Kinematics 1D ~ Lab. 4. What was the average speed of the truck for the six seconds? show your work here.


 Delilah Heath
 10 months ago
 Views:
Transcription
1 Kinematics 1D ~ Lab Name: Instructions: Using a pencil, answer the following questions. The lab is marked based on clarity of responses, completeness, neatness, and accuracy. Do your best! Part 1: Graphing Truck Motion: In this section, you will be using the Lab Resources > Video: Moving Truck Data 1. Complete the following table with data from the video. Time (s) 0 Dist (m) 0 2. Please plot a position (y) verses time (x) graph on the grid provided (next page). Graph a best fitting smooth curve. Remember to be neat and tidy and label your axis. 3. What does the graph tell us about the speed of the truck? 4. What was the average speed of the truck for the six seconds? show your work here. 5. Sketch a rough graph (no units) showing what the position verses time graph would look like if: a) the truck was traveling a steady speed d t b) the truck was slowing down  include 3 tangent lines (refer to tutorials) showing 3 different speeds. d t Page 1 of 9
2 Hint: refer to the Submission Requirements Page 2 of 9
3 Part 2: Position vs Time Graphs (or Dt graphs): In this section, you will be using the Lab Resources > Media: Ramp n Roll Click "Edit," then manipulate the heights of the posts (drag the posts up and down), initial position (click the blue arrow left and right) and initial velocity (click the blue arrow left and right) as needed to address the questions below. 1. Set the initial position to 0 m and the initial velocity to 2 m/s. Check that the bottom of the graph states Position vs. Time a. Click Start and sketch the graph below. Label it a. b. Determine the slope of this graph. Be sure to include the units. Show work below. Page 3 of 9
4 2. Experiment with the simulation to determine answers to the following: a) What happens to the shape of the graph if you increase the Initial Velocity to 4 m/s. b) Describe what happens to the shape of the graph if you reduce the Initial Velocity to 0.5 m/s. c) Click on Edit and set the initial position to 200 m and the initial velocity to 2 m/s. Observe what happens carefully. How does changing the initial position affected the shape of the graph. d) Click on Edit and set the initial position to 200 m and the initial velocity to 2 m/s. Describe the affect this made of the graph. Summarize: Summarize how velocity and initial position are represented on a Positiontime Graph. Put it all together: Without using the simulation make an accurate Positiontime of a ball rolling on a flat surface with a constant velocity of 5 m/s and an initial position of 400m. Page 4 of 9
5 Accelerated Motion on a Dt Graph: 3. Click on Edit and set the initial position to 0 m and the initial velocity to 0 m/s. Check that the bottom of the graph states Position vs. Time. Now change it so that it slopes down to the right as shown below. a) Sketch the PositionTime graph below and label it a. (be sure to stop the sim once the ball has reached the 0.0 m mark) b) Describe the motion of the ball as it rolls down the ramp. Describe the ball s velocity, acceleration, and displacement using terms like positive, negative, increasing, or decreasing, c) Reverse the ramp so that it slopes down to the left. Set the ball s initial velocity to zero and initial position to 490 m (to ensure that it rolls down). Sketch the graph below and label it c. Page 5 of 9
6 4. Describe the ramp and motion that created the dt graph below. a) Describe the motion (discuss velocity and acceleration): Use the words constant, increasing, decreasing, positive, or negative in your description. b) Sketch the ramp that made this graph and identify initial velocity and position v i = Initial position = Page 6 of 9
7 5. Describe the characteristics (sketch each graph) of a dt graph that has: a) Constant positive velocity: b) Constant positive acceleration c) The initial velocity is positive but the acceleration is constant negative (a sketch of the graph will suffice) Now let s check your understanding with the Ramp and Roll Simulation: 6. Construct a ramp that has the ball moving with a constant, positive velocity. Sketch your ramp below and show your ball s initial position and velocity vector. 7. Construct a ramp that has the ball start with a constant negative velocity, then ends with a positive acceleration. Sketch your ramp below and show your ball s initial position and velocity vector. Page 7 of 9
8 Part 3: Displacement & Velocity Graphs: This simulation illustrates a man walking back and forth; his displacement graph is drawn as he walks. Your task is to construct a velocity graph and to find the relationship between the shapes of the displacement and velocity graphs. In this section, you will be using the Lab Resources > Media: Moving Person Use the simulation to create the dt graphs shown below. In the spaces provided, record any initial values for d, v, and a. Sketch the vt graph on the axis provided. dt graphs Initial Settings d = v = a = vt graphs d = v = a = d = v = a = Summarize: 1. Straight diagonal dt graphs will become (shape?) vt graphs. This means the man (is/is not?) accelerating. 2. Curved dt graphs will become (shape?) vt graphs. This means the man (is/is not?) accelerating. Page 8 of 9
9 Tip from the Teacher: Use the vertical grey slider to advance the man to any location on your graph. This will help you sketch the actual vt graph. 3. Construct Velocitytime graphs from the dt graphs below: a) b) c) Page 9 of 9
Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs
Name Physics Honors Pd Date Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs Sketch velocity vs. time graphs corresponding to the following descriptions of the motion of an
More information1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time
PHY132 Experiment 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration
More information1.3.1 Position, Distance and Displacement
In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an
More informationGraphing Motion. Every Picture Tells A Story
Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it
More informationChapter 4. Kinematics  Velocity and Acceleration. 4.1 Purpose. 4.2 Introduction
Chapter 4 Kinematics  Velocity and Acceleration 4.1 Purpose In this lab, the relationship between position, velocity and acceleration will be explored. In this experiment, friction will be neglected.
