Thermomechanical analysis () is one of the important characterization techniques in the field

More information

Disco Purge Procedure

Disco Purge Procedure Page 1 of 6 Disco Purge Procedure Click to print. For more information, e-mail us at: packaging@dupont.com The Disco Purge Procedure for Extrusion Coaters Surlyn packaging resin Nucrel acid copolymer resin

More information