MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question."

Transcription

1 Ch19_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Enzymes are members of which class of biomolecules? A) carbohydrates B) nucleic acids C) proteins D) steroids E) lipids 1) 2) What is the function of enzymes? A) biochemical catalysts B) structure and support C) communication between cells D) nutritional reserves E) physical protection 2) 3) The reactant in an enzyme-catalyzed reaction is called the A) hormone. B) inhibitor. C) cofactor. D) substrate. E) vitamin. 3) 4) All of the following phrases correctly describes enzymes except A) dissolve in water. B) act as catalysts. C) contain an active site. D) have a globular shape. E) behave as substrates. 4) 5) The tertiary structure of most enzymes is A) a β-pleated sheet. B) globular. C) an α-helix. D) fibrous. E) none of these. 5) 6) The maximum number of substrate molecules that one enzyme molecule can act on in a given unit of time is the A) turnover number. B) equilibrium constant. C) catalytic multiplier. D) rate constant. E) reduction factor. 6) 7) Which term identifies the relatively small portion of the enzyme that is directly involved in the biochemical reaction being catalyzed? A) substrate B) precursor C) C-terminal D) active site E) N-terminal 7) 1

2 8) Enzymes function as catalysts by A) becoming one of the reactants. B) changing the value of the equilibrium constant to a more favorable value. C) lowering the value of the activation energy. D) increasing the amount of time needed to reach equilibrium. E) changing the value of the free energy change to a more favorable value. 8) SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 9) Explain the term specificity as it applies to enzyme activity. 9) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 10) The nonprotein portion required by some enzymes for proper functioning is called a(an) A) zymogen. B) activator. C) inhibitor. D) cofactor. E) substrate. 10) 11) Which aspect of enzyme structure is related to our dietary need for trace minerals? A) cofactor B) chirality C) active site D) turnover number E) none of these 11) 12) The name of an enzyme can often be recognized by the ending A) -ase. B) -ose. C) -ate. D) -ene. E) -ic acid. 12) 13) An enzyme that catalyzes addition or removal of hydrogen or oxygen on substrate molecules is a(an). A) hydrolase B) ligase C) transferase D) oxidoreductase E) isomerase 13) 14) An enzyme that is classified as a hydrolase is involved in reactions. A) reduction B) polymerization C) isomerization D) oxidation E) hydrolysis 14) 15) Transaminase can be classified as a(an) because its function is moving an amine group from one molecule to another. A) ligase B) oxidoreductase C) isomerase D) transferase E) hydrolase 15) 2

3 16) A synthetase can be classified as a(an) because its function is joining two molecules together. A) isomerase B) oxidoreductase C) hydrolase D) transferase E) ligase 16) 17) An enzyme that catalyzes the conversion of a cis double bond to a trans double bond is classified as a(an) A) hydrolase. B) transferase. C) ligase. D) oxidoreductase. E) isomerase. 17) 18) The theory of enzyme mechanism that suggests a rigid, inflexible molecule is the model. A) substrate specific B) lock-and-key C) active site D) induced-fit E) coenzyme 18) 19) The theory of enzyme mechanism that suggests a flexible molecule whose shape is altered by the reaction conditions is the model. A) lock-and-key B) induced-fit C) substrate specific D) active site E) coenzyme 19) 20) Which factor is not important in explaining how enzymes work? A) The bonds in substrates are subjected to strains which weaken them. B) Substrates are brought into solution more easily. C) Two different substrate molecules are brought into close contact. D) Substrates are forced into the correct orientation for interaction. E) Substrates are placed near acidic or basic sites. 20) 21) When substrate molecules occupy all of the active sites in the enzyme available for a particular reaction, the enzyme is said to be A) activated. B) inhibited. C) saturated. D) denatured. E) hydrolyzed. 21) 3

4 22) In a normal biochemical system, the rate of a specific reaction is determined by A) enzyme efficiency and substrate concentration. B) ph and temperature. C) temperature and substrate concentration. D) ph and enzyme efficiency. E) temperature and enzyme efficiency. 22) 23) When an enzyme is saturated it A) is in low concentration relative to the substrate, and the reaction rate is directly proportional to enzyme concentration. B) is in high concentration relative to the substrate, and the reaction rate is directly proportional to substrate concentration. C) is in low concentration relative to the substrate, and the reaction rate approaches its maximum. D) has been completely consumed, and that reaction cannot occur again until new enzymes are produced. E) none of the above 23) 24) Enzymes have an optimum temperature for their catalytic activity. This is best explained by the balance between the number of collisions and the rate of denaturation of the enzyme as temperatures increase. A) decreased; decreased B) increased; decreased C) decreased; increased D) increased; increased E) none of the above 24) 25) A multi-step biochemical process in which the rate of an early step is affected by the concentration of products of a later step is said to be subject to A) feedback control. B) hydrolysis. C) decomposition. D) ph control. E) all of the above 25) 26) The mechanism of enzyme control that is similar to noncompetitive inhibition because both involve interactions with the enzyme at locations other than the active site is A) zymogen production. B) feedback inhibition. C) allosteric interaction. D) zymogen activation. E) genetic control. 26) SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 27) Explain the term feedback as a mechanism for control of biochemical reactions. 27) 28) Explain how an allosteric enzyme is regulated. 28) 4