More information2.4 Motion and Integrals
2 KINEMATICS 2.4 Motion and Integrals Name: 2.4 Motion and Integrals In the previous activity, you have seen that you can find instantaneous velocity by taking the time derivative of the position, and
More informationGround Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan
Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while
More informationTo define concepts such as distance, displacement, speed, velocity, and acceleration.
Chapter 7 Kinematics of a particle Overview In kinematics we are concerned with describing a particle s motion without analysing what causes or changes that motion (forces). In this chapter we look at
More informationFreely Falling Objects
Freely Falling Objects Physics 1425 Lecture 3 Michael Fowler, UVa. Today s Topics In the previous lecture, we analyzed onedimensional motion, defining displacement, velocity, and acceleration and finding
More informationGraph Matching. walk back and forth in front of Motion Detector
Experiment 1 One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration vs. time. From such a graphical representation, it is possible to determine
More informationWorksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs
Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs Shown are three different animations, each with three toy monster trucks moving to the right. Two ways to describe
More informationGRAPH MATCHING EQUIPMENT/MATERIALS
GRAPH MATCHING LAB MECH 6.COMP. From Physics with Computers, Vernier Software & Technology, 2000. Mathematics Teacher, September, 1994. INTRODUCTION One of the most effective methods of describing motion
More informationChapter 2: Describing Motion
Chapter 2: Describing Motion 1. An auto, starting from rest, undergoes constant acceleration and covers a distance of 1000 meters. The final speed of the auto is 80 meters/sec. How long does it take the
More informationMotion. Complete Table 1. Record all data to three decimal places (e.g., 4.000 or 6.325 or 0.000). Do not include units in your answer.
Labs for College Physics: Mechanics Worksheet Experiment 21 Motion As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet. Use the exact
More informationIn order to describe motion you need to describe the following properties.
Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1D path speeding up and slowing down In order to describe motion you need to describe the following properties.
More informationPhysics Kinematics Model
Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous
More informationMotion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.
Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in
More informationPhysics 2048 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 20 points)
Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each
More informationPhysics 1050 Experiment 2. Acceleration Due to Gravity
Acceleration Due to Gravity Prelab Questions These questions need to be completed before entering the lab. Please show all workings. Prelab 1: For a falling ball, which bounces, draw the expected shape
More informationPhysics 201. Fall 2009. Two Dimensional Motion Due Friday November 6, 2009
Physics 201 Fall 2009 Two Dimensional Motion Due Friday November 6, 2009 Points: 30 Name Partners This is a more detailed lab experiment than the exercises you have done in the class in the past. You will
More informationSpeed (a scalar quantity) is the distance travelled every second.
