Machine Learning - Spring 2012 Problem Set 3

Size: px
Start display at page:

Download "Machine Learning - Spring 2012 Problem Set 3"

Transcription

1 Machine Learning - Spring 2012 Problem Set 3 Out: February 29th, 1:30pm In: March 19h, 1:30pm TA: Hai-Son Le (hple@cs.cmu.edu) School Of Computer Science, Carnegie Mellon University Homework will be done individually: each student must hand in their own answers. It is acceptable for students to collaborate in figuring out answers and helping each other solve the problems. We will be assuming that, as participants in a graduate course, you will be taking the responsibility to make sure you personally understand the solution to any work arising from such collaboration. You also must indicate on each homework with whom you collaborated. Homework is due at the beginning of class on the due date. For programming questions, please submit your code and any plot/figures to the AFS submission folder: /afs/cs.cmu.edu/academic/class/10701-s12-users/yourandrewid/hw3 where yourandrewid is your Andrew ID. To copy the files to the folder, you can follow these steps: Copy the homework file (pdf format) and other code and data files as needed to your home directory on an Andrew machine, eg scp probset3.pdf yourandrewid@linux.andrew.cmu.edu:yourhomepath password : ********* Start an Andrew session, eg ssh -l yourandrewid linux.andrew.cmu.edu password : ********* Invoke aklog and copy the files over to your dedicated course folder. You have insert and listing rights for this folder, eg aklog cs.cmu.edu mkdir /afs/cs.cmu.edu/academic/class/10701-s12-users/yourandrewid/hw3 cp probset3.pdf /afs/cs.cmu.edu/academic/class/ \ s12-users/yourandrewid/hw3/ Please also include a file README file that describes your submission. 1

2 You may not overwrite your submission - if you want to update a file please submit a file with a new filename, keeping in mind a 20 MB space limit per student. The file with the newest timestamp prior to the due date and time will be evaluated. 1 Decision trees [25 points] Short decision trees with few levels are more desirable in practice because they generalize well to new data and are less prone to overfit. 1.1 Information Gain [10 points] Most of algorithms for learning the structure of decision trees rely on a heuristic to pick an attribute to split the trees in sequential steps. In this question, we are particularly interested in discrete valued attributes. We explore a popular measure: Information Gain (IG) and relate it to other concepts in probability. We start with these definitions. Assume we have two discrete random variables X and Y taking values {1,..., m} and {1,..., n} respectively. Entropy m H(X) = p(x = x) log p(x = x) (1) x=1 Conditional entropy of Y given X: H(Y X). Note that this is different from entropy of Y conditioned on X = x: H(Y X = x). Information Gain H(Y X) = m p(x = x)h(y X = x) (2) x=1 IG(X; Y ) = H(X) H(X Y ) (3) Kullback-Leibeler divergence (K-L divergence) between two distributions. D KL (P Q) = i P (i) log P (i) Q(i) (4) Mutual Information I(X; Y ) = m x=1 y=1 n p(x = x, Y = y) log p(x = x, Y = y) p(x = x)p(y = y) (5) 1. [4 points] Show that IG(X; Y ) = IG(Y ; X). 2. [3 points] Show that IG(X; Y ) = H(X) + H(Y ) H(X, Y ). 2

3 Having a Car Student Owning a house Risk Count Yes Yes Yes Yes 5 Yes Yes No Yes 3 Yes No Yes Yes 15 Yes No No Yes 2 No Yes Yes Yes 5 No Yes No Yes 0 No No Yes Yes 4 No No No Yes 1 Yes Yes Yes No 3 Yes Yes No No 3 Yes No Yes No 2 Yes No No No 2 No Yes Yes No 2 No Yes No No 10 No No Yes No 3 No No No No 10 Table 1: Data from Problem [3 points] Write the Information Gain in terms of the K-L divergence of two distributions. In other words, find P and Q such that IG(X, Y ) = D KL (P Q). 1.2 Tree Construction [15 points] It is that time of the year to file tax returns to the IRS. Bob is hired by a famous tax software company to assess the risk of audit for customers. Unfortunately, being a poor grad student, he has paid no attention to taxes. He decides to build a decision tree to classify customers into high and low risk groups. The data is shown in Table [7 points] Show the steps in constructing the decision tree (without postpruning) and the final tree using the algorithm we described in class. What is the classification error? 2. [3 points] Bob would like to add two new attributes: Income and Age. Assume that the decision tree splits on an attribute X by splitting the examples into two sets: X < a and X a. How about when an attribute has K distinct values? How should we determine the best splitting value a? 3. [5 points] Real datasets may not be perfect, e.g. some may contain systematic errors. In each of these situations, if there are systematic errors, describe how you detect them and what we should do. An attribute I has only one single value. 3

