5.6 Angle Bisectors and

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "5.6 Angle Bisectors and"

Transcription

1 age 1 of ngle isectors and erpendicular isectors oal Use angle bisectors and perpendicular bisectors. ey Words distance from a point to a line equidistant angle bisector p. 61 perpendicular bisector The distance from a point to a line is measured by the length of the perpendicular segment from the point to the line. When a point is the same distance from one line as it is from another line, the point is equidistant from the two lines. TOR 5.3 ngle isector Theorem Words If a point is on the bisector of an angle, then it is equidistant from the two sides of the angle. If 1 2 then 1 2 jogging path fountain 15 ft 15 ft bike path The fountain is equidistant from the jogging path and the bike path. ymbols If ma1 ma2, then &*c&*. X rove that TTWUcT VWU. iven UW &&( bisects atuv. TUTW and TUVW are right triangles. rove TTWUcTVWU. olution tatements 1 Use the ngle isector Theorem Reasons W T V U tudent elp TUY TI You can also show that the triangles in xample 1 are congruent by the ongruence Theorem. 1. UW &**( bisects atuv. 2.TUTW and TUVW are right triangles. 3. &***cwu 4. WV &**cwt 1. iven 2. iven 3. Reflexive rop. of ongruence 4. ngle isector Theorem 5. TTWU c TVWU 5. ongruence Theorem 5.6 ngle isectors and erpendicular isectors 273

2 age 2 of 8 erpendicular isectors segment, ray, or line that is perpendicular to a segment at its midpoint is called a perpendicular bisector. perpendicular bisector midpoint of &* TOR 5.4 erpendicular isector Theorem Words If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment. ymbols If is on the perpendicular bisector of &*, then &*c &*. If then X 2 Use erpendicular isectors Use the diagram to find. olution In the diagram, ^&( is the perpendicular bisector of &*. y the erpendicular isector 8x 5x 12 Theorem,. 5x 12 8x 3x 12 ubtract 5x from each side. 3 x 1 2 ivide each side by x 4 implify. You are asked to find, not just the value of x. NWR 8x 8p4 32 Use ngle isectors and erpendicular isectors 1. ind. 2. ind. 3. ind. x 3 2x 1 4x x x 5 x hapter 5 ongruent Triangles

3 age 3 of 8 X In the diagram, N ^&*( is the perpendicular bisector of T&*. rove that TT is isosceles. olution To prove that TT is isosceles, show that T. tatements 3 Use the erpendicular isector Theorem 1. N ^&*( is the bisector of T&*. Reasons 1. iven 2. T 2. erpendicular isector Theorem 3. TT is isosceles. 3. ef. of isosceles triangle T N Intersecting isectors One consequence of the erpendicular isector Theorem is that the perpendicular bisectors of a triangle intersect at a point that is equidistant from the vertices of the triangle. = = areers IITI NNR y finding a location for a warehouse that is easily accessible to all its stores, a facilities planner helps a company save money and run more efficiently. areer inks Z O N. O X company plans to build a warehouse that is equidistant from each of its three stores,,, and. Where should the warehouse be built? olution Think of the stores as the vertices of a triangle. The point where the perpendicular bisectors intersect will be equidistant from each store. 1 Trace the location of the 2 raw the perpendicular stores on a piece of paper. bisectors of &*, &*, and &*. onnect the points of the abel the intersection of locations to form T. the bisectors. 4 Use Intersecting isectors of a Triangle tore tore tore NWR ecause is equidistant from each vertex of T, the warehouse should be built near location. 5.6 ngle isectors and erpendicular isectors 275

4 age 4 of xercises uided ractice Vocabulary heck omplete the statement. 1. If a point is on the bisector of an angle, then it is? from the two sides of the angle. 2. If is on the? of &*, then is equidistant from and. kill heck Use the information in the diagram to find the measure. 3. ind. 4. ind. 16 x 1 2x 1 5. ind. 6. ind QR. 5 5 R 5x 3x 8 12 ractice and pplications xtra ractice ee p Visualize It! opy each diagram on a piece of paper. Then draw a segment that represents the distance from to &* omework elp xample 1: xs. 32, 33 xample 2: xs xample 3: xs. 32, 33 xample 4: xs rror nalysis xplain why aige cannot make this conclusion, given the diagram shown. y the ngle isector Theorem, x 7. aige x hapter 5 ongruent Triangles

