CONFIDENCE INTERVALS FOR MEANS AND PROPORTIONS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CONFIDENCE INTERVALS FOR MEANS AND PROPORTIONS"

Transcription

1 LESSON SEVEN CONFIDENCE INTERVALS FOR MEANS AND PROPORTIONS An interval estimate for μ of the form a margin of error would provide the user with a measure of the uncertainty associated with the point estimate. One would expect that the formula for the margin of error should take in consideration the factors that determine the variation in values of the point estimate, such as the sample size n and the population standard deviation, σ. Using the Central Limit Theorem (n 30), we can calculate the interval that contains the 95% of sample means: π± 1,96 or π±ε where ε = 1,96. The interval π±ε is described as the interval with a fixed centre, π, and total width w= 2 x ε, that contains 95% of all sample means. In estimation π is unknown. Therefore replace π by a point estimate,. Substitution for π gives the interval The essential difference between the two equations is that in the former the centre of the interval is fixed at μ, but in the second the centre of the interval is no longer fixed: the centre moves according to the value of the new point estimate,. An interval estimate will contain μ if the sample mean, is one of the 95% of within the interval μ±ε. An interval estimate will NOT contain μ if the sample mean the interval μ±ε. is outside

2 Each one of the 95% of sample means that fall within a distance of from μ will result in an interval that contains the population mean somewhere within the interval. Since 95% such interval will contain μ, we can state that we are 95% confident that the population mean, μ, is in the interval. The formula for an interval estimate for μ with any level of confidence may be deduced as a generalization of the 95% confidence interval above. In general, if we let the area in each tail be /2, then the corresponding Z- value will be referred as Z /2 ; hence the margin of error ε = Z /2 (1- )x100% is called the level of confidence that the interval contains μ somewhere within it. The (1-a) 100% confidence interval is given by the formula. Then In some applications the population standard deviation σ will be known. For example the variation in the diameter of discs cut by a certain machine may have been established over a period of time. In other application σ will not be known. In such cases (provided n 30), σ is estimated by s, the point estimate calculated from the sample data. Hence, when σ is unknown, the confidence interval for μ is EXAMPLE is the sample standard error of mean. An importer if Herbs and Spices claims that the average weight of packets of Saffron is 20 gms. A random sample of 36 packets of Saffron is

3 collected. From the sample, the average weight was calculated as 19,35 gms. The population standard deviation of weights is known to be 1,8. a) a) Calculate the 95% confidence interval for the population average weight, μ. b) Calculate 99% confidence interval for the population average weight, μ. c) Estimate the range for total weight of saffron is 50 with 95% confidence. Z 0,025 = 1,96 From 18,762 to 19,938. b) Z 0,005 = 2,5758 d) Total weight of packets = Number of packets x. The mean weight per packet is between 18,762 and 19,938 gms, with 95% confidence. Hence the total weight of 50 packets is between 938,1 and 996,9 with 95% confidence. One-sided confidence intervals The lower limit, above which we are (1-α)100% confident the population mean lies:

4 The upper limit, below which we are (1-α)100% confident the population mean lies: EXAMPLE A property investor claims that the average rental income per room in student accommodation is at most per year. The mean rent paid by a random sample of 36 students is 5.200, the standard deviation is 735. a) Calculate a 90% confidence interval for the true mean annual rental income. b) Calculate the lower limit for one-sided 95% confidence interval. a) Z 0,05 = 1,6449 = 5.200± 1,6449*122, ±201,5 From 4998,5 to 5401,5. b) You will need Z = 1,6449 when α = 5% The 95% lower confidence limit is

5 Confidence intervals for proportions We saw that the Central Limit Theorem (CLT) stated that sample means were Normally distributed for n 30 Then based on the CLT we derived the formula for the confidence interval for the mean as Similarly, the CLT stated that sample were Normally distributed for n 30. Based on CLT, the formula for the confidence interval for the population proportion is given as EXAMPLE In a poll of 200 voters 88 stated that they will vote for the Green party candidate. Construct 95% confidence interval. Comment on the precision of the interval. p= 88/200 = 0,44. Z /2 = 1,96