5 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 29) When a molecule similar to the correct substrate interacts with the active site of an enzyme, the process is called A) competitive inhibition. B) activation. C) covalent modification. D) noncompetitive inhibition. E) irreversible inhibition. 29) 30) When a molecule other than the correct substrate interacts with some part of an enzyme to alter the shape of the active site, the process is called A) irreversible inhibition. B) covalent modification. C) activation. D) noncompetitive inhibition. E) competitive inhibition. 30) 31) Poisons such as heavy metal ions or insecticides can disrupt enzyme function by A) competitive inhibition. B) irreversible inhibition. C) covalent modification. D) disruption of tertiary structure. E) all of the above 31) 32) When a metal ion such as Pb(II) interferes with the functioning of an enzyme, the most probable mechanism is A) genetic control. B) feedback control. C) reversible competitive inhibition. D) reversible noncompetitive inhibition. E) irreversible inhibition. 32) 33) Another term for substances that bind irreversibly with the active site of an enzyme is A) poisons. B) hormones. C) coenzymes. D) zymogens. E) activators. 33) 34) Noncompetitive inhibition can be overcome by A) increasing the concentration of substrate. B) decreasing the concentration of inhibitor. C) decreasing the concentration of products. D) decreasing the concentration of substrate. E) increasing the concentration of enzyme. 34) 5

6 35) If a covalent bond forms between an enzyme and an inhibitor the reaction catalyzed by this enzyme will have undergone. A) genetic control B) noncompetitive inhibition C) competitive inhibition D) irreversible inhibition E) feedback control 35) 36) All of the following are mechanisms for control of enzyme activity except A) allosteric interactions. B) feedback. C) inhibition. D) genetic regulation. E) hydrolysis. 36) 37) Activation of zymogens involves the chemical process of A) oxidation-reduction. B) hydrogen bonding. C) complete hydrolysis. D) covalent modification. E) denaturation. 37) 38) Which is the correct term for the inactive form of an enzyme, often used for transport or storage? A) coenzyme B) apoenzyme C) activator D) inhibitor E) zymogen 38) 39) Which mechanism of enzyme control determines the amount of enzyme available? A) covalent modification B) genetic control C) zymogen production D) competitive inhibition E) allosteric control 39) 40) Some enzymes are produced as zymogens because A) the actual enzyme molecules are so large that they must be produced in pieces and assembled as needed. B) they must have both an active site and an allosteric site, and these can't be produced simultaneously. C)the ph at the site of production is very different from the ph at the site where they are used. D) the reactions they catalyze are undesirable at the site of production. E) none of these 40) 41) The genetic control strategy of enzyme control is most useful for production of enzymes that A) are needed only at certain stages of development. B) function for only one specific reaction. C) are produced as zymogens. D) act as hydrolases. E) require vitamins as cofactors. 41) 6

7 42) A compound that is necessary for the synthesis of another compound is called a(an) A) precursor. B) proenzyme. C) allosteric inhibitor. D) cofactor. E) zymogen. 42) 43) A vitamin is A) a nutrient involving trace metals that is necessary for good health. B) a small organic molecule obtained from the diet and necessary for good health. C)a lipid complex which is an important part of all cells. D) a polypeptide used to manufacture enzymes. E) a complex molecule of four interlocking hydrocarbon rings. 43) 44) Antioxidants contribute to good health by reacting with A) free radicals. B) hormones. C) vitamins. D) coenzymes. E) hydrogen ions. 44) 45) All of the following are B vitamins except A) thiamine. B) pantothenic acid. C) ascorbic acid. D) cobalamin. E) niacin. 45) 46) All of the following vitamins are fat soluble except A) A B) K C)C D) D E) E 46) 47) All of the following statements concerning vitamins are true except A) Fat-soluble vitamins have a high proportion of polar carbonyl and hydroxyl groups. B) It is difficult to overdose on water-soluble vitamins because excess amounts can be excreted in the urine. C) It is possible to overdose on fat-soluble vitamins because they accumulate in fatty tissues. D) Vitamins A, D, E, and K are fat-soluble. E) Vitamin C and the B vitamins are water-soluble. 47) 48) Overdosing on vitamins A and D is more likely than overdosing on vitamin C because A) vitamin C is biologically active as consumed in foods, but vitamins A and D must be converted into biologically active forms before utilization. B) vitamins A and D are needed in much larger doses than vitamin C. C)vitamins A and D are biologically active as consumed in foods, but vitamin C must be converted into biologically active forms before utilization. D) vitamin C is fat soluble and thus can accumulate in body fat, where vitamins A and D are water soluble and the excess will be excreted in urine. E) vitamins A and D are fat soluble and thus can accumulate in body fat, where vitamin C is water soluble and the excess will be excreted in urine. 48) 7