5 age 5 of 8 Using lgebra ind the value of x x 5 x x x Roof Trusses In the diagram of the roof truss shown below, you are given that &* bisects a and that a and a are right angles. What can you say about &* and &*? Why? Using isectors Use the diagram to find the indicated measure(s). 14. ind ma. 15. ind V. 16. ind. 38 V 18 U T ind. 18. ind Q. 19. ind and. areers x 2x 3 N R x 2 2x 1 3x x 6 IVI NINR plan and build large construction projects, such as bridges, canals, and tunnels. 20. ridges In the photo, the road is perpendicular to the support beam and &*c &*. What theorem allows you to conclude that &*c &*? xplain. areer inks Z O N. O 5.6 ngle isectors and erpendicular isectors 277

6 age 6 of 8 tudent elp OO or more about soccer, see p occer One way a goalie can determine a good defensive position is to imagine a triangle formed by the goal posts and the ball. 21. When the ball is far from the goal, the goalie most likely stands on line l. ow is l related to the goal line ( &*)? 22. s the ball moves closer, the goalie moves from line l to other places in front of the goal. ow should &*( relate to a? xplain. Using erpendicular isectors Use the information in the diagram. 23. ind and. 24. ind VR and VQ. 25. Name all congruent segments. T R 2 16 V U Itudent elp I Z O N. O OWOR xtra help with problem solving in xs is at classzone.com nalyzing a ap In xercises 26 29, use the map shown and the following information. city planner is trying to decide whether a new household at point X should be covered by fire station,, or. 26. Trace the points,,, and X on a piece of paper and draw the segments &*, &*, and &*. 27. raw the perpendicular bisectors of &*, &*, and &*. heck that they meet at a point. 28. The perpendicular bisectors divide the town into three regions. hade the region closest to fire station red. hade the region closest to fire station blue. hade the region closest to fire station gray. X 29. Writing In an emergency at household X, which fire station should respond? xplain your choice. 278 hapter 5 ongruent Triangles

7 age 7 of 8 Technology In xercises 30 and 31, use geometry drawing software to complete the steps below. 1 raw &*. ind the midpoint of &* and label it. 2 onstruct the perpendicular bisector of &* through. 3 onstruct point along the perpendicular bisector. onstruct &* and &*. 30. What is the relationship between &* and &*? easure &* and &* to verify your answer. 31. ove to another point along the perpendicular bisector. Will the relationship between &* and &* stay the same? Why? 32. roving the erpendicular isector Theorem ill in the missing statements and reasons. iven rove ^&( is the perpendicular bisector of &*. tatements Reasons 1. ^&( is the perpendicular bisector of &*. 2. &*c 1.? 2.? 3.? 3. lines form right angles. 4.? 4. Right angles are congruent. 5.? 5. Reflexive rop. of ongruence 6.TcT 7. &*c 6.? 7.? 8.? 8. ef. of congruent segments tudent elp OO or help with writing proofs, see p hallenge Use the diagram and the information below to prove the ngle isector Theorem. iven rove is on the bisector of a. &* &(, &** &( &*c &** int: irst prove that TcT. 5.6 ngle isectors and erpendicular isectors 279

8 age 8 of 8 tandardized Test ractice 34. ultiple hoice In the figure at the right, what is R? R x 2x ultiple hoice In the figure above, what is? ultiple hoice What can you say about the figure below, in which ^&( is the perpendicular bisector of &*? ll of these ixed Review Translations in a oordinate lane ind the image of the given point using the translation (x, y) (x 3, y 6). (esson 3.7) 37. (5, 1) 38. ( 2, 3) 39. ( 4, 4) 40. (0, 6) 41. (6, 2) 42. (2, 5) 43. (10, 12) 44. ( 1, 1) etermining ongruent Triangles What theorem or postulate, if any, can you use to show that the triangles are congruent? xplain your reasoning. (esson 5.5) N lgebra kills Ordering Numbers Write the numbers in order from least to greatest. (kills Review, p. 662) 48. 3, 3, 0.3, 0.3, 0.6, , 1, 0.75, 4, 1.25, , 0.1, 0, 4.0, 0.1, , 3.1, 3.8, 3.9, 3, , 1, 1.1, 1, 0.5, 0.1, , 1, 2.1, 3.25, 2.5, 5 olving quations olve the equation. (kills Review, p. 673) 54. 4x y d a 9a x 2 3x r 2 5r q 2q z 5 4z t 10 12t 280 hapter 5 ongruent Triangles