4 Attributes T 1 and T 2 are duplicates. That means all examples having the same values for these two attributes. 2 Neural Networks [30 points] 2.1 Binary classification [3 points] Figure 1: Plots for 2.1. Which classifiers: knn, logistic regression, neural networks, naive Bayes can learn the decision boundary shown in Figure 1? 2.2 Boolean functions and neural networks [9 points] For this problem, we only consider neural networks with a hidden layer. Each unit has a weight w and uses the following activation functions: 1. Hard-threshold function: for a constant a, { 1 if w T x >= a h(x) = 0 otherwise (6) 2. Linear: h(x) = w T x (7) In class, we show that this type of networks can compute the boolean functions OR, AND and XOR. 4

5 1. [2 points] How many boolean functions f(x 1, x 2 ), where x 1,2 {0, 1}, are there? 2. [7 points] For any boolean function f(x 1, x 2 ), can we build a neural network to compute f? If yes, please prove by construction? If no, explain in details. 2.3 Two layer neural networks [6 points] We now consider neural networks with a hidden layer with only one input signal x and one output signal y. Using hard threshold and/or linear activation functions. Which of the following cases can be exactly represented by a neural network? For each case, if yes, draw the network with choice of activations for both levels and briefly explain how the function is represented. If no, explain why. 1. [2 points] Polynomials of degree one. 2. [2 points] Polynomials of degree two. 3. [2 points] Hinge loss: L(x) = max(1 x, 0). 2.4 Network Training [12 points] We train a neural network on a set of input vectors {x n } where n = 1,..., N, together with a corresponding set of target K-dimensional vectors {t n }. We assume that t has a Gaussian distribution with an x-dependent mean, so that : p(t x, w) = N (t y(x, w), β 1 I) (8) where β is the precision of the Gaussian noise. parameters w using the MLE principle: We would like to find the w MLE = argmax w N p(t n x n, w) (9) 1. [2 points] Show that solving (9) is equivalent to minimizing the sum-ofsquares error function: E(w) = 1 2 y(x n, w) t n 2 2 (10) 2. [10 points] Consider a network with one hidden layer as shown in Figure 2. Assume that each hidden unit j computes a weighted sum of its inputs x of the form: a j = w ji x i (11) i 5

6 Figure 2: Plots for 2.3. where w j and z are the weights and input of this hidden unit; and use an activation function h(a j ) = z j. Also the output unit k computes a weighed sum of its inputs z of the form b k = j w kjz j (12) where w k are the weights of this output unit. This unit outputs y k = b k. Together, the output of this network is: y(x n, w) = [y 1, y 2,... y K ] T (13) To train a neural network, we need to compute the derivatives of E(w). We can do so by considering a simpler quantity E n = 1 2 y(x n, w) t n 2 2. Show that E n = ( h (a j ) w ) w kjδ k xi (14) ji k where w k are weights of the output units and δ k = y k t k. Hints: This is covered in section of PRML. You should try to follow the derivation there. 3 SVM [40 points] In this problem, we consider training a SVM on a set of inputs {x n } where n = 1,..., N, together with a corresponding set of target values {t n } (t n { 1, 1}). The goal is to maximize the margin and at the same time allows some small 6

7 misclassifications. An example is classify as follows: { y(x n ) = w T +1, if y(x n ) 0 φ(x n ) + b; ˆt n = 1, otherwise (15) We therefore minimize: C ξ n w 2 (16) s.t. t n y(x n ) 1 ξ n, n = 1,..., N (17) ξ n 0, n = 1,..., N (18) where C 0 is a parameter that controls the trade-off between the stack variable penalty and the margin. 3.1 Slackness and Kernel [4 points] Figure 3 shows the decision boundaries of training four SVMs using different values of C and different kernels. For each of the examples, specify which setting was used to get the result. (a) (b) (c) (d) Figure 3: Plots for