8 MATCHING. Choose the item in column 2 that best matches each item in column 1. Match the following. 49) turnover number 50) lyase 51) hydrolase 52) ligase 53) isomerase 54) transferase 55) oxidoreductase 56) lock-and-key model 57) induced-fit model 58) activation 59) inhibition A) any process which decreases the rate of an enzyme catalyzed reaction B) a description of enzyme activity based on the ability of the enzyme to change shape in order to accommodate substrate molecules C)a description of the catalytic activity of an enzyme, where a small value means that very few molecules are acted on in a unit of time D) a type of enzyme which catalyzes the removal of a small molecule from a larger one E) a type of enzyme that catalyzes the breakdown of large molecules by reaction with water F) a type of enzyme that catalyzes oxidation or reduction reactions 49) 50) 51) 52) 53) 54) 55) 56) 57) 58) 59) G) any process that increases the rate of an enzyme catalyzed reaction H) a type of enzyme that catalyzes the transfer of a functional group from one molecule to another I) a description of enzyme activity based on an exact match between the shapes of the active site and the substrate molecule J) a type of enzyme that catalyzes the joining of two molecules together K) a type of enzyme that catalyzes the internal rearrangement of molecules 8

9 60) zymogen 61) vitamin 62) antioxidant A) an inactive form of an enzyme; also called a proenzyme B) a small organic molecule necessary for good health that must be obtained in the diet 60) 61) 62) C) A substance that prevents harmful reactions of free radicals 9

10 Answer Key Testname: UNTITLED3 1) C 2) A 3) D 4) E 5) B 6) A 7) D 8) C 9) Specificity describes the degree of restriction of the activity of an enzyme. Most enzymes only catalyze a specific type of reaction, as evidenced by the broad terms transferase, oxidoreductase, etc. However, some enzymes may act on only one specific substrate molecule. For example, one hydrolase may act on any amide linkage in a peptide, while another hydrolase will only act on the linkage between a specific pair of amino acids. The precise shape of the active site is often the determining factor in specificity. One analogy for describing this is using the specific key for your office versus using a master key that opens your office and many others. 10) D 11) A 12) A 13) D 14) E 15) D 16) E 17) E 18) B 19) B 20) B 21) C 22) A 23) C 24) D 25) A 26) C 27) Feedback control means that the product of a reaction influences the beginning of that reaction. The term is usually applied to a sequence of reactions. Usually the product of a later step is an inhibitor for the enzyme used in the beginning step. This process improves the efficiency of biochemical process: if a large amount of a desired product exists, the reaction for producing that chemical should slow down. 28) An allosteric enzyme is regulated by the interaction of some inhibitor with the enzyme at some location other than the active site. However this interaction causes some change in the active site so that the enzyme is no longer active. The biological advantage of this process is that the inhibitor does not need to be chemically similar to the substrate; instead it could be a molecule produced in a completely different process. This allows fine control of enzyme processes. 29) A 30) D 31) B 32) E 33) A 34) B 35) D 36) E 37) D 38) E 39) B 10

11 Answer Key Testname: UNTITLED3 40) D 41) A 42) A 43) B 44) A 45) C 46) C 47) A 48) E 49) C 50) D 51) E 52) J 53) K 54) H 55) F 56) I 57) B 58) G 59) A 60) A 61) B 62) C 11

Chapter 19 Enzymes and Vitamins

Chapter 19 Enzymes and Vitamins 1.! What are enzymes? Be able to describe the chemical nature of enzymes and their function in biochemical reactions.! 2.! How do enzymes work, and why are they so specific? Be able to provide an overview

More information

ENZYMES 2H 2 O 2 O 2 + 2H 2 O WHAT ARE ENZYMES? WHAT DO ENZYMES DO?

ENZYMES 2H 2 O 2 O 2 + 2H 2 O WHAT ARE ENZYMES? WHAT DO ENZYMES DO? ENZYMES WHAT ARE ENZYMES? WHAT DO ENZYMES DO? catalase 2H 2 O 2 O 2 + 2H 2 O catalase There are literally thousands of different enzymes which catalyze every major chemical reaction in the cells and bodies

More information

Enzymes. Enzyme Structure. Enzyme Classification. CHEM464/Medh, J.D. Reaction Rate and Enzyme Activity

Enzymes. Enzyme Structure. Enzyme Classification. CHEM464/Medh, J.D. Reaction Rate and Enzyme Activity Enzymes Enzymes are biological catalysts They are not consumed or altered during the reaction They do not change the equilibrium, just reduce the time required to reach equilibrium. They increase the rate

More information

Chemistry 20 Chapters 15 Enzymes

Chemistry 20 Chapters 15 Enzymes Chemistry 20 Chapters 15 Enzymes Enzymes: as a catalyst, an enzyme increases the rate of a reaction by changing the way a reaction takes place, but is itself not changed at the end of the reaction. An

More information

Spontaneous Reactions

Spontaneous Reactions Enzymes Spontaneous Reactions May occur quickly or slowly Enzymes speed up chemical reactions!! (But how, Ms. Robinson????) An enzyme is a macromolecule that acts as a catalyst a chemical agent that speeds

More information

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes CHAPTER 6 AN INTRODUCTION TO METABOLISM Section B: Enzymes 1. Enzymes speed up metabolic reactions by lowering energy barriers 2. Enzymes are substrate specific 3. The active site in an enzyme s catalytic

More information

PG1005. Lecture 10. Enzyme Function & Regulation

PG1005. Lecture 10. Enzyme Function & Regulation PG1005 Lecture 10 Enzyme Function & Regulation Dr. Neil Docherty My Teaching Objectives 1) Introduce the concept of enzymes as catalysts in terms of their effects on the activation energy and dynamics

More information

Lipids (Biologie Woche 1 und 2; Pages 81 and 82)