SCALAR and VECTOR QUANTITIES The following are some of the quantities you will meet in the Intermediate Physics course: DISTANCE, DISPLACEMENT, SPEED, VELOCITY, TIME, FORCE. Quantities can be divided into
More information1 of 7 9/5/2009 6:12 PM
1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
More informationDetermining the Acceleration Due to Gravity
Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different
More informationLAB 6  GRAVITATIONAL AND PASSIVE FORCES
L061 Name Date Partners LAB 6  GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
More informationMotion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes:
Motion Graphs 1 Name Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion
More informationACCELERATION DUE TO GRAVITY
EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities
More informationWorksheet 1. What You Need to Know About Motion Along the xaxis (Part 1)
Worksheet 1. What You Need to Know About Motion Along the xaxis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the
More informationLAB 6: GRAVITATIONAL AND PASSIVE FORCES
55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction
More informationFREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5
Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities
More informationAP Physics Energy and Springs
AP Physics Energy and Springs Another major potential energy area that AP Physics is enamored of is the spring (the wire coil deals, not the ones that produce water for thirsty humanoids). Now you ve seen
More informationAcceleration Introduction: Objectives: Methods:
Acceleration Introduction: Acceleration is defined as the rate of change of velocity with respect to time, thus the concepts of velocity also apply to acceleration. In the velocitytime graph, acceleration
More information2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :
Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocitytime graph. Select and use the equations of motion for constant acceleration in
More informationPhysics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
More informationSPEED, VELOCITY, AND ACCELERATION
reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration
More information2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
More informationAcceleration Due to Gravity
Activity 5 PS2826 Acceleration Due to Gravity Kinematics: linear motion, acceleration, free fall, graphing GLX setup file: free fall Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS2002
More informationExperiment 2 Free Fall and Projectile Motion
Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation PreLab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8
More informationScalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v =
Scalar versus Vector Quantities Scalar Quantities Magnitude (size) 55 mph Speed Average Speed = distance (in meters) time (in seconds) Vector Quantities Magnitude (size) Direction 55 mph, North v = Dx
More information4. Analysis of Standing Vertical Jumps Using a Force Platform
4. Analysis of Standing Vertical Jumps Using a Force Platform OBJECTIVES To examine a standing vertical jump from the viewpoints of forcetime, velocitytime, positiontime, and forceposition. To develop
More informationNewton s Laws Quiz Review
Newton s Laws Quiz Review Name Hour To be properly prepared for this quiz you should be able to do the following: 1) state each of Newton s three laws of motion 2) pick out examples of the three laws from
More information21 Position, Displacement, and Distance
21 Position, Displacement, and Distance In describing an object s motion, we should first talk about position where is the object? A position is a vector because it has both a magnitude and a direction:
More informationVectors; 2D Motion. Part I. Multiple Choice. 1. v
This test covers vectors using both polar coordinates and ij notation, radial and tangential acceleration, and twodimensional motion including projectiles. Part I. Multiple Choice 1. v h x In a lab experiment,
More informationEDUH 1017  SPORTS MECHANICS
4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017  SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use
More informationPhysics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:1510:15 Room:
More informationName Partners Date. Energy Diagrams I
Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy
More informationAcceleration of Gravity Lab Basic Version
Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration
More informationcharge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the
This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2D collisions, and centerofmass, with some problems requiring
More informationSpeed, velocity and acceleration
Chapter Speed, velocity and acceleration Figure.1 What determines the maximum height that a polevaulter can reach? 1 In this chapter we look at moving bodies, how their speeds can be measured and how
More informationACCELERATION OF HEAVY TRUCKS Woodrow M. Poplin, P.E.
ACCELERATION OF HEAVY TRUCKS Woodrow M. Poplin, P.E. Woodrow M. Poplin, P.E. is a consulting engineer specializing in the evaluation of vehicle and transportation accidents. Over the past 23 years he has
More informationChapter 4 One Dimensional Kinematics
Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity
More informationPLOTTING DATA AND INTERPRETING GRAPHS
PLOTTING DATA AND INTERPRETING GRAPHS Fundamentals of Graphing One of the most important sets of skills in science and mathematics is the ability to construct graphs and to interpret the information they
More informationPhysics Labs with Computers, Vol. 2 P38: Conservation of Linear Momentum 01207001A
Name Class Date Activity P38: Conservation of Linear Momentum (Motion Sensors) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P38 Linear Momentum.DS P16 Cons. of Momentum
More informationArcade tutorial 1: Complex Pendulum Kirk Martini 2005 8 June 2005 University of Virginia
Arcade Tutorial 1: Complex Pendulum The following tutorial demonstrates basic model building and simulation in Arcade, including Adding nodes. Using elastic truss elements. Using supports. Modifying physical
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make
More informationQuadratic and Square Root Functions. Square Roots & Quadratics: What s the Connection?
Activity: TEKS: Overview: Materials: Grouping: Time: Square Roots & Quadratics: What s the Connection? (2A.9) Quadratic and square root functions. The student formulates equations and inequalities based
More informationMass, energy, power and time are scalar quantities which do not have direction.
Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and
More informationIX Physics Motion and Rest
Page1 IX Physics Motion and Rest CBSE chapterwise MCQ Multiple Choice Questions, Test Paper, Sample paper on CCE pattern for class 9 science Motion. Distance and displacement, velocity; uniform and nonuniform
More informationThe BulletBlock Mystery
LivePhoto IVV Physics Activity 1 Name: Date: 1. Introduction The BulletBlock Mystery Suppose a vertically mounted 22 Gauge rifle fires a bullet upwards into a block of wood (shown in Fig. 1a). If the
More informationMOTION DIAGRAMS. Revised 9/051  LC, tlo
MOTION DIAGRAMS When first applying kinematics (motion) principles, there is a tendency to use the wrong kinematics quantity  to inappropriately interchange quantities such as position, velocity, and
More informationPhysics 1010: The Physics of Everyday Life. TODAY Velocity, Acceleration 1D motion under constant acceleration Newton s Laws
Physics 11: The Physics of Everyday Life TODAY, Acceleration 1D motion under constant acceleration Newton s Laws 1 VOLUNTEERS WANTED! PHET, The PHysics Educational Technology project, is looking for students
More information2After completing this chapter you should be able to
After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time
More informationAP1 Oscillations. 1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
More informationFocused Learning Lesson Science Grades 912 PSHE2
Focused Learning Lesson Science Grades 912 PSHE2 Overview: This lesson is designed to review the basic relationships of speed, velocity, and acceleration. During the lesson, students will review the
More informationMET 306. Activity 8a. Mechanism Design Creo 2.0 Level 7 POINT A GROUND LINK LINK 1 LINK 2 LINK 3 POINT B 10/15/2010 1
Mechanism Design Creo 2.0 Level 7 POINT A LINK 1 GROUND LINK LINK 2 LINK 3 POINT B 10/15/2010 1 Download parts ground, key, link_1, link_2, link_3 and pulley from the V:/MET_306/Activity_8_Creo drive.
More informationSTATIC AND KINETIC FRICTION
STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult
More informationTEACHER NOTES HIGH SCHOOL SCIENCE NSPIRED
Science Objectives Students will describe the variables that affect potential energy and kinetic energy Students will explore the conversion of potential energy to kinetic energy Students will describe
More informationExperiment: Static and Kinetic Friction
PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static
More informationActivity P38: Conservation of Linear Momentum (Motion Sensors)
Name Class Date Activity P38: Conservation of Linear Momentum (Motion Sensors) Equipment Needed Qty Equipment Needed Qty Motion Sensor (CI6742) 2 Dynamics Cart (w/ Track) 2 Balance (SE8723) 1 2.2 m Track
More informationExperiment 2: Conservation of Momentum
Experiment 2: Conservation of Momentum Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations
More informationSpeed A B C. Time. Chapter 3: Falling Objects and Projectile Motion
Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.
More informationACTIVITY 6: Falling Objects
UNIT FM Developing Ideas ACTIVITY 6: Falling Objects Purpose and Key Question You developed your ideas about how the motion of an object is related to the forces acting on it using objects that move horizontally.
More information(I) s(t) = s 0 v 0 (t t 0 ) + 1 2 a (t t 0) 2 (II). t 2 = t 0 + 2 v 0. At the time. E kin = 1 2 m v2 = 1 2 m (a (t t 0) v 0 ) 2
Mechanics Translational motions of a mass point Onedimensional motions on the linear air track LD Physics Leaflets P1.3.3.8 Uniformly accelerated motion with reversal of direction Recording and evaluating
More informationEXPERIMENT 2: FREE FALL and PROJECTILE MOTION
TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 2: FREE FALL and PROJECTILE MOTION ONE AND TWODIMENSIONAL KINEMATICS WITH GRAVITY 117 Textbook Reference:
More informationTutorial #2 Exercise: Free Fall
Tutorial #2 Exercise: Free Fall In the following exercise you will use vpython to investigate a ball s motion under the influence of gravity close to Earth s surface (so we will make the approximation
More informationGCE. Physics A. Mark Scheme for January 2013. Advanced Subsidiary GCE Unit G481/01: Mechanics. Oxford Cambridge and RSA Examinations
GCE Physics A Advanced Subsidiary GCE Unit G481/01: Mechanics Mark Scheme for January 2013 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing
More informationGeography River Study Resource Higher
Geography River Study Resource Higher 4304 Autumn 1998 HIGHER STILL Geography River Study Resource Higher Support Materials θρστ υϖ CONTENTS Introduction Collecting river flow data Measuring the width
More informationPHYSICS Matters for GCE O Level. Unit 2: Kinematics
PHYSICS Matters for GCE O Level Unit 2: Kinematics 2.1 Distance, Time and Speed In this section, you ll be able to: state what speed is calculate average speed plot and interpret a distancetime graph
More informationChapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
More informationThe Basics of Physics with Calculus. AP Physics C