8 1. C = 1 and no kernel is used. 2. C = 0.1 and no kernel is used. 3. C = 0.1 and the kernel is K(x i, x j ) = exp xi xj C = 0.1 and the kernel is K(x i, x j ) = x T i x j + (x T i x j) Dual formalization [16 points] 1. [2 points] Using the Lagrangian multipliers, show that the corresponding Lagrangian is L(w, b, a) = 1 2 w 2 + C ξ n a n {t n y(x n ) 1 + ξ n } µ n ξ n Be explicit in specifying which multiplier is correspondent to which constraint. Hints: A brief introduction to Lagrange multipliers is in Appendix E of the PRML book. 2. The Karush-Kuhn-Tucker (KKT) conditions for the optimal solutions are: a n 0 (19) t n y(x n ) 1 + ξ n 0 (20) a n {t n y(x n ) 1 + ξ n } = 0 (21) µ n 0 (22) ξ n 0 (23) µ n ξ n = 0 (24) 3. [5 points] By taking the derivatives of L(w, b, a), show that the dual problem is: max a n 1 2 m=1 a n a m t n t m k(x n, x m ) (25) s.t. 0 a n C, n = 1,..., N (26) a n t n = 0 (27) Please show all the steps in very details. 4. [2 points] Given a solution to the dual problem, which inputs are support vectors? 5. [3 points] Can you compute w from the dual solutions? If yes, give the formula, if no, explain why? Hints: Do we always have φ(x n )? 6. [4 points] How can we classify a new example x? 8

9 3.3 Implementation [20 points] 1. [10 points] Implement SVM in MATLAB. function [y_new, test_error, training_error] = train_svm(x, t, x_new, C) This function trains a SVM with inputs x,t,c and classifies new examples x_new and outputs the predictions in y_new. Your implementation should satisfy these requirements: You cannot use any existing implementations of SVM including MAT- LAB s built-in functions. However, you can use a quadratic programming(qp) solver (e.g. MATLAB s quadprog). You should use a subroutine to compute the Kernel distance between two input examples so that it is easy to use different kernels with your implementation. 2. A dangerous mutant of bird flu viruses was discovered and a widespread pandemic is imminent. A vaccine was developed for improving immunity against this potent virus. However, this new vaccine is very expensive and only effective for a subset of patients. Expression of two genes X,Y are shown as predictors of the vaccine s effectiveness. You are asked to train a SVM to predict the vaccine s effectiveness on patients using gene expression measurement. Download the dataset from the course website. The.mat file contains two matrices: train and test. There are 160 training examples and 40 testing examples. (a) [4 points] Using no kernel (or φ(x n ) = x n )), train a SVM using different values of C = 0, 0.1, 0.3, 0.5, 1, 2, 5, 8, 10. Use 4-fold cross validation and report the train and test errors. Produce a plot of 2 curves: training and testing error. The x-axis shows different values of C and the y-axis shows the error rate. Which value of C yields the best training and testing error rate? Which value of C should you use? Finally, plot the training and testing examples along with the decision boundary. What do you observe? Hints: To plot the decision boundary, you can use the code in svmplot.m. (b) [4 points] Now use Gaussian kernels K(x i, x j ) = exp{ xi xj 2 2 } and repeat the previous experiment. (c) [2 points] Summarize the result of two experiments. Should we use Gaussian kernels at all? 4 Hierarchical clustering v.s. K-means [5 points] Single linkage and K-means can give very different clustering results and one may be more preferred than the others. In each of the examples in Figure 4, write 9

10 down whether the clusters are produced by K-means (KM) or agglomerative clustering with single linkage (SL). 10

11 E Figure 4: Plots for 4. 11

Support Vector Machine (SVM)

Support Vector Machine (SVM) Support Vector Machine (SVM) CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

A Simple Introduction to Support Vector Machines

A Simple Introduction to Support Vector Machines A Simple Introduction to Support Vector Machines Martin Law Lecture for CSE 802 Department of Computer Science and Engineering Michigan State University Outline A brief history of SVM Large-margin linear

More information

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines

More information

Predicting Flight Delays

Predicting Flight Delays Predicting Flight Delays Dieterich Lawson jdlawson@stanford.edu William Castillo will.castillo@stanford.edu Introduction Every year approximately 20% of airline flights are delayed or cancelled, costing

More information

Introduction to Learning & Decision Trees

Introduction to Learning & Decision Trees Artificial Intelligence: Representation and Problem Solving 5-38 April 0, 2007 Introduction to Learning & Decision Trees Learning and Decision Trees to learning What is learning? - more than just memorizing

More information

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning. Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

More information

Predict Influencers in the Social Network

Predict Influencers in the Social Network Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, lyzhou@stanford.edu Department of Electrical Engineering, Stanford University Abstract Given two persons

More information

Social Media Mining. Data Mining Essentials

Social Media Mining. Data Mining Essentials Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

More information

Support Vector Machines Explained

Support Vector Machines Explained March 1, 2009 Support Vector Machines Explained Tristan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introduction This document has been written in an attempt to make the Support Vector Machines (SVM),

More information

10-601. Machine Learning. http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html