Lipids (Biologie Woche 1 und 2; Pages 81 and 82) Lipids (Biologie Woche 1 und 2; Pages 81 and 82) Lipids Features Have oily, greasy or waxy consistency Relatively insoluble in water Protein and carbohydrates may be converted into lipids by enzymes an

More information

Chapter 16 Amino Acids, Proteins, and Enzymes

Chapter 16 Amino Acids, Proteins, and Enzymes Chapter 16 Amino Acids, Proteins, and Enzymes 1 Functions of Proteins Proteins in the body are polymers made from 20 different amino acids differ in characteristics and functions that depend on the order

More information

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. Energy & Enzymes Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. 1 Energy exists in two forms - potential and kinetic. Potential

More information

2-An activated enzyme made of polypeptide chain and a co-factor is (A) Coenzyme (B) Substrate (C) Apoenzyme (D) Holoenzyme

2-An activated enzyme made of polypeptide chain and a co-factor is (A) Coenzyme (B) Substrate (C) Apoenzyme (D) Holoenzyme 1-The catalytic activity of an enzyme is restricted to its small portion called (B) Passive site (C) Allosteric site (D) All Choices are correct 2-An activated enzyme made of polypeptide chain and a co-factor

More information

Exam 4 Outline CH 105 Spring 2012

Exam 4 Outline CH 105 Spring 2012 Exam 4 Outline CH 105 Spring 2012 You need to bring a pencil and your ACT card. Chapter 24: Lipids 1. Describe the properties and types of lipids a. All are hydrophobic b. Fatty acid-based typically contain

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Most components of energy conversion systems evolved very early; thus, the most fundamental aspects of energy metabolism tend to be: A. quite different among a diverse group

More information

What is an Enzyme? Animations

What is an Enzyme? Animations First Catalysts Manganese dioxide (a black powder) will catalyze the breakdown of hydrogen peroxide. Car exhaust pipes use catalytic converters help convert carbon monoxide (CO) and unburned hydrocarbons

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism 1. Discuss energy conversions and the 1 st and 2 nd law of thermodynamics. Be sure to use the terms work, potential energy, kinetic energy, and entropy. 2. What are Joules

More information

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d.

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. 1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. Solar energy A. Answer a is incorrect. Kinetic energy is the energy of

More information

Learning Objectives. Learning Objectives (cont.) Chapter 6: Metabolism - Energy & Enzymes 1. Lectures by Tariq Alalwan, Ph.D.

Learning Objectives. Learning Objectives (cont.) Chapter 6: Metabolism - Energy & Enzymes 1. Lectures by Tariq Alalwan, Ph.D. Biology, 10e Sylvia S. Mader Lectures by Tariq Alalwan, Ph.D. Learning Objectives Define energy, emphasizing how it is related to work and to heat State and apply two energy laws to energy transformations.

More information

Enzymes. Enzymes are characterized by: Specificity - highly specific for substrates

Enzymes. Enzymes are characterized by: Specificity - highly specific for substrates Enzymes Enzymes are characterized by: Catalytic Power - rates are 10 6-10 12 greater than corresponding uncatalyzed reactions Specificity - highly specific for substrates Regulation - acheived in many

More information

CHAPTER 4: Enzyme Structure ENZYMES

CHAPTER 4: Enzyme Structure ENZYMES CHAPTER 4: ENZYMES Enzymes are biological catalysts. There are about 40,000 different enzymes in human cells, each controlling a different chemical reaction. They increase the rate of reactions by a factor

More information

Catalysis by Enzymes. Enzyme A protein that acts as a catalyst for a biochemical reaction.

Catalysis by Enzymes. Enzyme A protein that acts as a catalyst for a biochemical reaction. Catalysis by Enzymes Enzyme A protein that acts as a catalyst for a biochemical reaction. Enzymatic Reaction Specificity Enzyme Cofactors Many enzymes are conjugated proteins that require nonprotein portions

More information

Chemical Basis of Life Module A Anchor 2

Chemical Basis of Life Module A Anchor 2 Chemical Basis of Life Module A Anchor 2 Key Concepts: - Water is a polar molecule. Therefore, it is able to form multiple hydrogen bonds, which account for many of its special properties. - Water s polarity

More information

AP Biology. From food webs to the life of a cell. Metabolism & Enzymes. Flow of energy through life. Metabolism. Chemical reactions of life

AP Biology. From food webs to the life of a cell. Metabolism & Enzymes. Flow of energy through life. Metabolism. Chemical reactions of life From food webs to the life of a cell energy Metabolism & Enzymes energy energy Flow of energy through life Life is built on chemical reactions sun transforming energy from one form to another organic molecules

More information

BIOCHEMISTRY (I) LIFS2210. Enzymes and Enzyme Reactions

BIOCHEMISTRY (I) LIFS2210. Enzymes and Enzyme Reactions BIOCHEMISTRY (I) LIFS2210 Enzymes and Enzyme Reactions 1 1. Enzymes: Biocatalysts Catalyst: to increase the rate or velocity of a chemical reaction without itself being changed in the overall process Catalyst

More information

BIOCHEMISTRY/MOLECULAR BIOLOGY

BIOCHEMISTRY/MOLECULAR BIOLOGY Enzymes Activation Energy Chemical reactions require an initial input of energy activation energy large biomolecules are stable must absorb energy to break bonds cellulose energy CO 2 + H 2 O + heat Activation