NAME DATE PERIOD. Study Guide and Intervention

NAME DATE PERIOD. Study Guide and Intervention opyright Glencoe/McGraw-Hill, a division of he McGraw-Hill ompanies, Inc. 5-1 M IO tudy Guide and Intervention isectors, Medians, and ltitudes erpendicular isectors and ngle isectors perpendicular bisector

More information

Measure and classify angles. Identify and use congruent angles and the bisector of an angle. big is a degree? One of the first references to the

Measure and classify angles. Identify and use congruent angles and the bisector of an angle. big is a degree? One of the first references to the ngle Measure Vocabulary degree ray opposite rays angle sides vertex interior exterior right angle acute angle obtuse angle angle bisector tudy ip eading Math Opposite rays are also known as a straight

More information

4.7 Triangle Inequalities

4.7 Triangle Inequalities age 1 of 7 4.7 riangle Inequalities Goal Use triangle measurements to decide which side is longest and which angle is largest. he diagrams below show a relationship between the longest and shortest sides

More information

Lesson 2: Circles, Chords, Diameters, and Their Relationships

Lesson 2: Circles, Chords, Diameters, and Their Relationships Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

More information

8.2 Angle Bisectors of Triangles

8.2 Angle Bisectors of Triangles Name lass Date 8.2 ngle isectors of Triangles Essential uestion: How can you use angle bisectors to find the point that is equidistant from all the sides of a triangle? Explore Investigating Distance from

More information

Prove Triangles Congruent by ASA and AAS

Prove Triangles Congruent by ASA and AAS 4.5 rove Triangles ongruent by S and S efore ou used the SSS, SS, and H congruence methods. Now ou will use two more methods to prove congruences. hy So you can recognize congruent triangles in bikes,

More information

Use Angle Bisectors of Triangles

Use Angle Bisectors of Triangles 5.3 Use ngle isectors of Triangles efore ou used angle bisectors to find angle relationships. ow ou will use angle bisectors to find distance relationships. Why? So you can apply geometry in sports, as

More information

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: lass: _ ate: _ I: SSS Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Given the lengths marked on the figure and that bisects E, use SSS to explain

More information

For the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE.

For the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE. efinition: circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. We use the symbol to represent a circle. The a line segment from the center

More information

pair of parallel sides. The parallel sides are the bases. The nonparallel sides are the legs.

pair of parallel sides. The parallel sides are the bases. The nonparallel sides are the legs. age 1 of 5 6.5 rapezoids Goal Use properties of trapezoids. trapezoid is a quadrilateral with eactly one pair of parallel sides. he parallel sides are the bases. he nonparallel sides are the legs. leg

More information

Goal Find angle measures in triangles. Key Words corollary. Student Help. Triangle Sum Theorem THEOREM 4.1. Words The sum of the measures of EXAMPLE

Goal Find angle measures in triangles. Key Words corollary. Student Help. Triangle Sum Theorem THEOREM 4.1. Words The sum of the measures of EXAMPLE Page of 6 4. ngle Measures of Triangles Goal Find angle measures in triangles. The diagram below shows that when you tear off the corners of any triangle, you can place the angles together to form a straight

More information

CONGRUENCE BASED ON TRIANGLES

CONGRUENCE BASED ON TRIANGLES HTR 174 5 HTR TL O ONTNTS 5-1 Line Segments ssociated with Triangles 5-2 Using ongruent Triangles to rove Line Segments ongruent and ngles ongruent 5-3 Isosceles and quilateral Triangles 5-4 Using Two

More information

Duplicating Segments and Angles

Duplicating Segments and Angles CONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson, you Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using patty

More information

Geometry Chapter 5 - Properties and Attributes of Triangles Segments in Triangles

Geometry Chapter 5 - Properties and Attributes of Triangles Segments in Triangles Geometry hapter 5 - roperties and ttributes of Triangles Segments in Triangles Lesson 1: erpendicular and ngle isectors equidistant Triangle congruence theorems can be used to prove theorems about equidistant

More information

Name Period 11/2 11/13

Name Period 11/2 11/13 Name Period 11/2 11/13 Vocabulary erms: ongruent orresponding Parts ongruency statement Included angle Included side GOMY UNI 6 ONGUN INGL HL Non-included side Hypotenuse Leg 11/5 and 11/12 eview 11/6,,

More information

Final Review Geometry A Fall Semester

Final Review Geometry A Fall Semester Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over

More information

Chapter 1 Exam. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1.

