CONFIDENCE INTERVALS FOR MEANS AND PROPORTIONS


 Myron Ball
 1 years ago
 Views:
Transcription
1 LESSON SEVEN CONFIDENCE INTERVALS FOR MEANS AND PROPORTIONS An interval estimate for μ of the form a margin of error would provide the user with a measure of the uncertainty associated with the point estimate. One would expect that the formula for the margin of error should take in consideration the factors that determine the variation in values of the point estimate, such as the sample size n and the population standard deviation, σ. Using the Central Limit Theorem (n 30), we can calculate the interval that contains the 95% of sample means: π± 1,96 or π±ε where ε = 1,96. The interval π±ε is described as the interval with a fixed centre, π, and total width w= 2 x ε, that contains 95% of all sample means. In estimation π is unknown. Therefore replace π by a point estimate,. Substitution for π gives the interval The essential difference between the two equations is that in the former the centre of the interval is fixed at μ, but in the second the centre of the interval is no longer fixed: the centre moves according to the value of the new point estimate,. An interval estimate will contain μ if the sample mean, is one of the 95% of within the interval μ±ε. An interval estimate will NOT contain μ if the sample mean the interval μ±ε. is outside
2 Each one of the 95% of sample means that fall within a distance of from μ will result in an interval that contains the population mean somewhere within the interval. Since 95% such interval will contain μ, we can state that we are 95% confident that the population mean, μ, is in the interval. The formula for an interval estimate for μ with any level of confidence may be deduced as a generalization of the 95% confidence interval above. In general, if we let the area in each tail be /2, then the corresponding Z value will be referred as Z /2 ; hence the margin of error ε = Z /2 (1 )x100% is called the level of confidence that the interval contains μ somewhere within it. The (1a) 100% confidence interval is given by the formula. Then In some applications the population standard deviation σ will be known. For example the variation in the diameter of discs cut by a certain machine may have been established over a period of time. In other application σ will not be known. In such cases (provided n 30), σ is estimated by s, the point estimate calculated from the sample data. Hence, when σ is unknown, the confidence interval for μ is EXAMPLE is the sample standard error of mean. An importer if Herbs and Spices claims that the average weight of packets of Saffron is 20 gms. A random sample of 36 packets of Saffron is
3 collected. From the sample, the average weight was calculated as 19,35 gms. The population standard deviation of weights is known to be 1,8. a) a) Calculate the 95% confidence interval for the population average weight, μ. b) Calculate 99% confidence interval for the population average weight, μ. c) Estimate the range for total weight of saffron is 50 with 95% confidence. Z 0,025 = 1,96 From 18,762 to 19,938. b) Z 0,005 = 2,5758 d) Total weight of packets = Number of packets x. The mean weight per packet is between 18,762 and 19,938 gms, with 95% confidence. Hence the total weight of 50 packets is between 938,1 and 996,9 with 95% confidence. Onesided confidence intervals The lower limit, above which we are (1α)100% confident the population mean lies:
4 The upper limit, below which we are (1α)100% confident the population mean lies: EXAMPLE A property investor claims that the average rental income per room in student accommodation is at most per year. The mean rent paid by a random sample of 36 students is 5.200, the standard deviation is 735. a) Calculate a 90% confidence interval for the true mean annual rental income. b) Calculate the lower limit for onesided 95% confidence interval. a) Z 0,05 = 1,6449 = 5.200± 1,6449*122, ±201,5 From 4998,5 to 5401,5. b) You will need Z = 1,6449 when α = 5% The 95% lower confidence limit is
5 Confidence intervals for proportions We saw that the Central Limit Theorem (CLT) stated that sample means were Normally distributed for n 30 Then based on the CLT we derived the formula for the confidence interval for the mean as Similarly, the CLT stated that sample were Normally distributed for n 30. Based on CLT, the formula for the confidence interval for the population proportion is given as EXAMPLE In a poll of 200 voters 88 stated that they will vote for the Green party candidate. Construct 95% confidence interval. Comment on the precision of the interval. p= 88/200 = 0,44. Z /2 = 1,96
6 0,44± 1,96 = 0,44±0,0688 The interval is too wide. Suppose that p = 0,44 but n= The interval will be 0,44± 1,96 = 0,44± 0,0307. The precision of confidence intervals for means and proportions It has been already noted that very wide interval estimates are of little practical use. It has been noted several times that increasing sample size results in a reduction in the width or precision of a confidence interval. To calculate the exact sample required to give an interval estimate of a specified precision, return to the formulae used to calculate confidence intervals for means and proportions. The precision of the confidence interval can be written as So we can solve the equation for n and get. This is the sample size for (1α)100% confidence interval for μ, with precision ±ε.
