PART ONE: The Energy Atmosphere System. Solar Energy to Earth and the Seasons 2. Overview. Outline Headings and Key Terms

Size: px
Start display at page:

Download "PART ONE: The Energy Atmosphere System. Solar Energy to Earth and the Seasons 2. Overview. Outline Headings and Key Terms"

Transcription

1 PART ONE: The Energy Atmosphere System Geosystems begins with the Sun and Solar System to launch the first of four parts. Our planet and our lives are powered by radiant energy from the star closest to Earth the Sun. Each of us depends on many systems that are set into motion by energy from the Sun. These systems are the subjects of Part One. Part One exemplifies the systems organization of the text: it begins with the origin of the solar system and the Sun. Solar energy passes across space to Earth s atmosphere varying seasonally in its effects on the atmosphere (Chapter 2). Insolation then passes through the atmosphere to Earth s surface (Chapter 3). From Earth s surface, and surface energy balances (Chapter 4) generate patterns of world temperature (Chapter 5) and general and local atmospheric circulation (Chapter 6). Each of the text s four parts contains related chapters with content arranged according to the flow of individual systems or in a manner consistent with time and the flow of events. The Part-opening photo shows the winter desert of northeastern Arizona. Solar Energy to Earth and the Seasons 2 Overview The ultimate spatial inquiry is to know the location of Earth in the Universe. To properly set the stage for a course in the physical geography of Earth, slides, videography, Internet sites, and posters can be used to establish the location and place of our planetary home. Our immediate home is North America, a major continent on planet Earth, the third planet from a typical yellow star in a solar system. That star, our Sun, is only one of billions in the Milky Way Galaxy, which is one of billions of galaxies in the Universe. This chapter examines the nature of the flow of energy and material from the Sun to the outer reaches of Earth s atmosphere. The top of the atmosphere is a measuring point to assess the arriving solar energy. Earth receives solar wind and electromagnetic radiation from the Sun. Earth s orientation to the Sun varies seasonally. The chapter ends with a discussion of seasons and seasonal changes in insolation and daylength. As before, a list of key learning concepts begins the chapter and is used to organize the Summary and Review section, with definitions, key terms and page numbers, and review questions grouped under each objective. At the beginning of each chapter a section titled In This Chapter introduces the chapter s content in a succinct statement. Outline Headings and Key Terms The first-, second-, and third-order headings that divide Chapter 2 serve as an outline. The key terms and concepts that appear boldface in the text are listed here under their appropriate heading in bold italics. All these highlighted terms appear in the text glossary. Note the check-off box ( ) so you can mark class progress. The outline headings and terms for Chapter 2: Geosystems Now 2: When and where is the Sun directly overhead? 11

2 Milky Way Galaxy The Solar System, Sun, and Earth Nebular Hypothesis Solar System Formation and Structure gravity planetesimal hypothesis Dimensions and Distances speed of light Earth s Orbit perihelion aphelion Solar Energy: From Sun to Earth Electromagnetic Spectrum and Plants fusion Solar Activity and Solar Wind solar wind sunspots Solar Wind Effects magnetosphere auroras Weather Effects Electromagnetic Spectrum of Radiant Energy electromagnetic spectrum wavelength Incoming Energy at the Top of the Atmosphere thermopause insolation Solar Constant solar constant Uneven Distribution of Insolation subsolar point Global Net Radiation The Seasons Earth-Sun Relations, Seasons Seasonality altitude declination daylength Reasons for Seasons Revolution revolution Rotation rotation axis circle of illumination Tilt of Earth s Axis axial tilt Axial Parallelism plane of the ecliptic axial parallelism Sphericity Annual March of the Seasons sunrise sunset winter solstice December solstice vernal equinox March equinox summer solstice June solstice autumnal equinox September equinox Dawn and Twilight Seasonal Observations Key Learning Concept Review Mastering Geography Geosystems Connection Critical Thinking, and Geo Reports Critical Thinking 2.1: A way to calculate sunrise and sunset Critical Thinking 2.2: Astronomical factors vary over long time frames Critical Thinking 2.3: Measure and track seasonal change Critical Thinking 2.4: Measuring the Sun s changing altitude Geo Report 2.1: Sun and solar system on the move Geo Report 2.2: Recent solar cycles Geo Report 2.3: Why do we always see the same side of the Moon? Geo Report 2.4: Measuring Earth s rotation URLs listed in Chapter 2 Solar systems simulator: Sun info: Sunspot cycle and auroral activity: wwww.sohowww.nascom.nasa.gov/.]