The Basics of Physics with Calculus AP Physics C Pythagoras started it all 6 th Century Pythagoras first got interested in music when he was walking past a forge and heard that the sounds of the blacksmiths'
More informationChapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
More informationAn Introduction to Using Simulink. Exercises
An Introduction to Using Simulink Exercises Eric Peasley, Department of Engineering Science, University of Oxford version 4.1, 2013 PART 1 Exercise 1 (Cannon Ball) This exercise is designed to introduce
More informationMOTION IN A STRAIGHT LINE
CHAPTER THREE MOTION IN A STRAIGHT LINE 3. Introduction 3. Position, path length and displacement 3.3 Average velocity and average speed 3.4 Instantaneous velocity and speed 3.5 Acceleration 3.6 Kinematic
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed
More informationSpeed, Velocity and Acceleration Lab
Speed, Velocity and Acceleration Lab Name In this lab, you will compare and learn the differences between speed, velocity, and acceleration. You will have two days to complete the lab. There will be some
More informationCOEFFICIENT OF KINETIC FRICTION
COEFFICIENT OF KINETIC FRICTION LAB MECH 5.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult
More informationProblem 12.33. s s o v o t 1 2 a t2. Ball B: s o 0, v o 19 m s, a 9.81 m s 2. Apply eqn. 125: When the balls pass each other: s A s B. t 2.
ENPH 131 Assignment # Solutions Tutorial Problem (Rocket Height) A rocket, initially at rest on the ground, accelerates straight upward with a constant acceleration of 3. m s. The rocket accelerates for
More informationENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION
ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers prerequisite material and should be skipped if you are
More informationNumerical Solution of Differential Equations
Numerical Solution of Differential Equations Dr. Alvaro Islas Applications of Calculus I Spring 2008 We live in a world in constant change We live in a world in constant change We live in a world in constant
More informationCATIA V5 Tutorials. Mechanism Design & Animation. Release 18. Nader G. Zamani. University of Windsor. Jonathan M. Weaver. University of Detroit Mercy
CATIA V5 Tutorials Mechanism Design & Animation Release 18 Nader G. Zamani University of Windsor Jonathan M. Weaver University of Detroit Mercy SDC PUBLICATIONS Schroff Development Corporation www.schroff.com
More informationThis activity will show you how to draw graphs of algebraic functions in Excel.
This activity will show you how to draw graphs of algebraic functions in Excel. Open a new Excel workbook. This is Excel in Office 2007. You may not have used this version before but it is very much the
More informationLecture L2  Degrees of Freedom and Constraints, Rectilinear Motion
S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L  Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates
More informationDifference between a vector and a scalar quantity. N or 90 o. S or 270 o
Vectors Vectors and Scalars Distinguish between vector and scalar quantities, and give examples of each. method. A vector is represented in print by a bold italicized symbol, for example, F. A vector has
More information1) The gure below shows the position of a particle (moving along a straight line) as a function of time. Which of the following statements is true?
Physics 2A, Sec C00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to ll your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More information1 of 10 11/23/2009 6:37 PM
hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction
More informationOne and Twodimensional Motion
PHYS101 LAB02 One and Twodimensional Motion 1. Objective The objectives of this experiment are: to measure the acceleration of gravity using onedimensional motion to demonstrate the independence of
More informationPart 1: Background  Graphing
Department of Physics and Geology Graphing Astronomy 1401 Equipment Needed Qty Computer with Data Studio Software 1 1.1 Graphing Part 1: Background  Graphing In science it is very important to find and
More informationMicrosoft Excel Tutorial
Microsoft Excel Tutorial by Dr. James E. Parks Department of Physics and Astronomy 401 Nielsen Physics Building The University of Tennessee Knoxville, Tennessee 379961200 Copyright August, 2000 by James
More informationUnit 3 Work and Energy Suggested Time: 25 Hours
Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense
More information= f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )).
Math 1205 Calculus/Sec. 3.3 The Derivative as a Rates of Change I. Review A. Average Rate of Change 1. The average rate of change of y=f(x) wrt x over the interval [x 1, x 2 ]is!y!x ( )  f( x 1 ) = y
More informationLab #4  Linear Impulse and Momentum
Purpose: Lab #4  Linear Impulse and Momentum The objective of this lab is to understand the linear and angular impulse/momentum relationship. Upon completion of this lab you will: Understand and know
More information