10-601. Machine Learning. http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html 10-601 Machine Learning http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html Course data All up-to-date info is on the course web page: http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html

More information

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

Decision Trees from large Databases: SLIQ

Decision Trees from large Databases: SLIQ Decision Trees from large Databases: SLIQ C4.5 often iterates over the training set How often? If the training set does not fit into main memory, swapping makes C4.5 unpractical! SLIQ: Sort the values

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

Support Vector Machines with Clustering for Training with Very Large Datasets

Support Vector Machines with Clustering for Training with Very Large Datasets Support Vector Machines with Clustering for Training with Very Large Datasets Theodoros Evgeniou Technology Management INSEAD Bd de Constance, Fontainebleau 77300, France theodoros.evgeniou@insead.fr Massimiliano

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Charlie Frogner 1 MIT 2011 1 Slides mostly stolen from Ryan Rifkin (Google). Plan Regularization derivation of SVMs. Analyzing the SVM problem: optimization, duality. Geometric

More information

1 Maximum likelihood estimation

1 Maximum likelihood estimation COS 424: Interacting with Data Lecturer: David Blei Lecture #4 Scribes: Wei Ho, Michael Ye February 14, 2008 1 Maximum likelihood estimation 1.1 MLE of a Bernoulli random variable (coin flips) Given N

More information

Machine Learning Big Data using Map Reduce

Machine Learning Big Data using Map Reduce Machine Learning Big Data using Map Reduce By Michael Bowles, PhD Where Does Big Data Come From? -Web data (web logs, click histories) -e-commerce applications (purchase histories) -Retail purchase histories

More information

Making Sense of the Mayhem: Machine Learning and March Madness

Making Sense of the Mayhem: Machine Learning and March Madness Making Sense of the Mayhem: Machine Learning and March Madness Alex Tran and Adam Ginzberg Stanford University atran3@stanford.edu ginzberg@stanford.edu I. Introduction III. Model The goal of our research

More information

Machine Learning. CUNY Graduate Center, Spring 2013. Professor Liang Huang. huang@cs.qc.cuny.edu

Machine Learning. CUNY Graduate Center, Spring 2013. Professor Liang Huang. huang@cs.qc.cuny.edu Machine Learning CUNY Graduate Center, Spring 2013 Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning Logistics Lectures M 9:30-11:30 am Room 4419 Personnel

More information

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support

More information

Classification Techniques for Remote Sensing

Classification Techniques for Remote Sensing Classification Techniques for Remote Sensing Selim Aksoy Department of Computer Engineering Bilkent University Bilkent, 06800, Ankara saksoy@cs.bilkent.edu.tr http://www.cs.bilkent.edu.tr/ saksoy/courses/cs551

More information

E-commerce Transaction Anomaly Classification

E-commerce Transaction Anomaly Classification E-commerce Transaction Anomaly Classification Minyong Lee minyong@stanford.edu Seunghee Ham sham12@stanford.edu Qiyi Jiang qjiang@stanford.edu I. INTRODUCTION Due to the increasing popularity of e-commerce

More information

CONTENTS PREFACE 1 INTRODUCTION 1 2 DATA VISUALIZATION 19

CONTENTS PREFACE 1 INTRODUCTION 1 2 DATA VISUALIZATION 19 PREFACE xi 1 INTRODUCTION 1 1.1 Overview 1 1.2 Definition 1 1.3 Preparation 2 1.3.1 Overview 2 1.3.2 Accessing Tabular Data 3 1.3.3 Accessing Unstructured Data 3 1.3.4 Understanding the Variables and Observations

More information

Data Mining. Nonlinear Classification

Data Mining. Nonlinear Classification Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Nonlinear Classification Classes may not be separable by a linear boundary Suppose we randomly generate a data set as follows: X has range between 0 to 15

More information

Introduction to Support Vector Machines. Colin Campbell, Bristol University

Introduction to Support Vector Machines. Colin Campbell, Bristol University Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.

More information

Lecture 8 February 4

Lecture 8 February 4 ICS273A: Machine Learning Winter 2008 Lecture 8 February 4 Scribe: Carlos Agell (Student) Lecturer: Deva Ramanan 8.1 Neural Nets 8.1.1 Logistic Regression Recall the logistic function: g(x) = 1 1 + e θt

More information

Employer Health Insurance Premium Prediction Elliott Lui

Employer Health Insurance Premium Prediction Elliott Lui Employer Health Insurance Premium Prediction Elliott Lui 1 Introduction The US spends 15.2% of its GDP on health care, more than any other country, and the cost of health insurance is rising faster than