7 Similarly, to calculate the sample size that will give a confidence interval for proportions with a specified precision (±ε), substitute the required value for ε in the equation proportions. is the precision ε, for (1 )100% confidence interval for For maximum precision, substitute p = 0,5. EXAMPLE For the data in the example of Saffron pocket calculate the sample size that will give a 99% confidence interval for the population mean with a margin error ±0,5 when σ= 1,8. Z 0,005 = 2,5758 For the data of the Green party candidate calculate the sample size that will give a 95% confidence interval with a margin error of ±0,01 for the population proportion when p is unknown. Z 0,025 = 1,96 Since p is unknown we get maximum precision putting p = 0,5.
8 Confidence intervals for differences between means and proportions While the estimation of a single population mean or proportion is important, there are situations where we may be more interested in estimating the difference between two means or proportions. For example, we may be interested in whether the percentage that intend to vote for party B is higher that for party A or whether commuting time is faster by train than by car etc. It was stated that the distribution for the difference between two normal independent random variables was also normal, with mean equal to the difference between the two means and the variance equal to the sum of variances. If ). then Similarly the distribution of the sample means is Normally distributed (n 30) and then the distribution of differences between every possible pair of sample means is given by with n 1 and n Hence, the (1 )100% CI per (μ 1 μ 2 ): If the sample sizes are 30 or more and σ 1 and σ 2 are unknown they may be estimated by s 1 and s 2 and the confidence interval is
9 Strictly speaking, the tpercentage point should be used when σ is unknown, but the Z percentage point is a good approximation for large n. Difference between proportions The sample proportions are Normally distributed for n 1 and n 2 30 according to the Central Limit Theorem. Hence the difference between sample proportions is also Normally distributed: The point estimate for the difference between two populations is (p1p2) the standard error for the difference between sample proportions is. Hence the confidence intervals for the difference between population proportion (π 1 π 2 ) is EXAMPLE Designers of rowing equipment investigate the difference between the mean weights of male and female rowing teams. Random samples of male and female rowers are selected: the sample sizes and average weights and sample standard deviations are given below
10 Male rowers Female rowers Sample size Sample mean 60,5 52,6 Sample standard dev. 6,8 4,5 a) Calculate the 95% confidence interval for the difference in means between male and female rowers. b) What inference can be drawn from your results about the difference between population means; the difference between individuals in each population? a) The difference between means is (60,552,6) = 7,9. The standard error is Z 0,025 = 1,96. The confidence interval is 7,9± 1,96 * 1,3326 = 7,9±2,6119 = (5,2281; 10,5119). b) We are 95% confident that the mean weight of male rowers exceeds the mean weight for female rowers by 5,2881 to 10,5991. When we are very confident that the mean for male rowers is greater than the mean for female rowers we cannot assume that any individual male rower will be heavier than any individual female rower. This is because the variance for individual values is n times greater than the variance for means.
11 EXAMPLE The table below gives the results for polls taken in two localities. Area A Area B Sample size Vote for Green party p A = 0,44; p B = 0,3375 (p A  p B ) = 0,1025. The standard error is The confidence interval is 0,1025±1,96*0,0513=0,1025±0,0843= (0,0182;0,1868).