3 International Earth Rotation Service: Sunrise, sunset calculator: URLs of Interest Hubble telescope and astronomy info: Key Learning Concepts for Chapter 2 The following learning concepts help guide the student s reading and comprehension efforts. The operative word is in italics. These are included in each chapter of Geosystems. The student is told: after reading the chapter you should be able to : Distinguish among galaxies, stars, and planets, and locate Earth. Overview the origin, formation, and development of Earth and the atmosphere and construct Earth s annual orbit about the Sun. Describe the Sun s operation, and explain the characteristics of the solar wind and the electromagnetic spectrum of radiant energy. Portray the intercepted solar energy and its uneven distribution at the top of the atmosphere. Define solar altitude, solar declination, and daylength; describe the annual variability of each Earth s seasonality. Annotated Chapter Review Questions Distinguish among galaxies, stars, and planets, and locate Earth. 1. Describe the Sun s status among stars in the Milky Way Galaxy. Describe the Sun s location, size, and relationship to its planets. Our Sun is both unique to us and commonplace in our galaxy. It is only average in temperature, size, and color when compared with other stars, yet it is the ultimate energy source for almost all life processes in our biosphere. Planets do not produce their own energy. Our Sun is located on a remote, trailing edge of the Milky Way Galaxy, a flattened, disk-shaped mass estimated to contain up to 400 billion stars. 2. If you have seen the Milky Way at night, briefly describe it. Use specifics from the text in your description. From our Earth-bound perspective in the Milky Way, the galaxy appears to stretch across the night sky like a narrow band of hazy light. On a clear night the naked eye can see only a few thousand of the nearly 400 billion stars. 3. Briefly describe Earth s origin as part of the Solar System. According to prevailing theory, our Solar System condensed from a large, slowly rotating, collapsing cloud of dust and gas called a nebula. As the nebular cloud organized and flattened into a disk shape, the early proto-sun grew in mass at the center, drawing more matter to it. Small accretion (growing) eddies the protoplanets swirled at varying distances from the center of the solar nebula. The early protoplanets, or planetesimals, were located at approximately the same distances from the Sun that the planets are today. The beginnings of the Sun and the solar system are estimated to have occurred more than 4.6 billion years ago. These processes are now observed as occurring elsewhere in the galaxy. Astronomers so far have observed almost two dozen stars with planets orbiting about them. 4. Compare the locations of the nine planets of the Solar System. See Figure 2.1c and d for this information. There is a Solar System simulation at Examine the origin, formation, and development of Earth and the atmosphere and construct Earth s annual orbit about the Sun. 5. How far is Earth from the Sun in terms of light speed? In terms of kilometers and miles? Earth s orbit around the Sun is presently elliptical a closed, oval-shaped path (Figure 2.1d). Earth s average distance from the Sun is approximately 150 million km (93 million mi). 13