6 0,44± 1,96 = 0,44±0,0688 The interval is too wide. Suppose that p = 0,44 but n= The interval will be 0,44± 1,96 = 0,44± 0,0307. The precision of confidence intervals for means and proportions It has been already noted that very wide interval estimates are of little practical use. It has been noted several times that increasing sample size results in a reduction in the width or precision of a confidence interval. To calculate the exact sample required to give an interval estimate of a specified precision, return to the formulae used to calculate confidence intervals for means and proportions. The precision of the confidence interval can be written as So we can solve the equation for n and get. This is the sample size for (1-α)100% confidence interval for μ, with precision ±ε.

7 Similarly, to calculate the sample size that will give a confidence interval for proportions with a specified precision (±ε), substitute the required value for ε in the equation proportions. is the precision ε, for (1- )100% confidence interval for For maximum precision, substitute p = 0,5. EXAMPLE For the data in the example of Saffron pocket calculate the sample size that will give a 99% confidence interval for the population mean with a margin error ±0,5 when σ= 1,8. Z 0,005 = 2,5758 For the data of the Green party candidate calculate the sample size that will give a 95% confidence interval with a margin error of ±0,01 for the population proportion when p is unknown. Z 0,025 = 1,96 Since p is unknown we get maximum precision putting p = 0,5.

8 Confidence intervals for differences between means and proportions While the estimation of a single population mean or proportion is important, there are situations where we may be more interested in estimating the difference between two means or proportions. For example, we may be interested in whether the percentage that intend to vote for party B is higher that for party A or whether commuting time is faster by train than by car etc. It was stated that the distribution for the difference between two normal independent random variables was also normal, with mean equal to the difference between the two means and the variance equal to the sum of variances. If ). then Similarly the distribution of the sample means is Normally distributed (n 30) and then the distribution of differences between every possible pair of sample means is given by with n 1 and n Hence, the (1- )100% CI per (μ 1 μ 2 ): If the sample sizes are 30 or more and σ 1 and σ 2 are unknown they may be estimated by s 1 and s 2 and the confidence interval is

9 Strictly speaking, the t-percentage point should be used when σ is unknown, but the Z percentage point is a good approximation for large n. Difference between proportions The sample proportions are Normally distributed for n 1 and n 2 30 according to the Central Limit Theorem. Hence the difference between sample proportions is also Normally distributed: The point estimate for the difference between two populations is (p1-p2) the standard error for the difference between sample proportions is. Hence the confidence intervals for the difference between population proportion (π 1 -π 2 ) is EXAMPLE Designers of rowing equipment investigate the difference between the mean weights of male and female rowing teams. Random samples of male and female rowers are selected: the sample sizes and average weights and sample standard deviations are given below

10 Male rowers Female rowers Sample size Sample mean 60,5 52,6 Sample standard dev. 6,8 4,5 a) Calculate the 95% confidence interval for the difference in means between male and female rowers. b) What inference can be drawn from your results about the difference between population means; the difference between individuals in each population? a) The difference between means is (60,5-52,6) = 7,9. The standard error is Z 0,025 = 1,96. The confidence interval is 7,9± 1,96 * 1,3326 = 7,9±2,6119 = (5,2281; 10,5119). b) We are 95% confident that the mean weight of male rowers exceeds the mean weight for female rowers by 5,2881 to 10,5991. When we are very confident that the mean for male rowers is greater than the mean for female rowers we cannot assume that any individual male rower will be heavier than any individual female rower. This is because the variance for individual values is n times greater than the variance for means.

11 EXAMPLE The table below gives the results for polls taken in two localities. Area A Area B Sample size Vote for Green party p A = 0,44; p B = 0,3375 (p A - p B ) = 0,1025. The standard error is The confidence interval is 0,1025±1,96*0,0513=0,1025±0,0843= (0,0182;0,1868).