Statistical Inference
Statistical Inference Idea: Estimate parameters of the population distribution using data. How: Use the sampling distribution of sample statistics and methods based on what would happen if we used this
More informationConfidence Intervals for One Standard Deviation Using Standard Deviation
Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from
More informationConfidence Intervals for the Difference Between Two Means
Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means
More informationConfidence Intervals for Cp
Chapter 296 Confidence Intervals for Cp Introduction This routine calculates the sample size needed to obtain a specified width of a Cp confidence interval at a stated confidence level. Cp is a process
More informationProbability and Statistics Lecture 9: 1 and 2Sample Estimation
Probability and Statistics Lecture 9: 1 and Sample Estimation to accompany Probability and Statistics for Engineers and Scientists Fatih Cavdur Introduction A statistic θ is said to be an unbiased estimator
More information7 Hypothesis testing  one sample tests
7 Hypothesis testing  one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X
More informationMargin of Error When Estimating a Population Proportion
Margin of Error When Estimating a Population Proportion Student Outcomes Students use data from a random sample to estimate a population proportion. Students calculate and interpret margin of error in
More informationNeed for Sampling. Very large populations Destructive testing Continuous production process
Chapter 4 Sampling and Estimation Need for Sampling Very large populations Destructive testing Continuous production process The objective of sampling is to draw a valid inference about a population. 4
More informationConfidence Intervals for Cpk
Chapter 297 Confidence Intervals for Cpk Introduction This routine calculates the sample size needed to obtain a specified width of a Cpk confidence interval at a stated confidence level. Cpk is a process
More informationConfidence Intervals for Spearman s Rank Correlation
Chapter 808 Confidence Intervals for Spearman s Rank Correlation Introduction This routine calculates the sample size needed to obtain a specified width of Spearman s rank correlation coefficient confidence
More informationManual. How large a Sample do we need SRS STRAT.xls. Guido Lüchters September 2006
Manual How large a Sample do we need SRS STRAT.xls Guido Lüchters September 2006 File: How large a Sample do we need SRS STRAT.doc Last save: Friday, 8. September 2006 How large a Sample do we need SRS
More information4. Introduction to Statistics
Statistics for Engineers 41 4. Introduction to Statistics Descriptive Statistics Types of data A variate or random variable is a quantity or attribute whose value may vary from one unit of investigation
More informationLesson 17: Margin of Error When Estimating a Population Proportion
Margin of Error When Estimating a Population Proportion Classwork In this lesson, you will find and interpret the standard deviation of a simulated distribution for a sample proportion and use this information
More information4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
More informationSampling and Hypothesis Testing
Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus
More informationConfidence Intervals for Coefficient Alpha
Chapter 818 Confidence Intervals for Coefficient Alpha Introduction Coefficient alpha, or Cronbach s alpha, is a measure of the reliability of a test consisting of k parts. The k parts usually represent
More informationConfindence Intervals and Probability Testing
Confindence Intervals and Probability Testing PO7001: Quantitative Methods I Kenneth Benoit 3 November 2010 Using probability distributions to assess sample likelihoods Recall that using the µ and σ from
More informationConfidence level. Most common choices are 90%, 95%, or 99%. (α = 10%), (α = 5%), (α = 1%)
Confidence Interval A confidence interval (or interval estimate) is a range (or an interval) of values used to estimate the true value of a population parameter. A confidence interval is sometimes abbreviated
More informationAMS 5 CHANCE VARIABILITY
AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and
More information5.1 Identifying the Target Parameter
University of California, Davis Department of Statistics Summer Session II Statistics 13 August 20, 2012 Date of latest update: August 20 Lecture 5: Estimation with Confidence intervals 5.1 Identifying
More informationPoint and Interval Estimates
Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number
More information3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
More informationModule 5 Hypotheses Tests: Comparing Two Groups
Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this
More informationPower and Sample Size Determination
Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 Power 1 / 31 Experimental Design To this point in the semester,
More informationThe Math. P (x) = 5! = 1 2 3 4 5 = 120.
The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct
More informationPooling and Metaanalysis. Tony O Hagan
Pooling and Metaanalysis Tony O Hagan Pooling Synthesising prior information from several experts 2 Multiple experts The case of multiple experts is important When elicitation is used to provide expert
More informationBasic Statistics. Probability and Confidence Intervals
Basic Statistics Probability and Confidence Intervals Probability and Confidence Intervals Learning Intentions Today we will understand: Interpreting the meaning of a confidence interval Calculating the
More informationHypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam
Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests
More informationHypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test...
Hypothesis Testing COMP 45 STATISTICS Dr N A Heard Contents 1 Hypothesis Testing 1.1 Introduction........................................ 1. Error Rates and Power of a Test.............................
More informationUnit 26 Estimation with Confidence Intervals
Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference
More informationPrediction and Confidence Intervals in Regression
Fall Semester, 2001 Statistics 621 Lecture 3 Robert Stine 1 Prediction and Confidence Intervals in Regression Preliminaries Teaching assistants See them in Room 3009 SHDH. Hours are detailed in the syllabus.