4 Divided by the speed of light, this places us 8 minutes and 20 seconds from the Sun. In other words, it takes light that time to travel across planetary space to Earth. 6. Briefly describe the relationship among these concepts: Universe, Milky Way Galaxy, Solar System, Sun, and Planet Earth. The Universe is infinite in size and dimension from our perspective. Tens of billions of galaxies are known to populate the Universe we can observe, each composed of hundreds of billions of stars. Our Sun is a typical yellow-dwarf thermonuclear (fusion) star, somewhat less than a million miles in diameter. Planets orbit about stars such as our Solar System. Our Sun and the orbiting planets are revolving around the Milky Way Galaxy in a vast clockwise spiral. Similar multiple-planet solar systems are now being studied through the Hubble and other telescopes. More than 60 planets outside our Solar Systems are now identified and planets forming in a manner similar to how scientists think Earth formed are being observed. The astronaut-delivered upgrade on the Hubble that took place in 2002 has produced astounding results since the already prodigious power was increased a full ten times and the thermal infrared telescope was restored. 7. Diagram in a simple sketch Earth s orbit about the Sun. How much does it vary during the course of a year? Earth is at perihelion (its closest position to the Sun) during the Northern Hemisphere winter ( January 3 at 147, 255, 000 km, or 91,500,000 mi). It is at aphelion (its farthest position from the Sun) during the Northern Hemisphere summer ( July 4 at 152,083,000 km, or 94,500,000 mi). This seasonal difference in distance from the Sun causes a slight variation in the solar energy intercepted by Earth, but is not an immediate reason for seasonal change. Describe the Sun s operation and explain the characteristics of the solar wind and the electromagnetic spectrum of radiant energy. 8. How does the Sun produce such tremendous quantities of energy? The solar mass produces tremendous pressure and high temperatures deep in its dense interior region. Under these conditions, pairs of hydrogen nuclei, the lightest of all the natural elements, are forced to fuse together. This process of forcibly joining positively charged nuclei is called fusion. In the fusion reaction, hydrogen nuclei form helium, the second lightest element in nature, and liberate enormous quantities of energy in the form of free protons, neutrons, and electrons. During each second of operation, the Sun consumes 657 million tons of hydrogen, converting it into million tons of helium. The difference of 4.5 million tons is the quantity that is converted directly to energy resulting in literally disappearing solar mass. 9. What is the sunspot cycle? At what stage was the cycle in the year 2013? A regular cycle exists for sunspot occurrences, averaging 11 years from maximum peak to maximum peak; however, the cycle may vary from 7 to 17 years. In recent cycles, a solar minimum occurred in 1976, whereas a solar maximum took place in 1979, when over 100 sunspots were visible. Another minimum was reached in 1986, and an extremely active solar maximum occurred in 1990 with over 200 sunspots, 11 years from the previous maximum, in keeping with the average. In 1997, we witnessed a solar minimum. In 2001, the cycle returned to an intense maximum, causing auroras to be visible at lower latitudes. The minimum may have been reached in 2007, with cycle 24 beginning in 2008 and forecast to reach a maximum in Describe Earth s magnetosphere and its effects on the solar wind and the electromagnetic spectrum. Earth s outer defense against the solar wind is the magnetosphere, which is a magnetic force field surrounding Earth, generated by dynamo-like motions within our planet. As the solar wind approaches Earth, the streams of charged particles are deflected by the magnetosphere and course along the magnetic field lines. The extreme northern and southern polar regions of the upper atmosphere are the points of entry for the solar wind stream. 11. Summarize the presently known effects of the solar wind relative to Earth s environment. The interaction of the solar wind and the upper layers of Earth s atmosphere produces some remarkable phenomena relevant to physical geography: the auroras, disruption of certain radio broadcasts and even some satellite transmissions, and possible effects on weather patterns. 14