Statistical Inference

Statistical Inference Statistical Inference Idea: Estimate parameters of the population distribution using data. How: Use the sampling distribution of sample statistics and methods based on what would happen if we used this

More information

Confidence Intervals for One Standard Deviation Using Standard Deviation

Confidence Intervals for One Standard Deviation Using Standard Deviation Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from

More information

Confidence Intervals for the Difference Between Two Means

Confidence Intervals for the Difference Between Two Means Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means

More information

Confidence Intervals for Cp

Confidence Intervals for Cp Chapter 296 Confidence Intervals for Cp Introduction This routine calculates the sample size needed to obtain a specified width of a Cp confidence interval at a stated confidence level. Cp is a process

More information

Probability and Statistics Lecture 9: 1 and 2-Sample Estimation

Probability and Statistics Lecture 9: 1 and 2-Sample Estimation Probability and Statistics Lecture 9: 1 and -Sample Estimation to accompany Probability and Statistics for Engineers and Scientists Fatih Cavdur Introduction A statistic θ is said to be an unbiased estimator

More information

7 Hypothesis testing - one sample tests

7 Hypothesis testing - one sample tests 7 Hypothesis testing - one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X

More information

Margin of Error When Estimating a Population Proportion

Margin of Error When Estimating a Population Proportion Margin of Error When Estimating a Population Proportion Student Outcomes Students use data from a random sample to estimate a population proportion. Students calculate and interpret margin of error in

More information

Need for Sampling. Very large populations Destructive testing Continuous production process

Need for Sampling. Very large populations Destructive testing Continuous production process Chapter 4 Sampling and Estimation Need for Sampling Very large populations Destructive testing Continuous production process The objective of sampling is to draw a valid inference about a population. 4-

More information

Confidence Intervals for Cpk

Confidence Intervals for Cpk Chapter 297 Confidence Intervals for Cpk Introduction This routine calculates the sample size needed to obtain a specified width of a Cpk confidence interval at a stated confidence level. Cpk is a process

More information

Confidence Intervals for Spearman s Rank Correlation

Confidence Intervals for Spearman s Rank Correlation Chapter 808 Confidence Intervals for Spearman s Rank Correlation Introduction This routine calculates the sample size needed to obtain a specified width of Spearman s rank correlation coefficient confidence

More information

Manual. How large a Sample do we need SRS STRAT.xls. Guido Lüchters September 2006

Manual. How large a Sample do we need SRS STRAT.xls. Guido Lüchters September 2006 Manual How large a Sample do we need SRS STRAT.xls Guido Lüchters September 2006 File: How large a Sample do we need SRS STRAT.doc Last save: Friday, 8. September 2006 How large a Sample do we need SRS

More information

4. Introduction to Statistics

4. Introduction to Statistics Statistics for Engineers 4-1 4. Introduction to Statistics Descriptive Statistics Types of data A variate or random variable is a quantity or attribute whose value may vary from one unit of investigation

More information

Lesson 17: Margin of Error When Estimating a Population Proportion

Lesson 17: Margin of Error When Estimating a Population Proportion Margin of Error When Estimating a Population Proportion Classwork In this lesson, you will find and interpret the standard deviation of a simulated distribution for a sample proportion and use this information

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Sampling and Hypothesis Testing

Sampling and Hypothesis Testing Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus

More information

Confidence Intervals for Coefficient Alpha

Confidence Intervals for Coefficient Alpha Chapter 818 Confidence Intervals for Coefficient Alpha Introduction Coefficient alpha, or Cronbach s alpha, is a measure of the reliability of a test consisting of k parts. The k parts usually represent

More information

Confindence Intervals and Probability Testing

Confindence Intervals and Probability Testing Confindence Intervals and Probability Testing PO7001: Quantitative Methods I Kenneth Benoit 3 November 2010 Using probability distributions to assess sample likelihoods Recall that using the µ and σ from