Chapter 1 Exam. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Name: lass: ate: I: hapter 1 Exam Multiple hoice Identify the choice that best completes the statement or answers the question. 1. bisects, m = (7x 1), and m = (4x + 8). Find m. a. m = c. m = 40 b. m =

More information

Warm Up #23: Review of Circles 1.) A central angle of a circle is an angle with its vertex at the of the circle. Example:

Warm Up #23: Review of Circles 1.) A central angle of a circle is an angle with its vertex at the of the circle. Example: Geometr hapter 12 Notes - 1 - Warm Up #23: Review of ircles 1.) central angle of a circle is an angle with its verte at the of the circle. Eample: X 80 2.) n arc is a section of a circle. Eamples:, 3.)

More information

Finding Angle Measures. Solve. 2.4 in. Label the diagram. Draw AE parallel to BC. Simplify. Use a calculator to find the square root. 14 in.

Finding Angle Measures. Solve. 2.4 in. Label the diagram. Draw AE parallel to BC. Simplify. Use a calculator to find the square root. 14 in. 1-1 1. lan bjectives 1 To use the relationship between a radius and a tangent To use the relationship between two tangents from one point amples 1 inding ngle Measures Real-World onnection inding a Tangent

More information

Lesson 3.1 Duplicating Segments and Angles

Lesson 3.1 Duplicating Segments and Angles Lesson 3.1 Duplicating Segments and ngles In Exercises 1 3, use the segments and angles below. Q R S 1. Using only a compass and straightedge, duplicate each segment and angle. There is an arc in each

More information

Relationships Within Triangles

Relationships Within Triangles 6 Relationships Within Triangles 6.1 erpendicular and ngle isectors 6. isectors of Triangles 6.3 Medians and ltitudes of Triangles 6.4 The Triangle Midsegment Theorem 6.5 Indirect roof and Inequalities

More information

Isosceles triangles. Key Words: Isosceles triangle, midpoint, median, angle bisectors, perpendicular bisectors

Isosceles triangles. Key Words: Isosceles triangle, midpoint, median, angle bisectors, perpendicular bisectors Isosceles triangles Lesson Summary: Students will investigate the properties of isosceles triangles. Angle bisectors, perpendicular bisectors, midpoints, and medians are also examined in this lesson. A

More information

Seattle Public Schools KEY to Review Questions for the Washington State Geometry End of Course Exam

Seattle Public Schools KEY to Review Questions for the Washington State Geometry End of Course Exam Seattle Public Schools KEY to Review Questions for the Washington State Geometry End of ourse Exam 1) Which term best defines the type of reasoning used below? bdul broke out in hives the last four times

More information

GEOMETRY OF THE CIRCLE

GEOMETRY OF THE CIRCLE HTR GMTRY F TH IRL arly geometers in many parts of the world knew that, for all circles, the ratio of the circumference of a circle to its diameter was a constant. Today, we write d 5p, but early geometers

More information

A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:

A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of mid-point and segment bisector M If a line intersects another line segment

More information

6.2 PLANNING. Chord Properties. Investigation 1 Defining Angles in a Circle

6.2 PLANNING. Chord Properties. Investigation 1 Defining Angles in a Circle LESSN 6.2 You will do foolish things, but do them with enthusiasm. SINIE GRIELL LETTE Step 1 central Step 1 angle has its verte at the center of the circle. Step 2 n Step 2 inscribed angle has its verte

More information

Chapter 4 Circles, Tangent-Chord Theorem, Intersecting Chord Theorem and Tangent-secant Theorem

Chapter 4 Circles, Tangent-Chord Theorem, Intersecting Chord Theorem and Tangent-secant Theorem Tampines Junior ollege H3 Mathematics (9810) Plane Geometry hapter 4 ircles, Tangent-hord Theorem, Intersecting hord Theorem and Tangent-secant Theorem utline asic definitions and facts on circles The

More information

Geometry Chapter 1 Review

Geometry Chapter 1 Review Name: lass: ate: I: Geometry hapter 1 Review Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Name two lines in the figure. a. and T c. W and R b. WR and

More information

Lesson 1: Introducing Circles

Lesson 1: Introducing Circles IRLES N VOLUME Lesson 1: Introducing ircles ommon ore Georgia Performance Standards M9 12.G..1 M9 12.G..2 Essential Questions 1. Why are all circles similar? 2. What are the relationships among inscribed

More information

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above? 1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

More information

POTENTIAL REASONS: Definition of Congruence:

POTENTIAL REASONS: Definition of Congruence: Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

More information

TIgeometry.com. Geometry. Angle Bisectors in a Triangle

TIgeometry.com. Geometry. Angle Bisectors in a Triangle Angle Bisectors in a Triangle ID: 8892 Time required 40 minutes Topic: Triangles and Their Centers Use inductive reasoning to postulate a relationship between an angle bisector and the arms of the angle.