5 12. Describe the various segments of the electromagnetic spectrum, from shortest to longest wavelength. What are the main wavelengths produced by the Sun? Which wavelengths does Earth radiate to Earth? See Figures 2.6 and 2.7. All the radiant energy produced by the Sun is in the form of electromagnetic energy and, when placed in an ordered range, forms part of the electromagnetic spectrum. The Sun emits radiant energy composed of 8% ultraviolet, X-ray, and gamma ray wavelengths; 47% visible light wavelengths; and 45% infrared wavelengths. Wavelengths emitted from the Earth back to the Sun are of lower intensity and composed mostly of infrared wavelengths. Portray the intercepted solar energy and its uneven distribution at the top of the atmosphere. 13. What is the solar constant? Why is it important to know? The average value of insolation received at the thermopause (on a plane surface perpendicular to the Sun s rays) when Earth is at its average distance from the Sun. That value of the solar constant is 1372 watts per square meter (W/m 2 ). A watt is equal to one joule (a unit of energy) per second and is the standard unit of power in the SI-metric system. (See Appendix C in Geosystems for more information on measurement conversions.) In nonmetric calorie heat units, the solar constant is expressed as approximately 2 calories (1.968) per cm 2 per minute, or 2 langleys per minute (a langley being 1 cal per cm 2 ). A calorie is the amount of energy required to raise the temperature of one gram of water (at 15 C) one degree Celsius and is equal to joules. Knowing the amount of insolation intercepted by Earth is important to climatologists and other scientists as a basis for atmospheric and surface energy measurements and calculations. 14. Select 40 or 50 north latitude on Figure 2.10, and plot the amount of energy in W/m 2 per day characteristic of each month throughout the year. Compare this to the North Pole; to the equator. See Figure Note the watts per m 2 received at each month for specific latitudes. Graphs at key latitudes are placed along the right-hand side of the chart. 15. If Earth were flat and oriented perpendicular to incoming solar radiation (insolation), what would be the latitudinal distribution of solar energy at the top of the atmosphere? The atmosphere is like a giant heat engine driven by differences in insolation from place to place (see Figure 2.9). If Earth were flat there would be an even distribution of energy by latitude with no differences from place to place and therefore little motion produced. Define solar altitude, solar declination, and daylength and describe the annual variability of each Earth s seasonality. 16. Assess the 12-month Gregorian calendar, with its months of different lengths, and leap years, and its relation to the annual seasonal rhythms the march of the seasons. What do you find? The Gregorian calendar in common use has no relation to natural rhythms of Sun, Earth, the Moon, and the march of the seasons. 17. The concept of seasonality refers to what specific phenomena? How do these two aspects of seasonality change during the year at 0 latitude? At 40? At 90? Seasonality refers to both the seasonal variation of the Sun s rays above the horizon and changing daylengths during the year. Seasonal variations are a response to the change in the Sun s altitude, or the angular difference between the horizon and the Sun. Seasonality also means a changing duration of exposure, or daylength, which varies during the year depending on latitude. People living at the equator always receive equal hours of day and night, whereas people living along 40 N or S latitude experience about six hours of difference in daylight hours between winter and summer; those at 50 N or S latitude experience almost eight hours of annual daylength variation. At the polar extremes the range extends from a six-month period of no insolation to a six-month period of continuous 24-hour days. 18. Differentiate between the Sun s altitude and its declination at Earth s surface. The Sun s altitude is the angular difference between the horizon and the Sun. The Sun is directly overhead at zenith only at the subsolar point. The Sun s declination that is, the angular distance from the equator to the place where direct overhead insolation is received annually migrates through 47 15

6 degrees of latitude between the two tropics at 23.5 N and 23.5 S latitudes. 19. For the latitude at which you live, how does daylength vary during the year? How does the Sun s altitude vary? Does your local newspaper publish a weather calendar containing such information? See reference materials in this resource manual chapter to guide the students. See Table 2.3. See the sunrise/sunset calculator at htttp:// sunrise.html 20. List the five physical factors that operate together to produce seasons. Table 2.1 details these five factors: Earth s revolution and rotation, its tilt and fixed-axis orientation, and its sphericity. Rotation determines daylength, produces the apparent deflection of winds and ocean currents, and produces the twice daily action of the tides in relation to the gravitational pull of the Sun and the Moon. Earth s axis is an imaginary line extending through the planet from the North to South geographic poles. 22. Define Earth s present tilt relative to its orbit about the Sun. Think of Earth s elliptical orbit about the Sun as a level plane, with half of the Sun and Earth above the plane and half below. This level surface is termed the plane of the ecliptic. Earth s axis is tilted 23.5 from a perpendicular to this plane. 23. Describe seasonal conditions at each of the four key seasonal anniversary dates during the year. What are the solstices and equinoxes and what is the Sun s declination at these times? See Table 2.3 and Figures 2.15 and Describe revolution and rotation, and differentiate between them. The structure of Earth s orbit and revolution about the Sun is described in Figures 2.1, 2.13, and Earth s revolution determines the length of the year and the seasons. Earth s rotation, or turning, is a complex motion that averages 24 hours in duration. 16

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

Earth-Sun Relationships. The Reasons for the Seasons

Earth-Sun Relationships. The Reasons for the Seasons Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide

More information

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 5. During how many days of a calendar year is the Sun directly overhead

More information

The following words and their definitions should be addressed before completion of the reading:

The following words and their definitions should be addressed before completion of the reading: Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center

More information

For further information, and additional background on the American Meteorological Society s Education Program, please contact:

For further information, and additional background on the American Meteorological Society s Education Program, please contact: Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents

More information

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring

More information

Tropical Horticulture: Lecture 2

Tropical Horticulture: Lecture 2 Lecture 2 Theory of the Tropics Earth & Solar Geometry, Celestial Mechanics The geometrical relationship between the earth and sun is responsible for the earth s climates. The two principal movements of

More information

Chapter 2: Solar Radiation and Seasons

Chapter 2: Solar Radiation and Seasons Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add