More information

Ch. 8 Enzymes as catalysts

Ch. 8 Enzymes as catalysts Chapt. 8 Enzymes as catalysts Ch. 8 Enzymes as catalysts Student Learning Outcomes: Explain general features of enzymes as catalysts: Substrate -> Product Describe nature of catalytic sites general mechanisms

More information

Module 1: Enzymes Biology

Module 1: Enzymes Biology State that enzymes are globular proteins, with a specific tertiary structure, which catalyse metabolic reactions in living organisms State that enzyme action may be intracellular or extracellular Specificity,

More information

Enzymes and Metabolic Pathways

Enzymes and Metabolic Pathways Enzymes and Metabolic Pathways Enzyme characteristics Made of protein Catalysts: reactions occur 1,000,000 times faster with enzymes Not part of reaction Not changed or affected by reaction Used over and

More information

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms Chapter 5: Microbial Metabolism Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living a living organism. These chemical reactions are generally of two types: Catabolic:

More information

Enzymes and Metabolism

Enzymes and Metabolism Enzymes and Metabolism AP Biology Chapter 8 Metabolism Metabolism are all the chemical reactions in an organism Forming bonds between molecules dehydration synthesis synthesis of new muscle tissue by linking

More information

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the

More information

Worksheet 13.1. Chapter 13: Human biochemistry glossary

Worksheet 13.1. Chapter 13: Human biochemistry glossary Worksheet 13.1 Chapter 13: Human biochemistry glossary α-helix Refers to a secondary structure of a protein where the chain is twisted to form a regular helix, held by hydrogen bonds between peptide bonds

More information

8/20/2012 H C OH H R. Proteins

8/20/2012 H C OH H R. Proteins Proteins Rubisco monomer = amino acids 20 different amino acids polymer = polypeptide protein can be one or more polypeptide chains folded & bonded together large & complex 3-D shape hemoglobin Amino acids

More information

Define the term energy and distinguish between potential and kinetic energy.

Define the term energy and distinguish between potential and kinetic energy. Energy and Chemical Reactions Objective # 1 All living organisms require energy for survival. In this topic we will examine some general principles about energy usage and chemical reactions within cells.

More information

Chemistry: Introduction to General, Organic & Biological Chemistry (Timberlake) Chapter 16: Amino Acids, Proteins, and Enzymes

Chemistry: Introduction to General, Organic & Biological Chemistry (Timberlake) Chapter 16: Amino Acids, Proteins, and Enzymes Chemistry: Introduction to General, Organic & Biological Chemistry (Timberlake) Chapter 16: Amino Acids, Proteins, and Enzymes MULTIPLE CHOICE 1) Which of the following is NOT a function of proteins? A)

More information

1. 2. Enzymes. 1: Biochemistry of macromolecules and metabolic pathways

1. 2. Enzymes. 1: Biochemistry of macromolecules and metabolic pathways 1. 2 Enzymes Enzymes are referred to as biological catalysts they create new pathways that allow reactions to occur many times faster than uncatalysed reactions. Enzymes act on specific molecules called

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy Module 2D - Energy and Metabolism Objective # 19 All living organisms require energy for survival. In this module we will examine some general principles about chemical reactions and energy usage within

More information

Free Energy and Enzymes (Chapter 6) Outline. 1. The "extra" electrons have been stripped from other atoms in the cell.

Free Energy and Enzymes (Chapter 6) Outline. 1. The extra electrons have been stripped from other atoms in the cell. Free Energy and Enzymes (Chapter 6) Outline Growing Old With Molecular Mayhem A. Free radicals are molecules with extra electrons. 1. The "extra" electrons have been stripped from other atoms in the cell.

More information

Section 3: Factors That Affect the Rate of Enzyme Catalyzed Reactions best

Section 3: Factors That Affect the Rate of Enzyme Catalyzed Reactions best Biology 12 Name: Metabolism Practice Test Section 1: What is an enzyme? 1. Which of the following statements is true about enzymes? a) 3D shape can vary and still be active b) they may catalyze only 1

More information

Metabolism Practice Test KEY

Metabolism Practice Test KEY Biology 12 Metabolism Practice Test KEY Name: Section 1: What is an enzyme? 1. Which of the following statements is true about enzymes? a) 3D shape can vary and still be active b) they may catalyze only

More information

AP BIOLOGY 2008 SCORING GUIDELINES

AP BIOLOGY 2008 SCORING GUIDELINES AP BIOLOGY 2008 SCORING GUIDELINES Question 1 1. The physical structure of a protein often reflects and affects its function. (a) Describe THREE types of chemical bonds/interactions found in proteins.