More information

Confidence level. Most common choices are 90%, 95%, or 99%. (α = 10%), (α = 5%), (α = 1%)

Confidence level. Most common choices are 90%, 95%, or 99%. (α = 10%), (α = 5%), (α = 1%) Confidence Interval A confidence interval (or interval estimate) is a range (or an interval) of values used to estimate the true value of a population parameter. A confidence interval is sometimes abbreviated

More information

AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

More information

5.1 Identifying the Target Parameter

5.1 Identifying the Target Parameter University of California, Davis Department of Statistics Summer Session II Statistics 13 August 20, 2012 Date of latest update: August 20 Lecture 5: Estimation with Confidence intervals 5.1 Identifying

More information

Point and Interval Estimates

Point and Interval Estimates Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number

More information

3.4 Statistical inference for 2 populations based on two samples

3.4 Statistical inference for 2 populations based on two samples 3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

More information

Module 5 Hypotheses Tests: Comparing Two Groups

Module 5 Hypotheses Tests: Comparing Two Groups Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this

More information

Power and Sample Size Determination

Power and Sample Size Determination Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 Power 1 / 31 Experimental Design To this point in the semester,

More information

The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math. P (x) = 5! = 1 2 3 4 5 = 120. The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

More information

Pooling and Meta-analysis. Tony O Hagan

Pooling and Meta-analysis. Tony O Hagan Pooling and Meta-analysis Tony O Hagan Pooling Synthesising prior information from several experts 2 Multiple experts The case of multiple experts is important When elicitation is used to provide expert

More information

Basic Statistics. Probability and Confidence Intervals

Basic Statistics. Probability and Confidence Intervals Basic Statistics Probability and Confidence Intervals Probability and Confidence Intervals Learning Intentions Today we will understand: Interpreting the meaning of a confidence interval Calculating the

More information

Hypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam

Hypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests

More information

Hypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test...

Hypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test... Hypothesis Testing COMP 45 STATISTICS Dr N A Heard Contents 1 Hypothesis Testing 1.1 Introduction........................................ 1. Error Rates and Power of a Test.............................

More information

Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

More information

Prediction and Confidence Intervals in Regression

Prediction and Confidence Intervals in Regression Fall Semester, 2001 Statistics 621 Lecture 3 Robert Stine 1 Prediction and Confidence Intervals in Regression Preliminaries Teaching assistants See them in Room 3009 SH-DH. Hours are detailed in the syllabus.

More information

Prob & Stats. Chapter 9 Review

Prob & Stats. Chapter 9 Review Chapter 9 Review Construct the indicated confidence interval for the difference between the two population means. Assume that the two samples are independent simple random samples selected from normally

More information

Inferential Statistics

Inferential Statistics Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

More information

AP STATISTICS 2009 SCORING GUIDELINES (Form B)

AP STATISTICS 2009 SCORING GUIDELINES (Form B) AP STATISTICS 2009 SCORING GUIDELINES (Form B) Question 5 Intent of Question The primary goals of this question were to assess students ability to (1) state the appropriate hypotheses, (2) identify and

More information

Standard Deviation Calculator

Standard Deviation Calculator CSS.com Chapter 35 Standard Deviation Calculator Introduction The is a tool to calculate the standard deviation from the data, the standard error, the range, percentiles, the COV, confidence limits, or

More information

Constructing and Interpreting Confidence Intervals

Constructing and Interpreting Confidence Intervals Constructing and Interpreting Confidence Intervals Confidence Intervals In this power point, you will learn: Why confidence intervals are important in evaluation research How to interpret a confidence

More information

Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.

Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures. Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.

More information

An interval estimate (confidence interval) is an interval, or range of values, used to estimate a population parameter. For example 0.476<p<0.

An interval estimate (confidence interval) is an interval, or range of values, used to estimate a population parameter. For example 0.476<p<0. Lecture #7 Chapter 7: Estimates and sample sizes In this chapter, we will learn an important technique of statistical inference to use sample statistics to estimate the value of an unknown population parameter.