More information

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases The Four Seasons A Warm Up Exercise What fraction of the Moon s surface is illuminated by the Sun (except during a lunar eclipse)? a) Between zero and one-half b) The whole surface c) Always half d) Depends

More information

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before

More information

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

More information

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

More information

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

More information

Lab Activity on the Causes of the Seasons

Lab Activity on the Causes of the Seasons Lab Activity on the Causes of the Seasons 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you

More information

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun

More information

STUDY GUIDE: Earth Sun Moon

STUDY GUIDE: Earth Sun Moon The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

More information

Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year

Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year Purpose To help students understand how solar radiation varies (duration and intensity) during

More information

Relationship Between the Earth, Moon and Sun

Relationship Between the Earth, Moon and Sun Relationship Between the Earth, Moon and Sun Rotation A body turning on its axis The Earth rotates once every 24 hours in a counterclockwise direction. Revolution A body traveling around another The Earth

More information

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10 Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?

More information

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,

More information

UNIT V. Earth and Space. Earth and the Solar System

UNIT V. Earth and Space. Earth and the Solar System UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system

More information

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)

More information

Name Period 4 th Six Weeks Notes 2015 Weather

Name Period 4 th Six Weeks Notes 2015 Weather Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

More information

5- Minute Refresher: Daily Observable Patterns in the Sky

5- Minute Refresher: Daily Observable Patterns in the Sky 5- Minute Refresher: Daily Observable Patterns in the Sky Key Ideas Daily Observable Patterns in the Sky include the occurrence of day and night, the appearance of the moon, the location of shadows and

More information

Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

More information

Solar Matters II Teacher Page

Solar Matters II Teacher Page Solar Matters II Teacher Page Sun Misconceptions Student Objective understands why some common phrases about the Sun are incorrect can describe how the Earth s rotation affects how we perceive the Sun

More information

Unit 8 Lesson 2 Gravity and the Solar System

Unit 8 Lesson 2 Gravity and the Solar System Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe

More information

Basic Coordinates & Seasons Student Guide

Basic Coordinates & Seasons Student Guide Name: Basic Coordinates & Seasons Student Guide There are three main sections to this module: terrestrial coordinates, celestial equatorial coordinates, and understanding how the ecliptic is related to

More information

Renewable Energy. Solar Power. Courseware Sample 86352-F0

Renewable Energy. Solar Power. Courseware Sample 86352-F0 Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this

More information

Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016. Pre-course assessment Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

More information

Sun Earth Relationships

Sun Earth Relationships 1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) 23.5 2 Solar radiation

More information

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

More information

Celestial Observations

Celestial Observations Celestial Observations Earth experiences two basic motions: Rotation West-to-East spinning of Earth on its axis (v rot = 1770 km/hr) (v rot Revolution orbit of Earth around the Sun (v orb = 108,000 km/hr)

More information

Noon Sun Angle = 90 Zenith Angle

Noon Sun Angle = 90 Zenith Angle Noon Sun Angle Worksheet Name Name Date Subsolar Point (Latitude where the sun is overhead at noon) Equinox March 22 nd 0 o Equinox September 22 nd 0 o Solstice June 22 nd 23.5 N Solstice December 22 nd

More information

The Expanding Universe

The Expanding Universe Stars, Galaxies, Guided Reading and Study This section explains how astronomers think the universe and the solar system formed. Use Target Reading Skills As you read about the evidence that supports the

More information

Page. ASTRONOMICAL OBJECTS (Page 4).

Page. ASTRONOMICAL OBJECTS (Page 4). Star: ASTRONOMICAL OBJECTS ( 4). Ball of gas that generates energy by nuclear fusion in its includes white dwarfs, protostars, neutron stars. Planet: Object (solid or gaseous) that orbits a star. Radius

More information

The Sun. Solar radiation (Sun Earth-Relationships) The Sun. The Sun. Our Sun

The Sun. Solar radiation (Sun Earth-Relationships) The Sun. The Sun. Our Sun The Sun Solar Factoids (I) The sun, a medium-size star in the milky way galaxy, consisting of about 300 billion stars. (Sun Earth-Relationships) A gaseous sphere of radius about 695 500 km (about 109 times

More information

Lecture 10 Formation of the Solar System January 6c, 2014

Lecture 10 Formation of the Solar System January 6c, 2014 1 Lecture 10 Formation of the Solar System January 6c, 2014 2 Orbits of the Planets 3 Clues for the Formation of the SS All planets orbit in roughly the same plane about the Sun. All planets orbit in the