More informationProb & Stats. Chapter 9 Review
Chapter 9 Review Construct the indicated confidence interval for the difference between the two population means. Assume that the two samples are independent simple random samples selected from normally
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationAP STATISTICS 2009 SCORING GUIDELINES (Form B)
AP STATISTICS 2009 SCORING GUIDELINES (Form B) Question 5 Intent of Question The primary goals of this question were to assess students ability to (1) state the appropriate hypotheses, (2) identify and
More informationStandard Deviation Calculator
CSS.com Chapter 35 Standard Deviation Calculator Introduction The is a tool to calculate the standard deviation from the data, the standard error, the range, percentiles, the COV, confidence limits, or
More informationConstructing and Interpreting Confidence Intervals
Constructing and Interpreting Confidence Intervals Confidence Intervals In this power point, you will learn: Why confidence intervals are important in evaluation research How to interpret a confidence
More informationIntroduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.
Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.
More informationAn interval estimate (confidence interval) is an interval, or range of values, used to estimate a population parameter. For example 0.476<p<0.
Lecture #7 Chapter 7: Estimates and sample sizes In this chapter, we will learn an important technique of statistical inference to use sample statistics to estimate the value of an unknown population parameter.
More informationSampling Distribution of a Normal Variable
Ismor Fischer, 5/9/01 5.1 5. Formal Statement and Examples Comments: Sampling Distribution of a Normal Variable Given a random variable. Suppose that the population distribution of is known to be normal,
More informationWeek 4: Standard Error and Confidence Intervals
Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.
More informationReview. March 21, 2011. 155S7.1 2_3 Estimating a Population Proportion. Chapter 7 Estimates and Sample Sizes. Test 2 (Chapters 4, 5, & 6) Results
MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 7 Estimates and Sample Sizes 7 1 Review and Preview 7 2 Estimating a Population Proportion 7 3 Estimating a Population
More information1. Let A, B and C are three events such that P(A) = 0.45, P(B) = 0.30, P(C) = 0.35,
1. Let A, B and C are three events such that PA =.4, PB =.3, PC =.3, P A B =.6, P A C =.6, P B C =., P A B C =.7. a Compute P A B, P A C, P B C. b Compute P A B C. c Compute the probability that exactly
More informationAnswers: a. 87.5325 to 92.4675 b. 87.06 to 92.94
1. The average monthly electric bill of a random sample of 256 residents of a city is $90 with a standard deviation of $24. a. Construct a 90% confidence interval for the mean monthly electric bills of
More informationStatistics  Written Examination MEC Students  BOVISA
Statistics  Written Examination MEC Students  BOVISA Prof.ssa A. Guglielmi 26.0.2 All rights reserved. Legal action will be taken against infringement. Reproduction is prohibited without prior consent.
More informationSections 4.54.7: TwoSample Problems. Paired ttest (Section 4.6)
Sections 4.54.7: TwoSample Problems Paired ttest (Section 4.6) Examples of Paired Differences studies: Similar subjects are paired off and one of two treatments is given to each subject in the pair.
More information1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
STATISTICS/GRACEY EXAM 3 PRACTICE/CH. 89 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the Pvalue for the indicated hypothesis test. 1) A
More informationPr(X = x) = f(x) = λe λx
Old Business  variance/std. dev. of binomial distribution  midterm (day, policies)  class strategies (problems, etc.)  exponential distributions New Business  Central Limit Theorem, standard error
More information93.4 Likelihood ratio test. NeymanPearson lemma
93.4 Likelihood ratio test NeymanPearson lemma 91 Hypothesis Testing 91.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental
More informationFINAL EXAM REVIEW  Fa 13
FINAL EXAM REVIEW  Fa 13 Determine which of the four levels of measurement (nominal, ordinal, interval, ratio) is most appropriate. 1) The temperatures of eight different plastic spheres. 2) The sample
More informationChapter Study Guide. Chapter 11 Confidence Intervals and Hypothesis Testing for Means
OPRE504 Chapter Study Guide Chapter 11 Confidence Intervals and Hypothesis Testing for Means I. Calculate Probability for A Sample Mean When Population σ Is Known 1. First of all, we need to find out the
More informationNCC5010: Data Analytics and Modeling Spring 2015 Practice Exemption Exam
NCC5010: Data Analytics and Modeling Spring 2015 Practice Exemption Exam Do not look at other pages until instructed to do so. The time limit is two hours. This exam consists of 6 problems. Do all of your
More informationPractice Exam. 1. What is the median of this data? A) 64 B) 63.5 C) 67.5 D) 59 E) 35
Practice Exam Use the following to answer questions 12: A census is done in a given region. Following are the populations of the towns in that particular region (in thousands): 35, 46, 52, 63, 64, 71,
More informationStudy Ch. 3.5, # 195, 207, 209
GOALS: 1. Understand difference between a population and sample. 2. Compute means and standard deviations for both populations and samples. Study Ch. 3.5, # 195, 207, 209 : Prof. G. Battaly, Westchester
More informationCharacteristics of Binomial Distributions
Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation
More informationBA 275 Review Problems  Week 5 (10/23/0610/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380394
BA 275 Review Problems  Week 5 (10/23/0610/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete
More informationMath 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2
Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable
More informationHypothesis testing for µ:
University of California, Los Angeles Department of Statistics Statistics 13 Elements of a hypothesis test: Hypothesis testing Instructor: Nicolas Christou 1. Null hypothesis, H 0 (always =). 2. Alternative
More informationRegression, least squares
Regression, least squares Joe Felsenstein Department of Genome Sciences and Department of Biology Regression, least squares p.1/24 Fitting a straight line X Two distinct cases: The X values are chosen
More informationMathematics (Project Maths)
2010. M128 S Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination Sample Paper Mathematics (Project Maths) Paper 2 Ordinary Level Time: 2 hours, 30 minutes 300 marks
More informationAdverse Impact Ratio for Females (0/ 1) = 0 (5/ 17) = 0.2941 Adverse impact as defined by the 4/5ths rule was not found in the above data.