More information

EXPECTED BACKGROUND KNOWLEDGE

EXPECTED BACKGROUND KNOWLEDGE MOUL - 3 oncurrent Lines 12 ONURRNT LINS You have already learnt about concurrent lines, in the lesson on lines and angles. You have also studied about triangles and some special lines, i.e., medians,

More information

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures. Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

More information

Elementary triangle geometry

Elementary triangle geometry Elementary triangle geometry Dennis Westra March 26, 2010 bstract In this short note we discuss some fundamental properties of triangles up to the construction of the Euler line. ontents ngle bisectors

More information

Draw Angle Bisectors

Draw Angle Bisectors raw Angle Bisectors ocus on After this lesson, you will be able to... φ draw lines that divide angles in half Carpenters work with wood. One job a carpenter does is install wood mouldings. To place mouldings

More information

(n = # of sides) One interior angle:

(n = # of sides) One interior angle: 6.1 What is a Polygon? Regular Polygon- Polygon Formulas: (n = # of sides) One interior angle: 180(n 2) n Sum of the interior angles of a polygon = 180 (n - 2) Sum of the exterior angles of a polygon =

More information

GEOMETRY FINAL EXAM REVIEW

GEOMETRY FINAL EXAM REVIEW GEOMETRY FINL EXM REVIEW I. MTHING reflexive. a(b + c) = ab + ac transitive. If a = b & b = c, then a = c. symmetric. If lies between and, then + =. substitution. If a = b, then b = a. distributive E.

More information

Chapter Review. 11-1 Lines that Intersect Circles. 11-2 Arcs and Chords. Identify each line or segment that intersects each circle.

Chapter Review. 11-1 Lines that Intersect Circles. 11-2 Arcs and Chords. Identify each line or segment that intersects each circle. HPTR 11-1 hapter Review 11-1 Lines that Intersect ircles Identify each line or segment that intersects each circle. 1. m 2. N L K J n W Y X Z V 3. The summit of Mt. McKinley in laska is about 20,321 feet

More information

Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties

More information

Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math. Semester 1 Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

More information

Notes on Perp. Bisectors & Circumcenters - Page 1

Notes on Perp. Bisectors & Circumcenters - Page 1 Notes on Perp. isectors & ircumcenters - Page 1 Name perpendicular bisector of a triangle is a line, ray, or segment that intersects a side of a triangle at a 90 angle and at its midpoint. onsider to the

More information

Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...

Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles... Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................

More information

Geometry Module 4 Unit 2 Practice Exam

Geometry Module 4 Unit 2 Practice Exam Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

More information

CONGRUENT TRIANGLES 6.1.1 6.1.4

CONGRUENT TRIANGLES 6.1.1 6.1.4 ONGUN INGL 6.1.1 6.1.4 wo triangles are congruent if there is a sequence of rigid transformations that carry one onto the other. wo triangles are also congruent if they are similar figures with a ratio

More information

Congruence. Set 5: Bisectors, Medians, and Altitudes Instruction. Student Activities Overview and Answer Key

Congruence. Set 5: Bisectors, Medians, and Altitudes Instruction. Student Activities Overview and Answer Key Instruction Goal: To provide opportunities for students to develop concepts and skills related to identifying and constructing angle bisectors, perpendicular bisectors, medians, altitudes, incenters, circumcenters,

More information

Chapter 5: Relationships within Triangles

Chapter 5: Relationships within Triangles Name: Chapter 5: Relationships within Triangles Guided Notes Geometry Fall Semester CH. 5 Guided Notes, page 2 5.1 Midsegment Theorem and Coordinate Proof Term Definition Example midsegment of a triangle

More information

Geometry Chapter 10 Study Guide Name

Geometry Chapter 10 Study Guide Name eometry hapter 10 Study uide Name Terms and Vocabulary: ill in the blank and illustrate. 1. circle is defined as the set of all points in a plane that are equidistant from a fixed point called the center.

More information

Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1

Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1 Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the

More information

Geometry Unit 10 Notes Circles. Syllabus Objective: 10.1 - The student will differentiate among the terms relating to a circle.