More information

Distances, Clustering, and Classification. Heatmaps

Distances, Clustering, and Classification. Heatmaps Distances, Clustering, and Classification Heatmaps 1 Distance Clustering organizes things that are close into groups What does it mean for two genes to be close? What does it mean for two samples to be

More information

Machine learning for algo trading

Machine learning for algo trading Machine learning for algo trading An introduction for nonmathematicians Dr. Aly Kassam Overview High level introduction to machine learning A machine learning bestiary What has all this got to do with

More information

An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015

An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015 An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content

More information

Semi-Supervised Support Vector Machines and Application to Spam Filtering

Semi-Supervised Support Vector Machines and Application to Spam Filtering Semi-Supervised Support Vector Machines and Application to Spam Filtering Alexander Zien Empirical Inference Department, Bernhard Schölkopf Max Planck Institute for Biological Cybernetics ECML 2006 Discovery

More information

An Introduction to Data Mining

An Introduction to Data Mining An Introduction to Intel Beijing wei.heng@intel.com January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail

More information

Neural Networks and Support Vector Machines

Neural Networks and Support Vector Machines INF5390 - Kunstig intelligens Neural Networks and Support Vector Machines Roar Fjellheim INF5390-13 Neural Networks and SVM 1 Outline Neural networks Perceptrons Neural networks Support vector machines

More information

Search Taxonomy. Web Search. Search Engine Optimization. Information Retrieval

Search Taxonomy. Web Search. Search Engine Optimization. Information Retrieval Information Retrieval INFO 4300 / CS 4300! Retrieval models Older models» Boolean retrieval» Vector Space model Probabilistic Models» BM25» Language models Web search» Learning to Rank Search Taxonomy!

More information

Machine Learning Final Project Spam Email Filtering

Machine Learning Final Project Spam Email Filtering Machine Learning Final Project Spam Email Filtering March 2013 Shahar Yifrah Guy Lev Table of Content 1. OVERVIEW... 3 2. DATASET... 3 2.1 SOURCE... 3 2.2 CREATION OF TRAINING AND TEST SETS... 4 2.3 FEATURE

More information

Linear Classification. Volker Tresp Summer 2015

Linear Classification. Volker Tresp Summer 2015 Linear Classification Volker Tresp Summer 2015 1 Classification Classification is the central task of pattern recognition Sensors supply information about an object: to which class do the object belong

More information

MAXIMIZING RETURN ON DIRECT MARKETING CAMPAIGNS

MAXIMIZING RETURN ON DIRECT MARKETING CAMPAIGNS MAXIMIZING RETURN ON DIRET MARKETING AMPAIGNS IN OMMERIAL BANKING S 229 Project: Final Report Oleksandra Onosova INTRODUTION Recent innovations in cloud computing and unified communications have made a

More information

Supervised Feature Selection & Unsupervised Dimensionality Reduction

Supervised Feature Selection & Unsupervised Dimensionality Reduction Supervised Feature Selection & Unsupervised Dimensionality Reduction Feature Subset Selection Supervised: class labels are given Select a subset of the problem features Why? Redundant features much or

More information

HT2015: SC4 Statistical Data Mining and Machine Learning

HT2015: SC4 Statistical Data Mining and Machine Learning HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric

More information

Question 2 Naïve Bayes (16 points)

Question 2 Naïve Bayes (16 points) Question 2 Naïve Bayes (16 points) About 2/3 of your email is spam so you downloaded an open source spam filter based on word occurrences that uses the Naive Bayes classifier. Assume you collected the

More information

Gaussian Processes in Machine Learning

Gaussian Processes in Machine Learning Gaussian Processes in Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany carl@tuebingen.mpg.de WWW home page: http://www.tuebingen.mpg.de/ carl

More information

Beating the NCAA Football Point Spread

Beating the NCAA Football Point Spread Beating the NCAA Football Point Spread Brian Liu Mathematical & Computational Sciences Stanford University Patrick Lai Computer Science Department Stanford University December 10, 2010 1 Introduction Over

More information

Ensemble Methods. Knowledge Discovery and Data Mining 2 (VU) (707.004) Roman Kern. KTI, TU Graz 2015-03-05

Ensemble Methods. Knowledge Discovery and Data Mining 2 (VU) (707.004) Roman Kern. KTI, TU Graz 2015-03-05 Ensemble Methods Knowledge Discovery and Data Mining 2 (VU) (707004) Roman Kern KTI, TU Graz 2015-03-05 Roman Kern (KTI, TU Graz) Ensemble Methods 2015-03-05 1 / 38 Outline 1 Introduction 2 Classification