1 of 9 12/8/2014 12:57 PM (an OnLine Internet based application) Instructions: Please fill out the information into the form below. Once you have entered your data below, you may select the types of analysis
More informationAP * Statistics Review
AP * Statistics Review Confidence Intervals Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production of this
More informationConfidence Intervals for Exponential Reliability
Chapter 408 Confidence Intervals for Exponential Reliability Introduction This routine calculates the number of events needed to obtain a specified width of a confidence interval for the reliability (proportion
More informationOneWay Analysis of Variance
OneWay Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We
More informationHYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
More informationEstimation of the Mean and Proportion
1 Excel Manual Estimation of the Mean and Proportion Chapter 8 While the spreadsheet setups described in this guide may seem to be getting more complicated, once they are created (and tested!), they will
More informationTreatment and analysis of data Applied statistics Lecture 3: Sampling and descriptive statistics
Treatment and analysis of data Applied statistics Lecture 3: Sampling and descriptive statistics Topics covered: Parameters and statistics Sample mean and sample standard deviation Order statistics and
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) ±1.88 B) ±1.645 C) ±1.96 D) ±2.
Ch. 6 Confidence Intervals 6.1 Confidence Intervals for the Mean (Large Samples) 1 Find a Critical Value 1) Find the critical value zc that corresponds to a 94% confidence level. A) ±1.88 B) ±1.645 C)
More informationChapter 1112 1 Review
Chapter 1112 Review Name 1. In formulating hypotheses for a statistical test of significance, the null hypothesis is often a statement of no effect or no difference. the probability of observing the data
More informationMINITAB ASSISTANT WHITE PAPER
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. OneWay
More informationCalculate and interpret confidence intervals for one population average and one population proportion.
Chapter 8 Confidence Intervals 8.1 Confidence Intervals 1 8.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Calculate and interpret confidence intervals for one
More informationStats for Strategy Exam 1 InClass Practice Questions DIRECTIONS
Stats for Strategy Exam 1 InClass Practice Questions DIRECTIONS Choose the single best answer for each question. Discuss questions with classmates, TAs and Professor Whitten. Raise your hand to check
More informationJointly Distributed Random Variables
Jointly Distributed Random Variables COMP 245 STATISTICS Dr N A Heard Contents 1 Jointly Distributed Random Variables 1 1.1 Definition......................................... 1 1.2 Joint cdfs..........................................