More information

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure

More information

Shadows, Angles, and the Seasons

Shadows, Angles, and the Seasons Shadows, Angles, and the Seasons If it's cold in winter, why is Earth closer to the Sun? This activity shows the relationship between Earth-Sun positions and the seasons. From The WSU Fairmount Center

More information

ASTRONOMY 161. Introduction to Solar System Astronomy

ASTRONOMY 161. Introduction to Solar System Astronomy ASTRONOMY 161 Introduction to Solar System Astronomy Seasons & Calendars Monday, January 8 Season & Calendars: Key Concepts (1) The cause of the seasons is the tilt of the Earth s rotation axis relative

More information

Chapter 3 Earth - Sun Relations

Chapter 3 Earth - Sun Relations 3.1 Introduction We saw in the last chapter that the short wave radiation from the sun passes through the atmosphere and heats the earth, which in turn radiates energy in the infrared portion of the electromagnetic

More information

Study Guide: Sun, Earth and Moon Relationship Assessment

Study Guide: Sun, Earth and Moon Relationship Assessment I can 1. Define rotation, revolution, solstice and equinox. *Rotation and Revolution Review Worksheet 2. Describe why we experience days and years due to the rotation and r evolution of the Earth around

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

More information

EARTH'S MOTIONS. 2. The Coriolis effect is a result of Earth's A tilted axis B orbital shape C revolution D rotation

EARTH'S MOTIONS. 2. The Coriolis effect is a result of Earth's A tilted axis B orbital shape C revolution D rotation EARTH'S MOTIONS 1. Which hot spot location on Earth's surface usually receives the greatest intensity of insolation on June 21? A Iceland B Hawaii C Easter Island D Yellowstone 2. The Coriolis effect is

More information

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...

More information

PHSC 3033: Meteorology Seasons

PHSC 3033: Meteorology Seasons PHSC 3033: Meteorology Seasons Changing Aspect Angle Direct Sunlight is more intense and concentrated. Solar Incidence Angle is Latitude and Time/Date Dependent Daily and Seasonal Variation Zenith There

More information

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

More information

Essential Question. Enduring Understanding

Essential Question. Enduring Understanding Earth In Space Unit Diagnostic Assessment: Students complete a questionnaire answering questions about their ideas concerning a day, year, the seasons and moon phases: My Ideas About A Day, Year, Seasons

More information

Geography I Pre Test #1

Geography I Pre Test #1 Geography I Pre Test #1 1. The sun is a star in the galaxy. a) Orion b) Milky Way c) Proxima Centauri d) Alpha Centauri e) Betelgeuse 2. The response to earth's rotation is a) an equatorial bulge b) polar

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

Earth In Space Chapter 3

Earth In Space Chapter 3 Earth In Space Chapter 3 Shape of the Earth Ancient Greeks Earth casts a circular shadow on the moon during a lunar eclipse Shape of the Earth Ancient Greeks Ships were observed to disappear below the

More information

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves Name: Teacher: Pd. Date: STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves TEK 8.8C: Explore how different wavelengths of the electromagnetic spectrum such as light and radio waves are used to

More information

ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING

ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING 5-1 Introduction Weather is the state of the atmosphere at a particular place for a short period of time. The condition of the atmosphere

More information

13 Space Photos To Remind You The Universe Is Incredible

13 Space Photos To Remind You The Universe Is Incredible 13 Space Photos To Remind You The Universe Is Incredible NASA / Via photojournal.jpl.nasa.gov New ultraviolet images from NASA s Galaxy Evolution Explorer shows a speeding star that is leaving an enormous

More information

Which month has larger and smaller day time?

Which month has larger and smaller day time? ACTIVITY-1 Which month has larger and smaller day time? Problem: Which month has larger and smaller day time? Aim: Finding out which month has larger and smaller duration of day in the Year 2006. Format

More information

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

More information

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula Origin of the Solar System Lecture 7 Formation of the Solar System Reading: Chapter 9 Quiz#2 Today: Lecture 60 minutes, then quiz 20 minutes. Homework#1 will be returned on Thursday. Our theory must explain

More information

CHAPTER 2 Energy and Earth

CHAPTER 2 Energy and Earth CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect

More information

Coordinate Systems. Orbits and Rotation

Coordinate Systems. Orbits and Rotation Coordinate Systems Orbits and Rotation Earth orbit. The earth s orbit around the sun is nearly circular but not quite. It s actually an ellipse whose average distance from the sun is one AU (150 million

More information

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.