More information

Data Mining Techniques for Prognosis in Pancreatic Cancer

Data Mining Techniques for Prognosis in Pancreatic Cancer Data Mining Techniques for Prognosis in Pancreatic Cancer by Stuart Floyd A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUE In partial fulfillment of the requirements for the Degree

More information

Data Mining Algorithms Part 1. Dejan Sarka

Data Mining Algorithms Part 1. Dejan Sarka Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka (dsarka@solidq.com) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses

More information

Machine Learning in Spam Filtering

Machine Learning in Spam Filtering Machine Learning in Spam Filtering A Crash Course in ML Konstantin Tretyakov kt@ut.ee Institute of Computer Science, University of Tartu Overview Spam is Evil ML for Spam Filtering: General Idea, Problems.

More information

Simple and efficient online algorithms for real world applications

Simple and efficient online algorithms for real world applications Simple and efficient online algorithms for real world applications Università degli Studi di Milano Milano, Italy Talk @ Centro de Visión por Computador Something about me PhD in Robotics at LIRA-Lab,

More information

Chapter 6. The stacking ensemble approach

Chapter 6. The stacking ensemble approach 82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described

More information

UNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS

UNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS UNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS Dwijesh C. Mishra I.A.S.R.I., Library Avenue, New Delhi-110 012 dcmishra@iasri.res.in What is Learning? "Learning denotes changes in a system that enable

More information

UNDERSTANDING THE EFFECTIVENESS OF BANK DIRECT MARKETING Tarun Gupta, Tong Xia and Diana Lee

UNDERSTANDING THE EFFECTIVENESS OF BANK DIRECT MARKETING Tarun Gupta, Tong Xia and Diana Lee UNDERSTANDING THE EFFECTIVENESS OF BANK DIRECT MARKETING Tarun Gupta, Tong Xia and Diana Lee 1. Introduction There are two main approaches for companies to promote their products / services: through mass

More information

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal Learning Example Chapter 18: Learning from Examples 22c:145 An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients. A decision is needed: whether

More information

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Practical Machine Learning Tools and Techniques Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

More information

Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j

Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j What is Kiva? An organization that allows people to lend small amounts of money via the Internet

More information

Data Mining - Evaluation of Classifiers

Data Mining - Evaluation of Classifiers Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010

More information

MACHINE LEARNING IN HIGH ENERGY PHYSICS

MACHINE LEARNING IN HIGH ENERGY PHYSICS MACHINE LEARNING IN HIGH ENERGY PHYSICS LECTURE #1 Alex Rogozhnikov, 2015 INTRO NOTES 4 days two lectures, two practice seminars every day this is introductory track to machine learning kaggle competition!

More information

Predictive Data modeling for health care: Comparative performance study of different prediction models

Predictive Data modeling for health care: Comparative performance study of different prediction models Predictive Data modeling for health care: Comparative performance study of different prediction models Shivanand Hiremath hiremat.nitie@gmail.com National Institute of Industrial Engineering (NITIE) Vihar

More information

Detecting Corporate Fraud: An Application of Machine Learning

Detecting Corporate Fraud: An Application of Machine Learning Detecting Corporate Fraud: An Application of Machine Learning Ophir Gottlieb, Curt Salisbury, Howard Shek, Vishal Vaidyanathan December 15, 2006 ABSTRACT This paper explores the application of several

More information

Content-Based Recommendation

Content-Based Recommendation Content-Based Recommendation Content-based? Item descriptions to identify items that are of particular interest to the user Example Example Comparing with Noncontent based Items User-based CF Searches

More information

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld.

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Logistic Regression Vibhav Gogate The University of Texas at Dallas Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Generative vs. Discriminative Classifiers Want to Learn: h:x Y X features

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

More information

Distributed Machine Learning and Big Data

Distributed Machine Learning and Big Data Distributed Machine Learning and Big Data Sourangshu Bhattacharya Dept. of Computer Science and Engineering, IIT Kharagpur. http://cse.iitkgp.ac.in/~sourangshu/ August 21, 2015 Sourangshu Bhattacharya

More information

LCs for Binary Classification

LCs for Binary Classification Linear Classifiers A linear classifier is a classifier such that classification is performed by a dot product beteen the to vectors representing the document and the category, respectively. Therefore it

More information

Azure Machine Learning, SQL Data Mining and R

Azure Machine Learning, SQL Data Mining and R Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:

More information

Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus

Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus 1. Introduction Facebook is a social networking website with an open platform that enables developers to extract and utilize user information

More information

Monotonicity Hints. Abstract

Monotonicity Hints. Abstract Monotonicity Hints Joseph Sill Computation and Neural Systems program California Institute of Technology email: joe@cs.caltech.edu Yaser S. Abu-Mostafa EE and CS Deptartments California Institute of Technology