More information

Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following can be classified as biomolecules except A) lipids. B) proteins. C)

More information

Regulation of Metabolism. Enzymes and Cellular Energy

Regulation of Metabolism. Enzymes and Cellular Energy Regulation of Metabolism Local (intrinsic) Control Mechanisms Enzymes and Cellular Energy Cellular metabolism consists of: Catabolism: the breakdown of organic molecules Anabolism: the synthesis of organic

More information

Enzymes and Metabolism

Enzymes and Metabolism Enzymes and Metabolism Enzymes and Metabolism Metabolism: Exergonic and Endergonic Reactions Chemical Reactions: Activation Every chemical reaction involves bond breaking and bond forming A chemical reaction

More information

An Introduction to Metabolism. Chapter 8

An Introduction to Metabolism. Chapter 8 An Introduction to Metabolism Chapter 8 METABOLISM I. Introduction All of an organism s chemical reactions Thousands of reactions in a cell Example: digest starch use sugar for energy and to build new

More information

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í ENZYMES

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í ENZYMES = substances that... biological reactions 1. Provide an alternative reaction route which has a lower... energy 2. Reactions catalysed by enzymes occur under mild conditions + good yield + fast 3. Enzymes

More information

1. The diagram below represents a biological process

1. The diagram below represents a biological process 1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Overview: The Energy of Life The living cell is a miniature chemical factory where thousands of reactions occur The cell extracts energy and applies energy to perform

More information

Intro to Metabolism Campbell Chapter 8

Intro to Metabolism Campbell Chapter 8 Intro to Metabolism Campbell Chapter 8 http://ag.ansc.purdue.edu/sheep/ansc442/semprojs/2003/spiderlamb/eatsheep.gif http://www.gifs.net Section 8.1 An organism s metabolism transforms matter and energy,

More information

Chapter 8 An Introduction to Metabolism

Chapter 8 An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Sep 7 9:07 PM 1 Metabolism=all of the chemical reactions within an organism metabolic pathways are chemical reactions that change molecules in a series of steps

More information

Enzymes: Practice Questions #1

Enzymes: Practice Questions #1 Enzymes: Practice Questions #1 1. Compound X increases the rate of the reaction below. Compound X is most likely A. an enzyme B. a lipid molecule C. an indicator D. an ADP molecule 2. The equation below

More information

Regulation of enzyme activity

Regulation of enzyme activity 1 Regulation of enzyme activity Regulation of enzyme activity is important to coordinate the different metabolic processes. It is also important for homeostasis i.e. to maintain the internal environment

More information

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water

More information

must proceed at low temperatures

must proceed at low temperatures Bio 20 Enzymes! In Nature, high temperatures cause chemicals to become highly reactive. BUT, high temperatures in cells cause PROBLEMS Ie.//a high fever causes the body to shut down or an egg in boiling

More information

Chapter 3 Molecules of Cells

Chapter 3 Molecules of Cells Bio 100 Molecules of cells 1 Chapter 3 Molecules of Cells Compounds containing carbon are called organic compounds Molecules such as methane that are only composed of carbon and hydrogen are called hydrocarbons

More information

LAB EXERCISE: Enzymes I Catechol Oxidase

LAB EXERCISE: Enzymes I Catechol Oxidase LAB EXERCISE: Enzymes I Catechol Oxidase Laboratory Objectives After completing this lab topic, you should be able to: 1. Define enzyme and describe the activity of enzymes in cells. 2. Differentiate competitive

More information

Carbohydrates, proteins and lipids

Carbohydrates, proteins and lipids Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,

More information

Energy Concepts. Study Objectives:

Energy Concepts. Study Objectives: Energy Concepts Study Objectives: 1. Define energy 2.Describe the 1 st law of thermodynamics Compare kinetic and potential energy, be able to give or recognize examples of each 3. Describe the major forms

More information

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage. CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic

More information

Enzymes reduce the activation energy

Enzymes reduce the activation energy Enzymes reduce the activation energy Transition state is an unstable transitory combination of reactant molecules which occurs at the potential energy maximum (free energy maximum). Note - the ΔG of the

More information

Enzymes. OpenStax College

Enzymes. OpenStax College OpenStax-CNX module: m44429 1 Enzymes OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you will be able

More information

Keystone Study Guide Module A: Cells and Cell Processes

Keystone Study Guide Module A: Cells and Cell Processes Keystone Study Guide Module A: Cells and Cell Processes Topic 1: Biological Principles Cells and the Organization of Life Characteristics of Life all living things share the following characteristics:

More information

ENZYME- SUBSTRATE COMPLEX

ENZYME- SUBSTRATE COMPLEX Enzymes OK.so now we ve done all of that hemistry stuff that you all love so much...let s get down to the real stuff aving just learnt about proteins, let s now look at one of the fundamental substances

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Homework. Due in Lab Week 2. Homework #4 (pages 9, 10 & 11) Biomolecules PreLab #2 (handout up front and on Instructor Website)

Homework. Due in Lab Week 2. Homework #4 (pages 9, 10 & 11) Biomolecules PreLab #2 (handout up front and on Instructor Website) Homework Due in Lab Week 2 Homework #4 (pages 9, 10 & 11) Biomolecules PreLab #2 (handout up front and on Instructor Website) Biological Molecules Enzymes Enzymes One of the most important groups of proteins

More information

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Questions- Proteins & Enzymes A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Reaction of the intact peptide

More information

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport.

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport. 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.