More information

Related Standards and Background Information

Related Standards and Background Information Related Standards and Background Information Earth Patterns, Cycles and Changes This strand focuses on student understanding of patterns in nature, natural cycles, and changes that occur both quickly and

More information

Week 1-2: Overview of the Universe & the View from the Earth

Week 1-2: Overview of the Universe & the View from the Earth Week 1-2: Overview of the Universe & the View from the Earth Hassen M. Yesuf (hyesuf@ucsc.edu) September 29, 2011 1 Lecture summary Protein molecules, the building blocks of a living organism, are made

More information

Newton s Law of Gravity

Newton s Law of Gravity Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

More information

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question.

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question. Review 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When hydrogen nuclei fuse into helium nuclei a. the nuclei die. c. particles collide. b. energy

More information

Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME

Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME Today Solstices & Equinoxes Precession Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy FIRST HOMEWORK DUE NEXT TIME The Reason for Seasons Hypothesis check: How would seasons in the northern

More information

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs Earth Sciences -- Grades 9, 10, 11, and 12 California State Science Content Standards Covered in: Hands-on science labs, demonstrations, & activities. Investigation and Experimentation. Lesson Plans. Presented

More information

ATM S 111, Global Warming: Understanding the Forecast

ATM S 111, Global Warming: Understanding the Forecast ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept

More information

Explain the Big Bang Theory and give two pieces of evidence which support it.

Explain the Big Bang Theory and give two pieces of evidence which support it. Name: Key OBJECTIVES Correctly define: asteroid, celestial object, comet, constellation, Doppler effect, eccentricity, eclipse, ellipse, focus, Foucault Pendulum, galaxy, geocentric model, heliocentric

More information

Summary: Four Major Features of our Solar System

Summary: Four Major Features of our Solar System Summary: Four Major Features of our Solar System How did the solar system form? According to the nebular theory, our solar system formed from the gravitational collapse of a giant cloud of interstellar

More information

Earth, Moon, and Sun Study Guide. (Test Date: )

Earth, Moon, and Sun Study Guide. (Test Date: ) Earth, Moon, and Sun Study Guide Name: (Test Date: ) Essential Question #1: How are the Earth, Moon, and Sun alike and how are they different? 1. List the Earth, Moon, and Sun, in order from LARGEST to

More information

Seasons on Earth LESSON

Seasons on Earth LESSON LESSON 4 Seasons on Earth On Earth, orange and red autumn leaves stand out against the blue sky. NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA) PHOTO LIBRARY/NOAA CENTRAL LIBRARY INTRODUCTION Nearly

More information

Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)

Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun) Lecture 3: Motions of the and Moon ecliptic (path of ) ecliptic (path of ) The 23.5 degree tilt of Earth s spin axis relative to its orbital axis around the causes the seasons Celestial Sphere Celestial

More information

The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe

The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe Football Review- Earth, Moon, Sun 1. During a total solar eclipse, when almost all of the Sun's light traveling to the Earth is blocked by the Moon, what is the order of the Earth, Sun, and Moon? A. Moon,

More information

Solar energy and the Earth s seasons

Solar energy and the Earth s seasons Solar energy and the Earth s seasons Name: Tilt of the Earth s axis and the seasons We now understand that the tilt of Earth s axis makes it possible for different parts of the Earth to experience different

More information

Earth in the Solar System

Earth in the Solar System Copyright 2011 Study Island - All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. Test 2 f14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Carbon cycles through the Earth system. During photosynthesis, carbon is a. released from wood

More information

Sunlight and its Properties. EE 495/695 Y. Baghzouz

Sunlight and its Properties. EE 495/695 Y. Baghzouz Sunlight and its Properties EE 495/695 Y. Baghzouz The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction at the sun's core converts hydrogen to

More information

The Layout of the Solar System

The Layout of the Solar System The Layout of the Solar System Planets fall into two main categories Terrestrial (i.e. Earth-like) Jovian (i.e. Jupiter-like or gaseous) [~5000 kg/m 3 ] [~1300 kg/m 3 ] What is density? Average density