Geometry Unit 10 Notes Circles. Syllabus Objective: 10.1 - The student will differentiate among the terms relating to a circle. Geometry Unit 0 Notes ircles Syllabus Objective: 0. - The student will differentiate among the terms relating to a circle. ircle the set of all points in a plane that are equidistant from a given point,

More information

Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle. Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

More information

Mathematics Geometry Unit 1 (SAMPLE)

Mathematics Geometry Unit 1 (SAMPLE) Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This

More information

1 A B C D E F G H I J K L M N O P Q R S { U V W X Y Z 1 A B C D E F G H I J K L M N O P Q R S { U V W X Y Z

1 A B C D E F G H I J K L M N O P Q R S { U V W X Y Z 1 A B C D E F G H I J K L M N O P Q R S { U V W X Y Z eometry o T ffix tudent abel ere tudent ame chool ame istrict ame/ ender emale ale onth ay ear ate of irth an eb ar pr ay un ul ug ep ct ov ec ast ame irst ame erformance ased ssessment lace the tudent

More information

TImath.com. Geometry. Points on a Perpendicular Bisector

TImath.com. Geometry. Points on a Perpendicular Bisector Points on a Perpendicular Bisector ID: 8868 Time required 40 minutes Activity Overview In this activity, students will explore the relationship between a line segment and its perpendicular bisector. Once

More information

Geo - CH6 Practice Test

Geo - CH6 Practice Test Geo - H6 Practice Test Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Find the measure of each exterior angle of a regular decagon. a. 45 c. 18 b. 22.5

More information

5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof 5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

More information

New Vocabulary concurrent. Folding a Perpendicular. Bisector

New Vocabulary concurrent. Folding a Perpendicular. Bisector 5-. Plan Objectives o identif properties of perpendicular bisectors and angle bisectors o identif properties of medians and altitudes of a triangle amples inding the ircumcenter Real-orld onnection inding

More information

Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3

Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3 Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3 Main ideas: Identify and use perpendicular bisectors and angle bisectors in triangles. Standard: 12.0 A perpendicular bisector of a

More information

The measure of an arc is the measure of the central angle that intercepts it Therefore, the intercepted arc measures

The measure of an arc is the measure of the central angle that intercepts it Therefore, the intercepted arc measures 8.1 Name (print first and last) Per Date: 3/24 due 3/25 8.1 Circles: Arcs and Central Angles Geometry Regents 2013-2014 Ms. Lomac SLO: I can use definitions & theorems about points, lines, and planes to

More information

The Distance from a Point to a Line

The Distance from a Point to a Line : Student Outcomes Students are able to derive a distance formula and apply it. Lesson Notes In this lesson, students review the distance formula, the criteria for perpendicularity, and the creation of

More information

Geometry Honors: Circles, Coordinates, and Construction Semester 2, Unit 4: Activity 24

Geometry Honors: Circles, Coordinates, and Construction Semester 2, Unit 4: Activity 24 Geometry Honors: Circles, Coordinates, and Construction Semester 2, Unit 4: ctivity 24 esources: Springoard- Geometry Unit Overview In this unit, students will study formal definitions of basic figures,

More information

A geometric construction is a drawing of geometric shapes using a compass and a straightedge.

A geometric construction is a drawing of geometric shapes using a compass and a straightedge. Geometric Construction Notes A geometric construction is a drawing of geometric shapes using a compass and a straightedge. When performing a geometric construction, only a compass (with a pencil) and a

More information

4. Prove the above theorem. 5. Prove the above theorem. 9. Prove the above corollary. 10. Prove the above theorem.

4. Prove the above theorem. 5. Prove the above theorem. 9. Prove the above corollary. 10. Prove the above theorem. 14 Perpendicularity and Angle Congruence Definition (acute angle, right angle, obtuse angle, supplementary angles, complementary angles) An acute angle is an angle whose measure is less than 90. A right

More information

Geometry Chapter 5 Relationships Within Triangles

Geometry Chapter 5 Relationships Within Triangles Objectives: Section 5.1 Section 5.2 Section 5.3 Section 5.4 Section 5.5 To use properties of midsegments to solve problems. To use properties of perpendicular bisectors and angle bisectors. To identify

More information

Euclidean Geometry. We start with the idea of an axiomatic system. An axiomatic system has four parts:

Euclidean Geometry. We start with the idea of an axiomatic system. An axiomatic system has four parts: Euclidean Geometry Students are often so challenged by the details of Euclidean geometry that they miss the rich structure of the subject. We give an overview of a piece of this structure below. We start

More information

1-1. Nets and Drawings for Visualizing Geometry. Vocabulary. Review. Vocabulary Builder. Use Your Vocabulary