More information

LAWS OF THERMODYNAMICS First Law: E cannot be created or destroyed, only transformed. Second Law: When E is transformed, some cannot be used for work

LAWS OF THERMODYNAMICS First Law: E cannot be created or destroyed, only transformed. Second Law: When E is transformed, some cannot be used for work ENERGY, ENZYMES AND METABOLISM CHAPTER 8 Lecture Objectives What Physical Principles Underlie Biological Energy Transformations? What Is the Role of ATP in Biochemical Energetics? What Are Enzymes? How

More information

TECHNICAL UNIVERSITY OF MOMBASA Faculty of ENGINEERING & TECHNOLOGY

TECHNICAL UNIVERSITY OF MOMBASA Faculty of ENGINEERING & TECHNOLOGY TECHNICAL UNIVERSITY OF MOMBASA Faculty of ENGINEERING & TECHNOLOGY DEPARTMENT OF MEDICAL SCIENCES FACULTY OF APPLIED AND HEALTH SCIENCES BMLS 13M MID ENTRY ABT 4202 : BIOCHEMISTRY II INSTRUCTIONS: END

More information

Lecture 4 Enzymes Catalytic proteins. Enzymes. Enzymes 10/21/10. What enzymes do therefore is:

Lecture 4 Enzymes Catalytic proteins. Enzymes. Enzymes 10/21/10. What enzymes do therefore is: Lecture 4 Catalytic proteins Are a type of protein that acts as a catalyst-speeding up chemical reactions A catalyst is defined as a chemical agent that changes the rate of a reaction without being consumed

More information

Name Student number. Using this reaction, the rate of formation of the enzyme-substrate complex can be described by the expression:

Name Student number. Using this reaction, the rate of formation of the enzyme-substrate complex can be described by the expression: UNIVERSITY OF GUELPH CHE 4540 ENZYOLOGY Winter 2005 Quiz #1: February 17, 2005, 11:30 13:00 Instructor: Prof R. errill ANSWERS Instructions: Time allowed = 80 minutes. Total marks = 32. This quiz represents

More information

http://faculty.sau.edu.sa/h.alshehri

http://faculty.sau.edu.sa/h.alshehri http://faculty.sau.edu.sa/h.alshehri Definition: Proteins are macromolecules with a backbone formed by polymerization of amino acids. Proteins carry out a number of functions in living organisms: - They

More information

What happens to the food we eat? It gets broken down!

What happens to the food we eat? It gets broken down! Enzymes Essential Questions: What is an enzyme? How do enzymes work? What are the properties of enzymes? How do they maintain homeostasis for the body? What happens to the food we eat? It gets broken down!

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. The totality of an organism

More information

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Dehydration Synthesis

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Dehydration Synthesis I. Polymers & Macromolecules Figure 1: Polymers Polymer: Macromolecule: Figure 2: Dehydration Synthesis 1 Dehydration Synthesis: Figure 3: Hydrolysis Hydrolysis: II. Organic Macromolecules Class I: Carbohydrates:

More information

Sindh Text Book Board, Jamshoro.

Sindh Text Book Board, Jamshoro. Chapter 3 ENZYMES Life would not be possible with out metabolic activities of the cell. This in turn is depends upon the Catalytic molecules called the enzymes. With-out enzymes, the dynamic, steady state

More information

The purpose of this lab is to investigate the impact of temperature, substrate concentration,

The purpose of this lab is to investigate the impact of temperature, substrate concentration, Lee 1 Jessica Lee AP Biology Mrs. Kingston 23 October 2013 Abstract: The purpose of this lab is to investigate the impact of temperature, substrate concentration, enzyme concentration, and the presence

More information

Name Date Period. Keystone Review Enzymes

Name Date Period. Keystone Review Enzymes Name Date Period Keystone Review Enzymes 1. In order for cells to function properly, the enzymes that they contain must also function properly. What can be inferred using the above information? A. Cells

More information

Enzymes. A. a lipid B. a protein C. a carbohydrate D. a mineral

Enzymes. A. a lipid B. a protein C. a carbohydrate D. a mineral Enzymes 1. All cells in multicellular organisms contain thousands of different kinds of enzymes that are specialized to catalyze different chemical reactions. Given this information, which of the following

More information

Ch 4: Energy and Cellular Metabolism

Ch 4: Energy and Cellular Metabolism Ch 4: Energy and Cellular Metabolism Energy as it relates to Biology Chemical reactions Enzymes and how they speed rxs Metabolism and metabolic pathways Catabolism (ATP production) Anabolism (Synthesis

More information

Chapter Energy & Enzymes

Chapter Energy & Enzymes ANSWERS Chapter 5.2-5.6 Energy & Enzymes 1. Define energy and identify the various forms. Energy is the capacity to do work. Forms light, heat, electricity, motion. 2. Summarize the First and Second Laws

More information

Human Biology Higher Homework: Topic Human Cells. Sub-topic3: Cell Metabolism

Human Biology Higher Homework: Topic Human Cells. Sub-topic3: Cell Metabolism Human Biology Higher Homework: Topic Human Cells Sub-topic3: Cell Metabolism 1. During which of the following chemical conversions is A T P produced? A B C D Amino acids protein Glucose pyruvic acid Haemoglobin

More information

ENZYME MECHANISM C H A P T E R 7

ENZYME MECHANISM C H A P T E R 7 C H A P T E R 7 ENZYME MECHANISM Active Site Transition State Catalysis Lock and Key Induced Fit Nonproductive Binding Entropy Strain and Distortion Transition-State Stabilization Transition-State Analogs

More information

8 Measuring the Activity of the Enzyme Catalase

8 Measuring the Activity of the Enzyme Catalase 8 Measuring the Activity of the Enzyme Catalase Enzymes perform work! Objectives: A) To determine the activity of the enzyme catalase in a solution and B) to observe the effects of heat and cyanide inhibitor

More information

CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES

CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES 3.1 Organic Molecules The chemistry of carbon accounts for the diversity of organic molecules found in living things. Carbon has six electrons, four of which

More information

Chapter 16 The Citric Acid Cycle

Chapter 16 The Citric Acid Cycle Chapter 16 The Citric Acid Cycle Multiple Choice Questions 1. Which of the following is not true of the reaction catalyzed by the pyruvate dehydrogenase complex? A) Biotin participates in the decarboxylation.