More information

Sampling Distribution of a Normal Variable

Sampling Distribution of a Normal Variable Ismor Fischer, 5/9/01 5.-1 5. Formal Statement and Examples Comments: Sampling Distribution of a Normal Variable Given a random variable. Suppose that the population distribution of is known to be normal,

More information

Week 4: Standard Error and Confidence Intervals

Week 4: Standard Error and Confidence Intervals Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.

More information

Review. March 21, 2011. 155S7.1 2_3 Estimating a Population Proportion. Chapter 7 Estimates and Sample Sizes. Test 2 (Chapters 4, 5, & 6) Results

Review. March 21, 2011. 155S7.1 2_3 Estimating a Population Proportion. Chapter 7 Estimates and Sample Sizes. Test 2 (Chapters 4, 5, & 6) Results MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 7 Estimates and Sample Sizes 7 1 Review and Preview 7 2 Estimating a Population Proportion 7 3 Estimating a Population

More information

1. Let A, B and C are three events such that P(A) = 0.45, P(B) = 0.30, P(C) = 0.35,

1. Let A, B and C are three events such that P(A) = 0.45, P(B) = 0.30, P(C) = 0.35, 1. Let A, B and C are three events such that PA =.4, PB =.3, PC =.3, P A B =.6, P A C =.6, P B C =., P A B C =.7. a Compute P A B, P A C, P B C. b Compute P A B C. c Compute the probability that exactly

More information

Answers: a. 87.5325 to 92.4675 b. 87.06 to 92.94

Answers: a. 87.5325 to 92.4675 b. 87.06 to 92.94 1. The average monthly electric bill of a random sample of 256 residents of a city is $90 with a standard deviation of $24. a. Construct a 90% confidence interval for the mean monthly electric bills of

More information

Statistics - Written Examination MEC Students - BOVISA

Statistics - Written Examination MEC Students - BOVISA Statistics - Written Examination MEC Students - BOVISA Prof.ssa A. Guglielmi 26.0.2 All rights reserved. Legal action will be taken against infringement. Reproduction is prohibited without prior consent.

More information

Sections 4.5-4.7: Two-Sample Problems. Paired t-test (Section 4.6)

Sections 4.5-4.7: Two-Sample Problems. Paired t-test (Section 4.6) Sections 4.5-4.7: Two-Sample Problems Paired t-test (Section 4.6) Examples of Paired Differences studies: Similar subjects are paired off and one of two treatments is given to each subject in the pair.

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. STATISTICS/GRACEY EXAM 3 PRACTICE/CH. 8-9 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the P-value for the indicated hypothesis test. 1) A

More information

Pr(X = x) = f(x) = λe λx

Pr(X = x) = f(x) = λe λx Old Business - variance/std. dev. of binomial distribution - mid-term (day, policies) - class strategies (problems, etc.) - exponential distributions New Business - Central Limit Theorem, standard error

More information

9-3.4 Likelihood ratio test. Neyman-Pearson lemma

9-3.4 Likelihood ratio test. Neyman-Pearson lemma 9-3.4 Likelihood ratio test Neyman-Pearson lemma 9-1 Hypothesis Testing 9-1.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental

More information

FINAL EXAM REVIEW - Fa 13

FINAL EXAM REVIEW - Fa 13 FINAL EXAM REVIEW - Fa 13 Determine which of the four levels of measurement (nominal, ordinal, interval, ratio) is most appropriate. 1) The temperatures of eight different plastic spheres. 2) The sample

More information

Chapter Study Guide. Chapter 11 Confidence Intervals and Hypothesis Testing for Means

Chapter Study Guide. Chapter 11 Confidence Intervals and Hypothesis Testing for Means OPRE504 Chapter Study Guide Chapter 11 Confidence Intervals and Hypothesis Testing for Means I. Calculate Probability for A Sample Mean When Population σ Is Known 1. First of all, we need to find out the