1-1. Nets and Drawings for Visualizing Geometry. Vocabulary. Review. Vocabulary Builder. Use Your Vocabulary 1-1 Nets and Drawings for Visualizing Geometry Vocabulary Review Identify each figure as two-dimensional or three-dimensional. 1. 2. 3. three-dimensional two-dimensional three-dimensional Vocabulary uilder

More information

Lines and Angles. Chapter 1 Points, Lines, Planes, and Angles. Chapter 2 Reasoning and Proof. Chapter 3 Parallel and Perpendicular Lines

Lines and Angles. Chapter 1 Points, Lines, Planes, and Angles. Chapter 2 Reasoning and Proof. Chapter 3 Parallel and Perpendicular Lines Lines and ngles Lines and angles are all around us and can be used to model and describe real-world situations. In this unit, you will learn about lines, planes, and angles and how they can be used to

More information

Geometry 8-1 Angles of Polygons

Geometry 8-1 Angles of Polygons . Sum of Measures of Interior ngles Geometry 8-1 ngles of Polygons 1. Interior angles - The sum of the measures of the angles of each polygon can be found by adding the measures of the angles of a triangle.

More information

Lesson 5-3: Concurrent Lines, Medians and Altitudes

Lesson 5-3: Concurrent Lines, Medians and Altitudes Playing with bisectors Yesterday we learned some properties of perpendicular bisectors of the sides of triangles, and of triangle angle bisectors. Today we are going to use those skills to construct special

More information

6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure.

6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. 1. If, find. A rhombus is a parallelogram with all four sides congruent. So, Then, is an isosceles triangle. Therefore, If a parallelogram

More information

Geometry, Final Review Packet

Geometry, Final Review Packet Name: Geometry, Final Review Packet I. Vocabulary match each word on the left to its definition on the right. Word Letter Definition Acute angle A. Meeting at a point Angle bisector B. An angle with a

More information

The Four Centers of a Triangle. Points of Concurrency. Concurrency of the Medians. Let's Take a Look at the Diagram... October 25, 2010.

The Four Centers of a Triangle. Points of Concurrency. Concurrency of the Medians. Let's Take a Look at the Diagram... October 25, 2010. Points of Concurrency Concurrent lines are three or more lines that intersect at the same point. The mutual point of intersection is called the point of concurrency. Example: x M w y M is the point of

More information

Neutral Geometry. April 18, 2013

Neutral Geometry. April 18, 2013 Neutral Geometry pril 18, 2013 1 Geometry without parallel axiom Let l, m be two distinct lines cut by a third line t at point on l and point Q on m. Let be a point on l and a point on m such that, are

More information

circle the set of all points that are given distance from a given point in a given plane

circle the set of all points that are given distance from a given point in a given plane Geometry Week 19 Sec 9.1 to 9.3 Definitions: section 9.1 circle the set of all points that are given distance from a given point in a given plane E D Notation: F center the given point in the plane radius

More information

Radius, diameter, circumference, π (Pi), central angles, Pythagorean relationship. about CIRCLES

Radius, diameter, circumference, π (Pi), central angles, Pythagorean relationship. about CIRCLES Grade 9 Math Unit 8 : CIRCLE GEOMETRY NOTES 1 Chapter 8 in textbook (p. 384 420) 5/50 or 10% on 2011 CRT: 5 Multiple Choice WHAT YOU SHOULD ALREADY KNOW: Radius, diameter, circumference, π (Pi), central

More information

The Geometry of Piles of Salt Thinking Deeply About Simple Things

The Geometry of Piles of Salt Thinking Deeply About Simple Things The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word

More information

Chapter 6 Notes: Circles

Chapter 6 Notes: Circles Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

More information

Circle. Relations. 584 Chapter 14 Circle Relationships

Circle. Relations. 584 Chapter 14 Circle Relationships 584-585 14-845773 3/19/03 1:11 14 age 584 mac27 ac27:dmm_210: ircle elationships > ake this oldable to help you organize information about the material in this chapter. egin with three sheets of plain

More information

Math 3372-College Geometry

Math 3372-College Geometry Math 3372-College Geometry Yi Wang, Ph.D., Assistant Professor Department of Mathematics Fairmont State University Fairmont, West Virginia Fall, 2004 Fairmont, West Virginia Copyright 2004, Yi Wang Contents

More information

Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids

Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?

More information

Tangents to Circles. Circle The set of all points in a plane that are equidistant from a given point, called the center of the circle

Tangents to Circles. Circle The set of all points in a plane that are equidistant from a given point, called the center of the circle 10.1 Tangents to ircles Goals p Identify segments and lines related to circles. p Use properties of a tangent to a circle. VOULRY ircle The set of all points in a plane that are equidistant from a given

More information

Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition.

Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition. Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition. 1. measures less than By the Exterior Angle Inequality Theorem, the exterior angle ( ) is larger than

More information

Chapter 1: Essentials of Geometry

Chapter 1: Essentials of Geometry Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

More information

Triangle Similarity: AA, SSS, SAS Quiz

Triangle Similarity: AA, SSS, SAS Quiz Name: lass: ate: I: Triangle Similarity:, SSS, SS Quiz Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Explain why the triangles are similar and write a

More information

Geometry Made Easy Handbook Common Core Standards Edition

Geometry Made Easy Handbook Common Core Standards Edition Geometry Made Easy Handbook ommon ore Standards Edition y: Mary nn asey. S. Mathematics, M. S. Education 2015 Topical Review ook ompany, Inc. ll rights reserved. P. O. ox 328 Onsted, MI. 49265-0328 This

More information

55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points.

55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points. Geometry Core Semester 1 Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which topics you need to review most carefully. The unit

More information

Perpendicular and Angle Bisectors Quiz

Perpendicular and Angle Bisectors Quiz Name: lass: ate: I: Perpendicular and ngle isectors Quiz Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Find the measures and. a. = 6.4, = 4.6 b. = 4.6,

More information

Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

More information

Analytical Geometry (4)

Analytical Geometry (4) Analytical Geometry (4) Learning Outcomes and Assessment Standards Learning Outcome 3: Space, shape and measurement Assessment Standard As 3(c) and AS 3(a) The gradient and inclination of a straight line

More information

SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY. 2.1 Use the slopes, distances, line equations to verify your guesses

SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY. 2.1 Use the slopes, distances, line equations to verify your guesses CHAPTER SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY For the review sessions, I will try to post some of the solved homework since I find that at this age both taking notes and proofs are still a burgeoning

More information

Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18

Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18 Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,

More information

Circle Name: Radius: Diameter: Chord: Secant:

Circle Name: Radius: Diameter: Chord: Secant: 12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

More information

CHAPTER 1 CEVA S THEOREM AND MENELAUS S THEOREM

CHAPTER 1 CEVA S THEOREM AND MENELAUS S THEOREM HTR 1 V S THOR N NLUS S THOR The purpose of this chapter is to develop a few results that may be used in later chapters. We will begin with a simple but useful theorem concerning the area ratio of two

More information

GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY. Constructions OBJECTIVE #: G.CO.12 GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

More information

circumscribed circle Vocabulary Flash Cards Chapter 10 (p. 539) Chapter 10 (p. 530) Chapter 10 (p. 538) Chapter 10 (p. 530)

circumscribed circle Vocabulary Flash Cards Chapter 10 (p. 539) Chapter 10 (p. 530) Chapter 10 (p. 538) Chapter 10 (p. 530) Vocabulary Flash ards adjacent arcs center of a circle hapter 10 (p. 539) hapter 10 (p. 530) central angle of a circle chord of a circle hapter 10 (p. 538) hapter 10 (p. 530) circle circumscribed angle

More information

Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.

Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about. Circle s circle is a set of points in a plane that are a given distance from a given point, called the center. The center is often used to name the circle. T This circle shown is described an OT. s always,

More information

Informal Geometry and Measurement

Informal Geometry and Measurement HP LIN N NGL LIONHIP In xercises 56 and 57, P is a true statement, while Q and are false statements. lassify each of the following statements as true or false. 56. a) (P and Q) or b) (P or Q) and 57. a)

More information

Incenter and Circumcenter Quiz

Incenter and Circumcenter Quiz Name: lass: ate: I: Incenter and ircumcenter Quiz Multiple hoice Identify the choice that best completes the statement or answers the question.. The diagram below shows the construction of the center of

More information

Classifying Quadrilaterals

Classifying Quadrilaterals 1 lassifying Quadrilaterals Identify and sort quadrilaterals. 1. Which of these are parallelograms?,, quadrilateral is a closed shape with 4 straight sides. trapezoid has exactly 1 pair of parallel sides.

More information

EUCLIDEAN GEOMETRY: (±50 marks)

EUCLIDEAN GEOMETRY: (±50 marks) ULIN GMTRY: (±50 marks) Grade theorems:. The line drawn from the centre of a circle perpendicular to a chord bisects the chord. 2. The perpendicular bisector of a chord passes through the centre of the

More information