More information

Active Learning SVM for Blogs recommendation

Active Learning SVM for Blogs recommendation Active Learning SVM for Blogs recommendation Xin Guan Computer Science, George Mason University Ⅰ.Introduction In the DH Now website, they try to review a big amount of blogs and articles and find the

More information

Feature Engineering in Machine Learning

Feature Engineering in Machine Learning Research Fellow Faculty of Information Technology, Monash University, Melbourne VIC 3800, Australia August 21, 2015 Outline A Machine Learning Primer Machine Learning and Data Science Bias-Variance Phenomenon

More information

Microsoft Azure Machine learning Algorithms

Microsoft Azure Machine learning Algorithms Microsoft Azure Machine learning Algorithms Tomaž KAŠTRUN @tomaz_tsql Tomaz.kastrun@gmail.com http://tomaztsql.wordpress.com Our Sponsors Speaker info https://tomaztsql.wordpress.com Agenda Focus on explanation

More information

Machine Learning Algorithms and Predictive Models for Undergraduate Student Retention

Machine Learning Algorithms and Predictive Models for Undergraduate Student Retention , 225 October, 2013, San Francisco, USA Machine Learning Algorithms and Predictive Models for Undergraduate Student Retention Ji-Wu Jia, Member IAENG, Manohar Mareboyana Abstract---In this paper, we have

More information

Clustering. Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016

Clustering. Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016 Clustering Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016 1 Supervised learning vs. unsupervised learning Supervised learning: discover patterns in the data that relate data attributes with

More information

Feature Subset Selection in E-mail Spam Detection

Feature Subset Selection in E-mail Spam Detection Feature Subset Selection in E-mail Spam Detection Amir Rajabi Behjat, Universiti Technology MARA, Malaysia IT Security for the Next Generation Asia Pacific & MEA Cup, Hong Kong 14-16 March, 2012 Feature

More information

Programming Exercise 3: Multi-class Classification and Neural Networks

Programming Exercise 3: Multi-class Classification and Neural Networks Programming Exercise 3: Multi-class Classification and Neural Networks Machine Learning November 4, 2011 Introduction In this exercise, you will implement one-vs-all logistic regression and neural networks

More information

Cross-validation for detecting and preventing overfitting

Cross-validation for detecting and preventing overfitting Cross-validation for detecting and preventing overfitting Note to other teachers and users of these slides. Andrew would be delighted if ou found this source material useful in giving our own lectures.

More information

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not. Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

More information

Data Mining Classification: Decision Trees

Data Mining Classification: Decision Trees Data Mining Classification: Decision Trees Classification Decision Trees: what they are and how they work Hunt s (TDIDT) algorithm How to select the best split How to handle Inconsistent data Continuous

More information

Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

More information

BIDM Project. Predicting the contract type for IT/ITES outsourcing contracts

BIDM Project. Predicting the contract type for IT/ITES outsourcing contracts BIDM Project Predicting the contract type for IT/ITES outsourcing contracts N a n d i n i G o v i n d a r a j a n ( 6 1 2 1 0 5 5 6 ) The authors believe that data modelling can be used to predict if an

More information

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of. Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:

More information

On Entropy in Network Traffic Anomaly Detection

On Entropy in Network Traffic Anomaly Detection On Entropy in Network Traffic Anomaly Detection Jayro Santiago-Paz, Deni Torres-Roman. Cinvestav, Campus Guadalajara, Mexico November 2015 Jayro Santiago-Paz, Deni Torres-Roman. 1/19 On Entropy in Network

More information

Classification Problems

Classification Problems Classification Read Chapter 4 in the text by Bishop, except omit Sections 4.1.6, 4.1.7, 4.2.4, 4.3.3, 4.3.5, 4.3.6, 4.4, and 4.5. Also, review sections 1.5.1, 1.5.2, 1.5.3, and 1.5.4. Classification Problems

More information

BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376

BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376 Course Director: Dr. Kayvan Najarian (DCM&B, kayvan@umich.edu) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.