More information

NCC5010: Data Analytics and Modeling Spring 2015 Practice Exemption Exam

NCC5010: Data Analytics and Modeling Spring 2015 Practice Exemption Exam NCC5010: Data Analytics and Modeling Spring 2015 Practice Exemption Exam Do not look at other pages until instructed to do so. The time limit is two hours. This exam consists of 6 problems. Do all of your

More information

Practice Exam. 1. What is the median of this data? A) 64 B) 63.5 C) 67.5 D) 59 E) 35

Practice Exam. 1. What is the median of this data? A) 64 B) 63.5 C) 67.5 D) 59 E) 35 Practice Exam Use the following to answer questions 1-2: A census is done in a given region. Following are the populations of the towns in that particular region (in thousands): 35, 46, 52, 63, 64, 71,

More information

Study Ch. 3.5, # 195, 207, 209

Study Ch. 3.5, # 195, 207, 209 GOALS: 1. Understand difference between a population and sample. 2. Compute means and standard deviations for both populations and samples. Study Ch. 3.5, # 195, 207, 209 : Prof. G. Battaly, Westchester

More information

Characteristics of Binomial Distributions

Characteristics of Binomial Distributions Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

More information

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete

More information

Math 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2

Math 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2 Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable

More information

Hypothesis testing for µ:

Hypothesis testing for µ: University of California, Los Angeles Department of Statistics Statistics 13 Elements of a hypothesis test: Hypothesis testing Instructor: Nicolas Christou 1. Null hypothesis, H 0 (always =). 2. Alternative

More information

Regression, least squares

Regression, least squares Regression, least squares Joe Felsenstein Department of Genome Sciences and Department of Biology Regression, least squares p.1/24 Fitting a straight line X Two distinct cases: The X values are chosen

More information

Mathematics (Project Maths)

Mathematics (Project Maths) 2010. M128 S Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination Sample Paper Mathematics (Project Maths) Paper 2 Ordinary Level Time: 2 hours, 30 minutes 300 marks

More information

Adverse Impact Ratio for Females (0/ 1) = 0 (5/ 17) = 0.2941 Adverse impact as defined by the 4/5ths rule was not found in the above data.

Adverse Impact Ratio for Females (0/ 1) = 0 (5/ 17) = 0.2941 Adverse impact as defined by the 4/5ths rule was not found in the above data. 1 of 9 12/8/2014 12:57 PM (an On-Line Internet based application) Instructions: Please fill out the information into the form below. Once you have entered your data below, you may select the types of analysis

More information

AP * Statistics Review

AP * Statistics Review AP * Statistics Review Confidence Intervals Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production of this

More information

Confidence Intervals for Exponential Reliability

Confidence Intervals for Exponential Reliability Chapter 408 Confidence Intervals for Exponential Reliability Introduction This routine calculates the number of events needed to obtain a specified width of a confidence interval for the reliability (proportion

More information

One-Way Analysis of Variance

One-Way Analysis of Variance One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We

More information

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as... HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

More information

Estimation of the Mean and Proportion

Estimation of the Mean and Proportion 1 Excel Manual Estimation of the Mean and Proportion Chapter 8 While the spreadsheet setups described in this guide may seem to be getting more complicated, once they are created (and tested!), they will

More information

Treatment and analysis of data Applied statistics Lecture 3: Sampling and descriptive statistics

Treatment and analysis of data Applied statistics Lecture 3: Sampling and descriptive statistics Treatment and analysis of data Applied statistics Lecture 3: Sampling and descriptive statistics Topics covered: Parameters and statistics Sample mean and sample standard deviation Order statistics and

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) ±1.88 B) ±1.645 C) ±1.96 D) ±2.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) ±1.88 B) ±1.645 C) ±1.96 D) ±2. Ch. 6 Confidence Intervals 6.1 Confidence Intervals for the Mean (Large Samples) 1 Find a Critical Value 1) Find the critical value zc that corresponds to a 94% confidence level. A) ±1.88 B) ±1.645 C)

More information

Chapter 11-12 1 Review

Chapter 11-12 1 Review Chapter 11-12 Review Name 1. In formulating hypotheses for a statistical test of significance, the null hypothesis is often a statement of no effect or no difference. the probability of observing the data

More information

MINITAB ASSISTANT WHITE PAPER

MINITAB ASSISTANT WHITE PAPER MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way

More information

Calculate and interpret confidence intervals for one population average and one population proportion.