More information

Proteins and Nucleic Acids

Proteins and Nucleic Acids Proteins and Nucleic Acids Chapter 5 Macromolecules: Proteins Proteins Most structurally & functionally diverse group of biomolecules. : o Involved in almost everything o Enzymes o Structure (keratin,

More information

Biological molecules:

Biological molecules: Biological molecules: All are organic (based on carbon). Monomers vs. polymers: Monomers refer to the subunits that, when polymerized, make up a larger polymer. Monomers may function on their own in some

More information

BIOLOGICAL MOLECULES OF LIFE

BIOLOGICAL MOLECULES OF LIFE BIOLOGICAL MOLECULES OF LIFE C A R B O H Y D R A T E S, L I P I D S, P R O T E I N S, A N D N U C L E I C A C I D S The Academic Support Center @ Daytona State College (Science 115, Page 1 of 29) Carbon

More information

Chapter 2 - Chemical Foundations

Chapter 2 - Chemical Foundations Chapter 2 - Chemical Foundations I. Introduction By weight, cells are about 70% water, about 1% ions, about 6% small organic molecules (including amino acids, sugars, nucleotides), and about 23% macromolecules.

More information

Biochemistry of Cells

Biochemistry of Cells Biochemistry of Cells 1 Carbon-based Molecules Although a cell is mostly water, the rest of the cell consists mostly of carbon-based molecules Organic chemistry is the study of carbon compounds Carbon

More information

Enzymes: Introduction

Enzymes: Introduction Enzymes: Introduction Firefly bioluminescence is produced by an oxidation reaction catalyzed by the enzyme firefly luciferase. The oxidized substrate (product of the reaction) is in an electronically excited

More information

Introduction to Proteins and Enzymes

Introduction to Proteins and Enzymes Introduction to Proteins and Enzymes Basics of protein structure and composition The life of a protein Enzymes Theory of enzyme function Not all enzymes are proteins / not all proteins are enzymes Enzyme

More information

pencil. Vocabulary: 1. Reactant 2. Product 3. Activation energy 4. Catalyst 5. substrate 6. Chemical reaction Keep your textbooks when you are done

pencil. Vocabulary: 1. Reactant 2. Product 3. Activation energy 4. Catalyst 5. substrate 6. Chemical reaction Keep your textbooks when you are done Objectives Students will explore the importance of chemical reactions in biology Students will discuss the role of enzymes as catalysts in biological reactions. Students will analyze graphs showing how

More information

General Properties Protein Nature of Enzymes Folded Shape of Enzymes H-bonds complementary

General Properties Protein Nature of Enzymes Folded Shape of Enzymes H-bonds complementary Proteins that function as biological catalysts are called enzymes. Enzymes speed up specific metabolic reactions. Low contamination, low temperature and fast metabolism are only possible with enzymes.

More information

ENZYMES - EXTRA QUESTIONS

ENZYMES - EXTRA QUESTIONS ENZYMES - EXTRA QUESTIONS 1. A chemical reaction has a G o = -60 kj/mol. If this were an enzyme-catalyzed reaction what can you predict about the kinetics? A. It will exhibit very rapid kinetics. B. It

More information

Chapter 6: Energy Flow in the Life of a Cell. What is Energy? Answer: The Capacity to do Work. Types of Energy:

Chapter 6: Energy Flow in the Life of a Cell. What is Energy? Answer: The Capacity to do Work. Types of Energy: Chapter 6: Energy Flow in the Life of a Cell What is Energy? Answer: The Capacity to do Work Types of Energy: 1) Kinetic Energy = Energy of movement Light (movement of photons) Heat (movement of particles)

More information

CHAPTER 8: ENERGY AND METABOLISM

CHAPTER 8: ENERGY AND METABOLISM CHAPTER 8: ENERGY AND METABOLISM CHAPTER SYNOPSIS Living organisms transform potential energy into kinetic energy to survive, grow, and reproduce. The energy that the earth receives from the sun is transformed

More information

Chemical Level of Organization

Chemical Level of Organization Chemical Level of Organization Matter and Energy Matter occupies space and has mass Energy is capacity to move mass Potential vs. kinetic Energy forms radiant-moving waves electrical-moving charged particles

More information

Lecture 11 Enzymes: Kinetics

Lecture 11 Enzymes: Kinetics Lecture 11 Enzymes: Kinetics Reading: Berg, Tymoczko & Stryer, 6th ed., Chapter 8, pp. 216-225 Key Concepts Kinetics is the study of reaction rates (velocities). Study of enzyme kinetics is useful for

More information