More information

Astronomy 1140 Quiz 1 Review

Astronomy 1140 Quiz 1 Review Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality

More information

Beginning of the Universe Classwork 6 th Grade PSI Science

Beginning of the Universe Classwork 6 th Grade PSI Science Beginning of the Universe Classwork Name: 6 th Grade PSI Science 1 4 2 5 6 3 7 Down: 1. Edwin discovered that galaxies are spreading apart. 2. This theory explains how the Universe was flattened. 3. All

More information

2. The map below shows high-pressure and low-pressure weather systems in the United States.

2. The map below shows high-pressure and low-pressure weather systems in the United States. 1. Which weather instrument has most improved the accuracy of weather forecasts over the past 40 years? 1) thermometer 3) weather satellite 2) sling psychrometer 4) weather balloon 6. Wind velocity is

More information

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name: Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

More information

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12 2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit

More information

4 HOW OUR SOLAR SYSTEM FORMED 750L

4 HOW OUR SOLAR SYSTEM FORMED 750L 4 HOW OUR SOLAR SYSTEM FORMED 750L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets come from the clouds of gas and dust that

More information

The Reasons for the Seasons

The Reasons for the Seasons The Reasons for the Seasons (The Active Learning Approach) Materials: 4 Globes, One light on stand with soft white bulb, 4 flashlights, Four sets of "Seasons" Cards, Four laminated black cards with 1 inch

More information

THE SOLAR SYSTEM - EXERCISES 1

THE SOLAR SYSTEM - EXERCISES 1 THE SOLAR SYSTEM - EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?

More information

8.5 Motions of Earth, the Moon, and Planets

8.5 Motions of Earth, the Moon, and Planets 8.5 Motions of, the, and Planets axis axis North Pole South Pole rotation Figure 1 s axis is an imaginary line that goes through the planet from pole-to-pole. orbital radius the average distance between

More information

Orientation to the Sky: Apparent Motions

Orientation to the Sky: Apparent Motions Chapter 2 Orientation to the Sky: Apparent Motions 2.1 Purpose The main goal of this lab is for you to gain an understanding of how the sky changes during the night and over the course of a year. We will

More information

GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter

GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter IT S UNIVERSAL GRAVITY CONCEPTS Gravity is the universal force of attraction between all matter Weight is a measure of the gravitational force pulling objects toward Earth Objects seem weightless when

More information

Solar Nebula Theory. Basic properties of the Solar System that need to be explained:

Solar Nebula Theory. Basic properties of the Solar System that need to be explained: Solar Nebula Theory Basic properties of the Solar System that need to be explained: 1. All planets orbit the Sun in the same direction as the Sun s rotation 2. All planetary orbits are confined to the

More information

Tides and Water Levels

Tides and Water Levels Tides and Water Levels What are Tides? Tides are one of the most reliable phenomena in the world. As the sun rises in the east and the stars come out at night, we are confident that the ocean waters will

More information

How Do Oceans Affect Weather and Climate?

How Do Oceans Affect Weather and Climate? How Do Oceans Affect Weather and Climate? In Learning Set 2, you explored how water heats up more slowly than land and also cools off more slowly than land. Weather is caused by events in the atmosphere.

More information

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

More information

Note S1: Eclipses & Predictions

Note S1: Eclipses & Predictions The Moon's Orbit The first part of this note gives reference information and definitions about eclipses [14], much of which would have been familiar to ancient Greek astronomers, though not necessarily

More information

Electromagnetic Radiation Energy that comes to us from the sun is transported in the form of waves known as electromagnetic energy.

Electromagnetic Radiation Energy that comes to us from the sun is transported in the form of waves known as electromagnetic energy. Electromagnetic Radiation Energy that comes to us from the sun is transported in the form of waves known as electromagnetic energy. This combines electricity and magnetism such that setting up an electric

More information

Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy

Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy Today FIRST HOMEWORK DUE NEXT TIME Seasons/Precession Recap Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy How do we mark the progression of the seasons? We define four special points: summer

More information

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d. Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year X d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)

More information

Observing the Constellations of the Zodiac

Observing the Constellations of the Zodiac Observing the Constellations of the Zodiac Activity UCIObs 3 Grade Level: 8 12 Source: Copyright (2009) by Tammy Smecker Hane. Contact tsmecker@uci.edu with any questions. Standards:This activity addresses

More information