Calculate and interpret confidence intervals for one population average and one population proportion. Chapter 8 Confidence Intervals 8.1 Confidence Intervals 1 8.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Calculate and interpret confidence intervals for one

More information

Stats for Strategy Exam 1 In-Class Practice Questions DIRECTIONS

Stats for Strategy Exam 1 In-Class Practice Questions DIRECTIONS Stats for Strategy Exam 1 In-Class Practice Questions DIRECTIONS Choose the single best answer for each question. Discuss questions with classmates, TAs and Professor Whitten. Raise your hand to check

More information

Jointly Distributed Random Variables

Jointly Distributed Random Variables Jointly Distributed Random Variables COMP 245 STATISTICS Dr N A Heard Contents 1 Jointly Distributed Random Variables 1 1.1 Definition......................................... 1 1.2 Joint cdfs..........................................

More information

A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING CHAPTER 5. A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 5.1 Concepts When a number of animals or plots are exposed to a certain treatment, we usually estimate the effect of the treatment

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question Stats: Test Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question Provide an appropriate response. ) Given H0: p 0% and Ha: p < 0%, determine

More information

University of Chicago Graduate School of Business. Business 41000: Business Statistics Solution Key

University of Chicago Graduate School of Business. Business 41000: Business Statistics Solution Key Name: OUTLINE SOLUTIONS University of Chicago Graduate School of Business Business 41000: Business Statistics Solution Key Special Notes: 1. This is a closed-book exam. You may use an 8 11 piece of paper

More information

Hypothesis Testing I

Hypothesis Testing I ypothesis Testing I The testing process:. Assumption about population(s) parameter(s) is made, called null hypothesis, denoted. 2. Then the alternative is chosen (often just a negation of the null hypothesis),

More information

Math 2015 Lesson 21. We discuss the mean and the median, two important statistics about a distribution. p(x)dx = 0.5

Math 2015 Lesson 21. We discuss the mean and the median, two important statistics about a distribution. p(x)dx = 0.5 ean and edian We discuss the mean and the median, two important statistics about a distribution. The edian The median is the halfway point of a distribution. It is the point where half the population has

More information

CONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont

CONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont CONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont To most people studying statistics a contingency table is a contingency table. We tend to forget, if we ever knew, that contingency

More information

Sampling Central Limit Theorem Proportions. Outline. 1 Sampling. 2 Central Limit Theorem. 3 Proportions

Sampling Central Limit Theorem Proportions. Outline. 1 Sampling. 2 Central Limit Theorem. 3 Proportions Outline 1 Sampling 2 Central Limit Theorem 3 Proportions Outline 1 Sampling 2 Central Limit Theorem 3 Proportions Populations and samples When we use statistics, we are trying to find out information about

More information

Estimation and Confidence Intervals

Estimation and Confidence Intervals Estimation and Confidence Intervals Fall 2001 Professor Paul Glasserman B6014: Managerial Statistics 403 Uris Hall Properties of Point Estimates 1 We have already encountered two point estimators: th e

More information

Northumberland Knowledge

Northumberland Knowledge Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about

More information

Lecture 8: Random Walk vs. Brownian Motion, Binomial Model vs. Log-Normal Distribution