More information

Machine Learning. Term 2012/2013 LSI - FIB. Javier Béjar cbea (LSI - FIB) Machine Learning Term 2012/2013 1 / 34

Machine Learning. Term 2012/2013 LSI - FIB. Javier Béjar cbea (LSI - FIB) Machine Learning Term 2012/2013 1 / 34 Machine Learning Javier Béjar cbea LSI - FIB Term 2012/2013 Javier Béjar cbea (LSI - FIB) Machine Learning Term 2012/2013 1 / 34 Outline 1 Introduction to Inductive learning 2 Search and inductive learning

More information

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725 Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

More information

Classification of Bad Accounts in Credit Card Industry

Classification of Bad Accounts in Credit Card Industry Classification of Bad Accounts in Credit Card Industry Chengwei Yuan December 12, 2014 Introduction Risk management is critical for a credit card company to survive in such competing industry. In addition

More information

Classification algorithm in Data mining: An Overview

Classification algorithm in Data mining: An Overview Classification algorithm in Data mining: An Overview S.Neelamegam #1, Dr.E.Ramaraj *2 #1 M.phil Scholar, Department of Computer Science and Engineering, Alagappa University, Karaikudi. *2 Professor, Department

More information

KEITH LEHNERT AND ERIC FRIEDRICH

KEITH LEHNERT AND ERIC FRIEDRICH MACHINE LEARNING CLASSIFICATION OF MALICIOUS NETWORK TRAFFIC KEITH LEHNERT AND ERIC FRIEDRICH 1. Introduction 1.1. Intrusion Detection Systems. In our society, information systems are everywhere. They

More information

Chapter 20: Data Analysis

Chapter 20: Data Analysis Chapter 20: Data Analysis Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 20: Data Analysis Decision Support Systems Data Warehousing Data Mining Classification

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

More information

Classifying Large Data Sets Using SVMs with Hierarchical Clusters. Presented by :Limou Wang

Classifying Large Data Sets Using SVMs with Hierarchical Clusters. Presented by :Limou Wang Classifying Large Data Sets Using SVMs with Hierarchical Clusters Presented by :Limou Wang Overview SVM Overview Motivation Hierarchical micro-clustering algorithm Clustering-Based SVM (CB-SVM) Experimental

More information

How To Cluster

How To Cluster Data Clustering Dec 2nd, 2013 Kyrylo Bessonov Talk outline Introduction to clustering Types of clustering Supervised Unsupervised Similarity measures Main clustering algorithms k-means Hierarchical Main

More information

Car Insurance. Havránek, Pokorný, Tomášek

Car Insurance. Havránek, Pokorný, Tomášek Car Insurance Havránek, Pokorný, Tomášek Outline Data overview Horizontal approach + Decision tree/forests Vertical (column) approach + Neural networks SVM Data overview Customers Viewed policies Bought

More information

Response variables assume only two values, say Y j = 1 or = 0, called success and failure (spam detection, credit scoring, contracting.

Response variables assume only two values, say Y j = 1 or = 0, called success and failure (spam detection, credit scoring, contracting. Prof. Dr. J. Franke All of Statistics 1.52 Binary response variables - logistic regression Response variables assume only two values, say Y j = 1 or = 0, called success and failure (spam detection, credit

More information

Logistic Regression for Spam Filtering

Logistic Regression for Spam Filtering Logistic Regression for Spam Filtering Nikhila Arkalgud February 14, 28 Abstract The goal of the spam filtering problem is to identify an email as a spam or not spam. One of the classic techniques used

More information

Several Views of Support Vector Machines

Several Views of Support Vector Machines Several Views of Support Vector Machines Ryan M. Rifkin Honda Research Institute USA, Inc. Human Intention Understanding Group 2007 Tikhonov Regularization We are considering algorithms of the form min

More information

Unsupervised learning: Clustering

Unsupervised learning: Clustering Unsupervised learning: Clustering Salissou Moutari Centre for Statistical Science and Operational Research CenSSOR 17 th September 2013 Unsupervised learning: Clustering 1/52 Outline 1 Introduction What

More information

Car Insurance. Prvák, Tomi, Havri

Car Insurance. Prvák, Tomi, Havri Car Insurance Prvák, Tomi, Havri Sumo report - expectations Sumo report - reality Bc. Jan Tomášek Deeper look into data set Column approach Reminder What the hell is this competition about??? Attributes

More information

Acknowledgments. Data Mining with Regression. Data Mining Context. Overview. Colleagues

Acknowledgments. Data Mining with Regression. Data Mining Context. Overview. Colleagues Data Mining with Regression Teaching an old dog some new tricks Acknowledgments Colleagues Dean Foster in Statistics Lyle Ungar in Computer Science Bob Stine Department of Statistics The School of the

More information

An Introduction to Machine Learning

An Introduction to Machine Learning An Introduction to Machine Learning L5: Novelty Detection and Regression Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au Tata Institute, Pune,

More information

Introduction to Machine Learning Using Python. Vikram Kamath

Introduction to Machine Learning Using Python. Vikram Kamath Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression

More information