More informationA POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
CHAPTER 5. A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 5.1 Concepts When a number of animals or plots are exposed to a certain treatment, we usually estimate the effect of the treatment
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question
Stats: Test Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question Provide an appropriate response. ) Given H0: p 0% and Ha: p < 0%, determine
More informationUniversity of Chicago Graduate School of Business. Business 41000: Business Statistics Solution Key
Name: OUTLINE SOLUTIONS University of Chicago Graduate School of Business Business 41000: Business Statistics Solution Key Special Notes: 1. This is a closedbook exam. You may use an 8 11 piece of paper
More informationHypothesis Testing I
ypothesis Testing I The testing process:. Assumption about population(s) parameter(s) is made, called null hypothesis, denoted. 2. Then the alternative is chosen (often just a negation of the null hypothesis),
More informationMath 2015 Lesson 21. We discuss the mean and the median, two important statistics about a distribution. p(x)dx = 0.5
ean and edian We discuss the mean and the median, two important statistics about a distribution. The edian The median is the halfway point of a distribution. It is the point where half the population has
More informationCONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont
CONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont To most people studying statistics a contingency table is a contingency table. We tend to forget, if we ever knew, that contingency
More informationSampling Central Limit Theorem Proportions. Outline. 1 Sampling. 2 Central Limit Theorem. 3 Proportions
Outline 1 Sampling 2 Central Limit Theorem 3 Proportions Outline 1 Sampling 2 Central Limit Theorem 3 Proportions Populations and samples When we use statistics, we are trying to find out information about
More informationEstimation and Confidence Intervals
Estimation and Confidence Intervals Fall 2001 Professor Paul Glasserman B6014: Managerial Statistics 403 Uris Hall Properties of Point Estimates 1 We have already encountered two point estimators: th e
More informationNorthumberland Knowledge
Northumberland Knowledge Know Guide How to Analyse Data  November 2012  This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about
More informationLecture 8: Random Walk vs. Brownian Motion, Binomial Model vs. LogNormal Distribution
Lecture 8: Random Walk vs. Brownian Motion, Binomial Model vs. Logormal Distribution October 4, 200 Limiting Distribution of the Scaled Random Walk Recall that we defined a scaled simple random walk last
More informationStatistiek I. ttests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. John Nerbonne 1/35
Statistiek I ttests John Nerbonne CLCG, Rijksuniversiteit Groningen http://wwwletrugnl/nerbonne/teach/statistieki/ John Nerbonne 1/35 ttests To test an average or pair of averages when σ is known, we
More informationSampling Distribution of a Sample Proportion
Sampling Distribution of a Sample Proportion From earlier material remember that if X is the count of successes in a sample of n trials of a binomial random variable then the proportion of success is given
More informationChicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this
More informationCONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE
1 2 CONTENTS OF DAY 2 I. More Precise Definition of Simple Random Sample 3 Connection with independent random variables 3 Problems with small populations 8 II. Why Random Sampling is Important 9 A myth,
More informationStatistics 100 Binomial and Normal Random Variables
Statistics 100 Binomial and Normal Random Variables Three different random variables with common characteristics: 1. Flip a fair coin 10 times. Let X = number of heads out of 10 flips. 2. Poll a random
More informationDawson College  Fall 2004 Mathematics Department
Dawson College  Fall 2004 Mathematics Department Final Examination Statistics (201257DW) No. Score Out of 1 8 2 10 3 8 Date: Thursday, December 16, 2004 Time: 9:30 12:30 Instructors: Kourosh A. Zarabi
More informationLin s Concordance Correlation Coefficient
NSS Statistical Software NSS.com hapter 30 Lin s oncordance orrelation oefficient Introduction This procedure calculates Lin s concordance correlation coefficient ( ) from a set of bivariate data. The
More informationMONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010
MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times
More informationIndependent t Test (Comparing Two Means)
Independent t Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent ttest when to use the independent ttest the use of SPSS to complete an independent
More informationReview #2. Statistics
Review #2 Statistics Find the mean of the given probability distribution. 1) x P(x) 0 0.19 1 0.37 2 0.16 3 0.26 4 0.02 A) 1.64 B) 1.45 C) 1.55 D) 1.74 2) The number of golf balls ordered by customers of
More informationGood luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:
Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours
More informationInferences About Differences Between Means Edpsy 580
Inferences About Differences Between Means Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at UrbanaChampaign Inferences About Differences Between Means Slide
More informationPractice problems for Homework 12  confidence intervals and hypothesis testing. Open the Homework Assignment 12 and solve the problems.
Practice problems for Homework 1  confidence intervals and hypothesis testing. Read sections 10..3 and 10.3 of the text. Solve the practice problems below. Open the Homework Assignment 1 and solve the
More informationJoint Probability Distributions and Random Samples. Week 5, 2011 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage
5 Joint Probability Distributions and Random Samples Week 5, 2011 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Two Discrete Random Variables The probability mass function (pmf) of a single
More informationLAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
More informationChapter 10. Verification and Validation of Simulation Models Prof. Dr. Mesut Güneş Ch. 10 Verification and Validation of Simulation Models
Chapter 10 Verification and Validation of Simulation Models 10.1 Contents ModelBuilding, Verification, and Validation Verification of Simulation Models Calibration and Validation 10.2 Purpose & Overview
More information