Lecture 8: Random Walk vs. Brownian Motion, Binomial Model vs. Log-Normal Distribution Lecture 8: Random Walk vs. Brownian Motion, Binomial Model vs. Log-ormal Distribution October 4, 200 Limiting Distribution of the Scaled Random Walk Recall that we defined a scaled simple random walk last

More information

Statistiek I. t-tests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. John Nerbonne 1/35

Statistiek I. t-tests. John Nerbonne. CLCG, Rijksuniversiteit Groningen.  John Nerbonne 1/35 Statistiek I t-tests John Nerbonne CLCG, Rijksuniversiteit Groningen http://wwwletrugnl/nerbonne/teach/statistiek-i/ John Nerbonne 1/35 t-tests To test an average or pair of averages when σ is known, we

More information

Sampling Distribution of a Sample Proportion

Sampling Distribution of a Sample Proportion Sampling Distribution of a Sample Proportion From earlier material remember that if X is the count of successes in a sample of n trials of a binomial random variable then the proportion of success is given

More information

Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011

Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this

More information

CONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE

CONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE 1 2 CONTENTS OF DAY 2 I. More Precise Definition of Simple Random Sample 3 Connection with independent random variables 3 Problems with small populations 8 II. Why Random Sampling is Important 9 A myth,

More information

Statistics 100 Binomial and Normal Random Variables

Statistics 100 Binomial and Normal Random Variables Statistics 100 Binomial and Normal Random Variables Three different random variables with common characteristics: 1. Flip a fair coin 10 times. Let X = number of heads out of 10 flips. 2. Poll a random

More information

Dawson College - Fall 2004 Mathematics Department

Dawson College - Fall 2004 Mathematics Department Dawson College - Fall 2004 Mathematics Department Final Examination Statistics (201-257-DW) No. Score Out of 1 8 2 10 3 8 Date: Thursday, December 16, 2004 Time: 9:30 12:30 Instructors: Kourosh A. Zarabi

More information

Lin s Concordance Correlation Coefficient

Lin s Concordance Correlation Coefficient NSS Statistical Software NSS.com hapter 30 Lin s oncordance orrelation oefficient Introduction This procedure calculates Lin s concordance correlation coefficient ( ) from a set of bivariate data. The

More information

MONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010

MONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010 MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times

More information

Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

More information

Review #2. Statistics

Review #2. Statistics Review #2 Statistics Find the mean of the given probability distribution. 1) x P(x) 0 0.19 1 0.37 2 0.16 3 0.26 4 0.02 A) 1.64 B) 1.45 C) 1.55 D) 1.74 2) The number of golf balls ordered by customers of

More information

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name: Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

More information

Inferences About Differences Between Means Edpsy 580

Inferences About Differences Between Means Edpsy 580 Inferences About Differences Between Means Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at Urbana-Champaign Inferences About Differences Between Means Slide

More information

Practice problems for Homework 12 - confidence intervals and hypothesis testing. Open the Homework Assignment 12 and solve the problems.

Practice problems for Homework 12 - confidence intervals and hypothesis testing. Open the Homework Assignment 12 and solve the problems. Practice problems for Homework 1 - confidence intervals and hypothesis testing. Read sections 10..3 and 10.3 of the text. Solve the practice problems below. Open the Homework Assignment 1 and solve the

More information

Joint Probability Distributions and Random Samples. Week 5, 2011 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Joint Probability Distributions and Random Samples. Week 5, 2011 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 5 Joint Probability Distributions and Random Samples Week 5, 2011 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Two Discrete Random Variables The probability mass function (pmf) of a single

More information

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

More information

Chapter 10. Verification and Validation of Simulation Models Prof. Dr. Mesut Güneş Ch. 10 Verification and Validation of Simulation Models

Chapter 10. Verification and Validation of Simulation Models Prof. Dr. Mesut Güneş Ch. 10 Verification and Validation of Simulation Models Chapter 10 Verification and Validation of Simulation Models 10.1 Contents Model-Building, Verification, and Validation Verification of Simulation Models Calibration and Validation 10.2 Purpose & Overview

More information